Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (6): 844-857.doi: 10.3724/SP.J.1006.2020.94171


Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC

ZHENG Qing-Lei1,YU Chen-Jing1,YAO Kun-Cun1,HUANG Ning1,QUE You-Xiong1,4,LING Hui2,3,*(),XU Li-Ping1,4,*()   

  1. 1Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture and Rural Area / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3College of Crop Science, Yulin Normal University, Yulin 537000, Guangxi, China
    4Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2019-11-10 Accepted:2020-01-15 Online:2020-06-12 Published:2020-02-17
  • Contact: Hui LING,Li-Ping XU E-mail:linghuich@163.com;xlpmail@126.com
  • Supported by:
    National Natural Science Foundation of China(31801424);China Agriculture Research System(CARS-17)


Cytochrome b6f complex Rieske Fe/S precursor protein (PetC) is encoded by the nuclear PetC gene, and its mature protein involved in the formation of the cytochrome b6f complex, which is important for electron transfer. Based on our previous transcriptome data of sugarcane (Saccharum spp. hybrids) infected by Sorghum mosaic virus (SrMV), a cytochrome b6f complex reduced iron-sulfur precursor protein gene was cloned from leaves of sugarcane superior elite cultivar ‘ROC22’, and named as ScPetC (GenBank accession number: MH333037.1). Bioinformatics analysis showed that the ScPetC gene was 824 bp in length, containing a 678 bp open reading frame (ORF), and encoding a peptide of 226 amino acids. ScPetC belongs to the PRK13473 superfamily and has a typical Rieske domain at its C-terminus of the amino acid chain. ScPetC is a stable and hydrophilic protein with pI 8.19. Most of the secondary structural elements in ScPetC were random coil. Compared to the PetC from the other plants, ScPetC contained one more fragment of helix in its third dimensional structure. The transient expression of YFP-fused protein in Nicotiana benthamiana leaves showed that ScPetC was located in the chloroplast, cytoplasm and cell membrane. Although the previous study indicated that the expression of ScPetC was affected by SrMV infection in sugarcane, different to the interaction between Pinellia ternata PetC and SMV-P1, without interaction between ScPetC and the SrMV-P1, it did interact with SCYLV-P0, i.e. the P0 protein of Sugarcane yellow leaf virus (SCYLV). Real-time quantitative PCR analysis showed that ScPetC gene was expressed constitutively in different tissues of sugarcane, and the highest level of its expression was found in leaves. When sugarcane plant was exposed to abscisic acid stress for 3 h, the expression of ScPetC was significantly up-regulated, but the expression level was then inhibited with longer treatment time. Under the stress of methyl jasmine, salicylic acid, copper chloride, cadmium chloride and sodium chloride, the expression of ScPetC was significantly down-regulated. The study on biological function, expression pattern and interaction of ScPetC with the proteins of sugarcane pathogenic virus will improve the understanding of the happening of yellow leaf symptom, which caused by SCYLV.

Key words: sugarcane, cytochrome b6f complex Rieske Fe/S precursor protein, bioinformatics, subcellular location, protein interaction, real-time flourescent quantitative PCR

Table 1

Primer sequence used in this study"

Primer name
Primer sequence (5°-3°)
Gene cloning
Reference gene
Reference gene
Vector for subcellular localization
Vector for Y2H
Vector for Y2H
Vector for Y2H
Vector for BiFC
Vector for BiFC
Vector for BiFC

Table 2

Database and software used for bioinformatics analysis"

工具Tool 网址Website
ORF Finder https://www.ncbi.nlm.nih.gov/orffinder/
ExPaSy http://web.expasy.org/protparam/
Prabi https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_hnn.html
SWISSMODEL http://swissmodel.expasy.org/interactive
SignalP 4.1 Server http://www.cbs.dtu.dk/servers/SignalP/
NCBI conserved domain http: //blast.ncbi.nlm.nih.gov/
WoLFPSORT https://wolfpsort.hgc.jp/
TMHMM 2.0 Server http://www.cbs.dtu.dk/servers/TMHMM/
ProtScale https://web.expasy.org/protscale/
MEME http://meme-suite.org/

Fig. 1

RT-PCR amplification of ScPetC gene in sugarcane and its amino acid sequence (A) M: DNA marker 100 bp; I: RT-PCR product. (B) ScPetC: Sugarcane cytochrome b6f complex reduced iron-sulfur protein precursor sequence; SoCYT: Sugarcane cytochrome b6f complex iron-sulfur subunit amino acid sequence[34]. "

Table 3

Primary structure analysis of ScPetC"

一级结构特性Primary structure characteristic 预测结果Predicted result
编码的氨基酸个数Number of coding amino acids 225
等电点 Theoretical pI 8.19
分子量 Molecular weight (×103) 23.85
分子式 Formula C1054H1668N294O315S11
不稳定系数 Instability index (II) 21.61
平均疏水性Grand average of hydropathicity (GRAVY) -0.146

Fig. 2

Prediction result of sugarcane ScPetC by bioinformatics software A: signal peptide; B: transmembrane domain; C: conservative domain. "

Fig. 3

Predicted third structure of mature PetC in Saccharum spp. hybrids, Oryza sativa, Pinellia ternate, and Spinacia oleracea Yellow arrow is the conservative binding domain [2Fe-2S] of PetC; blue and red arrows represent the N-terminus and C-terminus of the amino acid chain; green arrows represent α helix. White arrow represents the α helix in sugarcane that is different from other plants of tertiary structure in figure A. "

Fig. 4

Amino acid sequence aligenment of sugarcane ScPetC and other plant PetC Red squares indicate the reported conserved motif of amino acid regions within the ScPetC. CAM57108: Pinellia ternate; XP_015647138: Oryza sativa; XP_002441121: Sorghum bicolor; P08980: Spinacia oleracea; P26291: Pisum sativum; CAA45705: Nicotiana benthamiana. "

Fig. 5

Phylogenetic tree analysis of sugarcane ScPetC and PetC in other species and their corresponding motif prediction The orange part of the phylogenetic tree represents the cytochrome b6f complex cluster, the blue part represents the cytochrome bc1 complex cluster; the red cycle is labeled as ScPetC; the different color boxes in the figure represent different groups (I, II, III, IV, V, VI, VII). NP_001237648.2: Glycine max; XP_015647138.1: Oryza sativa; XP_0202013301.1: Triticum aestivum; Q9ZR03.1: Arabidopsis thaliana; P26291: Pisum sativum; AAD55565.1: Volvox carteri f nagariensis; CAA27194: Rhodobacter sphaeroides; CAA45705: Nicotiana tabacum; CAA70823: Phormidium laminosum; CAB72244: Trichormus variabilis; CAM57108.1: Pinellia ternata; CAM57109.1: Zantedeschia aethiopica; O49078: Fritillaria agrestis; P05417: Paracoccus denitrificans; P08067: Saccharomyces cerevisiae; P08980: Spinacia oleracea; P14698: Desmonostoc sp. PCC; P23136: Rhodospirillum rubrum; P26290: Synechocystis sp. PCC; P26291: Pisum sativum; P26292: Synechococcus sp. PCC; P37841: Solanum tuberosum; P49728: Chlamydomonas reinhardtii; Q9ZR03: Arabidopsis thaliana; XP_002441121: Sorghum bicolor; ACG28308: Zea mays; XP_004951312: Setaria italica. motif 1: X6NAXCTHLGCVVPX3ENKFXCPCHGSX10GPAP; motif 2: NLX11PDX3RX3NLX22PX3GX3GXXAKGXXGNDX6LX7LXXGLKGDPTYX2V; motif 3: X7WXETDFRTX3PWW; motif 4: XGDX3 GWFCPCHGSHYDX2GRIRXGPAPXNLX15; motif 5: X7MX4DX2AX5 VX7GX6 WXGKPVFXRXRX4IX5VX4LXDX10; motif 6: X2AXSIX ADXV; motif 7: XWLX3GXCTHLGCX; motif 8: X9QLX10; motif 9: LVVEXDXT; motif 10: FX5FX3DDSSX2RSXSPSLXSXFLX3RGFS SNSVSPAHX2GLVXDLPXTVAAIKNPXSKIVYDX2 NHERYPPGDPSKRAFAYFVLTGGRFVY. "

Fig. 6

Results of subcellular localization of sugarcane ScPetC Subcellular localizations of the Agrobacterium tumefaciens mediated transformation of ScPetC and empty vector in Nicotiana benthamiana leaves after 48 h infiltration; the epidermal cells of Nicotiana benthamiana were used for taking images of visible light, yellow fluorescence, chloroplast autofluorescence, and merged visible light. Blue arrows 1 and 2 indicate nucleus and plasma membrane. The area in the red rectangle is magnified. Bar=50 μm; 35S::YFP: the Agrobacterium tumefaciens strain carrying the empty vector pCAMBIA2300-YFP; 35S:: ScPetC::YFP: the Agrobacterium tumefaciens strain carrying the recombinant vector pCAMBIA2300-ScPetC-YFP."

Fig. 7

The interaction assay of sugarcane ScPetC with virus proteins of Sorghum mosaic virus (SrMV) or Sugarcane yellow leaf virus (SCYLV) A: ScPetC was verified by yeast double-hybrid interaction with SrMV-P1 protein. B: ScPetC was verified by yeast double-hybrid interaction with SCYLV-P0 protein; SD/-Ade/-His/Leu/-Trp: synthetic dropout medium plate without adenine, histidine, leucine, tryptophan; SD/-Ade/-His/Leu/-Trp/X-α-Gal: synthetic dropout medium plate without adenine, histidine, leucine, tryptophan (plus 5-bromo-4-chloro-3- indoxyl-α-D-galactopyranoside); SD/-Ade/-His/Leu/-Trp/X-α-Gal/AbA: synthetic dropout medium plate without adenine, histidine, leucine, tryptophan (plus 5-bromo-4-chloro-3-indoxyl-α-D-galactopyranoside and aureobasidin A). C: the bimolecular fluorescence complementation (BiFC) assay of the interaction between ScPetC and SCYLV-P0 protein; YC, YN, YN-ScPetC, YC-P0 represent the plasmids pCAMBIA2300S-YC, pCAMBIA2300S-YN, pCAMBIA2300S-YN-ScPetC, pCAMBIA2300S-YC-P0, respectively[42]."

Fig. 8

Transcriptional expression pattern analysis of sugarcane ScPetC gene A: the tissure-specific expression analysis of ScPetC gene in sugarcane; B and C: relative expression of ScPetC in sugarcane under different exogenous stresses. Bars with different superscripts (a, b, c, d) represent differ significantly (P ≤ 0.05) and error bars represent the standard error of each treating group (n = 3)."

[1] Yadav R L, Solomon S . Potential of developing sugarcane by product based industries in India. Sugar Tech, 2006,8:104-111.
[2] 何炎森, 李瑞美 . 甘蔗花叶病研究现状. 中国糖料, 2006, ( 1):47-49.
He Y S, Li R M . Research status of Sugarcane mosaic virus disease in China. Sugar Crops China, 2006, ( 1):47-49 (in Chinese with English abstract).
[3] iaz O D L C A, Hechavarra M D L L O, Izaguirre Y P, Navarro M D L A Z, Lopez J M M L, Lissbrant S, Arencibia A . Genotyping of Sugarcane yellow leaf virus in commercial cultivars and the Cuban germplasm collection. Sugar Tech, 2016,19:102-108.
[4] 王伯辉 . 我国甘蔗病害的发生现状与研究进展. 中国糖料, 2007, ( 3):261-265.
Wang B H . The occurrence status and research progress of surgarcane disease in China. Sugar Crops China, 2007, ( 3):261-265 (in Chinese with English abstract).
[5] Shukla D D, Frenkel J M, McKern M N, Ward C W, Jilka J, Tosic M, Ford R E, . Present status of the sugarcane mosaic subgroup of potyviruses. Arch Virol Suppl, 1992,5:363-373.
[6] Elsayed A I, Komor E . Investigation of ORF0 as a sensitive alternative diagnostic segment to detect Sugarcane yellow leaf virus. J Gen Plant Pathol, 2012,78:207-216.
[7] Mirkov T E, Ingelbrecht I, Castillon A, Hernandez J C . Identification of sugarcane proteins involved in posttranscriptional gene silencing. Proc Int Soc Sugarcane Technol, 2001,24:327-330.
[8] Shan H Y, Pasin F, Valli A, Castillo C, Rajulu C, Carbonell A, Mateo S C, García J A, Rodamilans B . The Potyviridae P1a leader protease contributes to host range specificity. Virology, 2015,476:264-270.
[9] Fabio P, Carmen S M, Antonio G J . The hypervariable amino terminus of P1 protease modulates potyviral replication and host defense responses. PLoS Pathog, 2014,10:e1003985. doi 10.1371/journal.ppat.1003985.
doi: 10.1371/journal.ppat.1003985
[10] Mangwende T, Wang M L, Borth W, Hu J, Moore P H, Mirkov T E, Albert H H . The P0 gene of Sugarcane yellow leaf virus encodes an RNA silencing suppressor with unique activities. Virology, 2009,384:38-50.
doi: 10.1016/j.virol.2008.10.034
[11] Veidt I, Bouzoubaa S E, Leiser R M, Zieglergraff V A, Guilley H, Richards K, Jonard G . Synthesis of full-length transcripts of Beet western yellows virus RNA messenger properties and biological activity in protoplasts. Virology, 1992,186:192-200.
doi: 10.1016/0042-6822(92)90073-X
[12] 燕照玲, 段俊枝, 冯丽丽, 陈海燕, 齐红志, 杨翠苹, 施艳, 张会芳 . 马铃薯Y病毒属病毒编码蛋白与寄主植物叶绿体蛋白互作研究进展. 河南农业科学, 2017,46(11):1-5.
Yan Z L, Duan J Z, Feng L L, Chen H Y, Qi Z H, Yang C P, Shi Y, Zhang H F . Progress on interaction between potyviruses coded proteins and chloroplast proteins of host plants. J Henan Agric Sci, 2017,46(11):1-5 (in Chinese with English abstract).
[13] Zhao J P, Zhang X, Hong Y G, Liu Y L . Chloroplast in plant virus interaction. Front Microbiol, 2016,7:1565. doi: 10.3389/fmicb.2016.01565.
[14] Lin L, Luo Z P, Yan F, Lu Y W . Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants. Virus Genes, 2011,43:90-92.
doi: 10.1007/s11262-011-0596-6
[15] 翟玉山, 赵贺, 张海, 邓宇晴, 程光远, 杨宗桃, 王彤, 彭磊, 徐倩, 董萌, 徐景升 . 甘蔗NAD(P)H脱氢酶复合体O亚基基因克隆及其与甘蔗花叶病毒VPg互作研究, 作物学报, 2019,45:1478-1487.
doi: 10.3724/SP.J.1006.2019.94002
Zhai Y S, Zhao H, Zhang H, Deng Y Q, Cheng G Y, Yang Z T, Wang T, Peng L, Xu Q, Dong M, Xu J S . Cloning of NAD(P)H complex O subunit gene and its interaction with VPg of Sugarcane mosaic virus. Acta Agron Sin, 2019,45:1478-1487 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.94002
[16] Shi Y, Chen J, Hong X, Chen J, Adams M J . A potyvirus P1 protein interacts with the Rieske Fe/S protein of its host. Mol Plant Pathol, 2010,8:785-790.
doi: 10.1111/mpp.2007.8.issue-6
[17] Pazhouhandeh M, Dieterle M, Marrocco K, Lechner E, Berry B, Brault V, Hemmer O, Kretsch T, Richards K E, Genschik P, Graff V Z . F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proc Natl Acad Sci USA, 2006,103:1994-1999.
doi: 10.1073/pnas.0510784103
[18] Sun Q Q, Li Y Y, Wang Y, Zhao H H, Zhao T Y, Zhang Z Y, Li D W, Yu J L, Wang X B, Zhang Y L, Han C G . BrYV P0 protein impairs the antiviral activity of NbRAF2 in Nicotiana Benthamiana. J Exp Bot, 2018,69:3127-3139.
doi: 10.1093/jxb/ery131
[19] 李合生 . 现代植物生理学(第3版). 北京: 高等教育出版社, 2012. pp 114-118.
Li H S . Modern Plant Physiology, 3rd edn. Beijing: Higher Education Press, 2012. pp 114-118(in Chinese).
[20] Schottler M A, Tóth S Z, Boulouis A . Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. J Exp Bot, 2015,66:2373-2400.
doi: 10.1093/jxb/eru495
[21] Rieske J S, Zaugg W S, Hansen R E . Studies on the electron transfer system. J Biol Chem, 1964,242:2051-2061.
[22] Rieske J S . Composition, structure, and function of complex III of the respiratory chain. Biochim Biophys Acta, 1976,456:195-247.
[23] Steppuhn J, Rother C, Hermans J, Jansen T . The complete amino acid sequence of the Rieske Fe/S precursor protein from spinach chloroplasts deduced from cDNA analysis. Mol Gen Genet, 1987,210:171-177.
doi: 10.1007/BF00337775
[24] Salter A H, Newman B J, Napier J, Gray J C . Import of the precursor of the chloroplast Rieske iron-sulfur protein by pea chloroplasts. Plant Mol Biol, 1992,20:569-574.
doi: 10.1007/BF00040617
[25] Knight J S, Duckett C M, Sullivan J A, Walker A R, Gray J C . Tissue-specific, light-regulated and plastid-regulated expression of the single-copy nuclear gene encoding the chloroplast Rieske Fe/S protein of Arabidopsis thaliana. Plant Cell Physiol, 2002,43:522-531.
doi: 10.1093/pcp/pcf062
[26] Madueno F, Bradshaw S A, Gray J C . The thylakoid-targeting domain of the chloroplast Rieske iron-sulfur protein is located in the N-terminal hydrophobic region of the mature protein. J Biol Chem, 1994,26:17458-17463.
[27] Vitry C D . Characterization of the gene of the chloroplast Rieske iron-sulfur protein in Chlamydomonas reinhardtii indications for an uncleaved lumen targeting sequence. J Biol Chem, 1994,269:7603-7609.
[28] Carrell C J, Zhang H, Cramer W A, Smith J L . Biological identity and diversity in photosynthesis and respiration: structure of the lumen side domain of the chloroplast Rieske protein. Structure, 1997,5:1613-1625.
[29] Hasan S S, Yamashita E, Cramer W A . Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex. Biochim Biophys Acta, 2013,1827:1295-1308.
[30] Cramer W A, Hasan S S, Yamashita E, Kahlau S . The Q cycle of cytochrome bc1 complexes: a structure perspective. Biochim Biophys Acta, 2011,1807:788-802.
[31] Yamori W, Kondo E, Sugiura D, Terashima I, Suzuki Y, Makino A . Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske Fe/S protein content in the cytochrome b6f complex. Plant Cell Environ, 2016,39:80-87.
[32] Simkin A J, Lorna M, Lawson T, Raines C A . Over-expression of the Rieske Fe/S protein increases electron transport rates and biomass yield. Plant Physiol, 2017,175:134-145.
[33] Sanda S, Munekage Y N, Yoshida K, Akashi K, Yokota A . Excess light-induced molecular responses of chloroplast Rieske Fe/S protein. Photosynth Energy Sun, 2008,14:941-944.
[34] 梁潘霞, 李杨瑞 . 甘蔗细胞色素b6f复合体铁硫亚基(SoCYT)基因的克隆和表达分析. 西南农业学报, 2016,29:1032-1037.
Liang P X, Li L R . Cloning of cytochrome b6/f complex iron-sulfur subunit( SoCYT) from sugarcane and analysis of its expression under PEG stress. Acta Agric Boreali-occident Sin, 2016,29:1032-1037 (in Chinese with English abstract).
[35] Luo M, Kong X Y, Jiang T, Jia C, Zhou R H, Jia J Z . Analysis of resistance to powdery mildew in wheat based on Expressed Sequence Tags (EST) technique. Acta Bot Sin, 2002,44:567-572.
[36] 阙友雄, 林剑伟, 徐景升, 阮秒鸿, 许莉萍, 张木清, 陈由强, 陈如凯 . 甘蔗与黑穗病菌互作的叶片差异蛋白分析. 热带作物学报, 2008,29:136-140.
Que Y X, Lin W J, Xu J S, Ruan M H, Xu L P, Zhang M Q, Chen Y Q, Chen R K . Analysis of protein expression patterns of leaves from interaction between sugarcane and Ustilago scitaminea. Chin J Trop Crops, 2008,29:136-140 (in Chinese with English abstract).
[37] Ling H, Huang N, Wu Q B, Su Y C, Peng Q, Ahmed W, Gao S W, Su W H, Que Y X, Xu L P . Transcriptional insights into the sugarcane- Sorghum mosaic virus interaction. Trop Plant Biol, 2018,11:163-176.
[38] 黄宁, 张玉叶, 凌辉, 罗俊, 吴期滨, 阙友雄 . 甘蔗二氨基庚二酸异构酶基因的克隆与表达分析. 热带作物学报, 2013,34:2200-2208.
Huang N, Zhang Y Y, Ling H, Luo J, Wu Q B, Que Y X . Cloning and expression analysis of a diaminopimelate epimerase gene in sugarcane. Chin J Trop Crops, 2013,34:2200-2208 (in Chinese with English abstract).
[39] 苏亚春, 黄珑, 凌辉, 王竹青, 刘峰, 苏炜华, 黄宁, 吴期滨, 高世武, 阙友雄 . 甘蔗CDK基因的cDNA全长克隆与表达分析. 作物学报, 2017,43:42-50.
Su Y C, Huang L, Ling H, Wang Z Q, Liu F, Su W H, Huang N, Wu Q B, Gao S W, Que Y X . Cloning and expression analysis of CDK Gene in sugarcane. Acta Agron Sin, 2017, 43:42-50 (in Chinese with English abstract).
[40] Liu F, Huang N, Wang L, Ling H, Sun T T, Ahmad W, Muhammad K, Guo J X, Xu L P, Gao S W, Que Y X, Su Y C . A novel L-ascorbate peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane. Front Plant Sci, 2017,8:2262. doi: 10.3389/fpls.2017.02262.
[41] Schmidt C L, Shaw L . A comprehensive phylogenetic analysis of Rieske and Rieske-type iron-sulfur proteins. J Bioenerg Biomembr, 2001,33:9-26.
[42] Schütze K, Harter K, Chaban C . Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. Metho Mol Biol, 2009,479:189-202.
[43] Guo J L, Ling H, Wu Q B, Xu L P, Que Y X . The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014,4:7042. doi: 10.1038/srep07042.
[44] 郑红英 . TuMV HC-Pro蛋白自身互作及其与拟南芥编码Rieske Fe/S蛋白的互作研究. 华中农业大学博士学位论文, 湖北武汉, 2011.
Zheng H Y . The Self Interaction of TuMV HC-Pro and Its Interaction with Rieske Fe/S Protein Encoded by Arabidopsis thaliana. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2011 (in Chinese with English abstract).
[45] Dashevskaya S, Horn R, Chudobova I, Schillberg S, Velez S M R, Capell T, . Abscisic acid and the herbicide safener cyprosulfamide cooperatively enhance abiotic stress tolerance in rice. Mol Breed, 2013,32:463-484.
[46] Liu B, Xue X D, Cui S P, Zhang X Y, Han Q M, Zhu L, Liang X F, Wang X J, Huang L L, Chen X M, Kang Z S . Cloning and characterization of a wheat β-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Mol Biol Rep, 2010,37:1045-1052.
[47] 严蓓 . 钙缓解黄瓜幼苗NaCl胁迫伤害的蛋白质组学及光合碳代谢研究. 南京农业大学硕士学位论文,江苏南京, 2013.
Yan P . Proteomics and Photosynthetic Carbon Metabolism Research on Calcium Alleviating Salt Stress of Cucumber Seedlings. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013 (in Chinese with English abstract).
[1] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[2] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[3] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[4] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[5] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[6] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[7] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[8] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[9] HUANG Ning, HUI Qian-Long, FANG Zhen-Ming, LI Shan-Shan, LING Hui, QUE You-Xiong, YUAN Zhao-Nian. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(5): 882-893.
[10] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[11] LI Lan-Lan, MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong, FANG Chang-Xun. Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.) [J]. Acta Agronomica Sinica, 2021, 47(2): 197-209.
[12] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[13] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[14] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[15] CANG Xiao-Yan, XIA Hong-Ming, LI Wen-Feng, WANG Xiao-Yan, SHAN Hong-Li, WANG Chang-Mi, LI Jie, ZHANG Rong-Yue, HUANG Ying-Kun. Evaluation of natural resistance to smut in elite sugarcane varieties (lines) [J]. Acta Agronomica Sinica, 2021, 47(11): 2290-2296.
Full text



No Suggested Reading articles found!