Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (3): 644-655.doi: 10.3724/SP.J.1006.2022.02089


Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice

WU Yan-Fei(), HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng*()   

  1. State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
  • Received:2020-12-21 Accepted:2021-07-12 Online:2022-03-12 Published:2021-08-09
  • Contact: SHENG Feng E-mail:Byronwyf@163.com;shengfsk@163.com
  • Supported by:
    Major Program of Technological Innovation of Hubei Province(2018ABA080);Major Program of Technological Innovation of Hubei Province(2020BBB052);Key Program of Natural Science Foundation of Hubei Province(2019CFA027);Natural Science Foundation of Hubei Province(2020CFB261)


Elongator complex (ELP) is a class of protein complex that elongates RNA polymerase II in eukaryotic transcription, which plays an important role in plant growth and development, and resistance to biotic and abiotic stresses. In this study, we identified the ELP family genes and explored the physical and chemical properties, subcellular location, chromosome location, promoter cis-acting elements prediction, and expression patterns under abiotic stresses in rice (Oryza sativa) ELP family genes by bioinformatics methods. A total of six OsELPs members were preliminarily identified, which randomly distributed on five chromosomes and encoded protein containing 250 to 1344 amino acid in rice. Their molecular weight and isoelectric point were 27.97-148.99 kD and 5.01-8.63, respectively. Phylogenetic analysis showed that the ELPs proteins from rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), yeast (Saccharomyces cerevisiae), and human (Homo sapiens) could be divided into four groups (Group I-Group IV). And subgroup I contained OsELP1, subgroup II contained OsELP2 and OsELP5, subgroup III contained OsELP4, subgroup IV contained OsELP3 and OsELP6. There were a variety of cis-acting elements in the promoter regions of OsELPs, which mainly responded to light, phytohormone, drought, low temperature, defense, and stress stimulant signals. The induced expression patterns confirmed that all OsELPs genes were differentially expressed with different degrees under various abiotic stresses including PEG, low temperature, salt, and dehydration. Among them, OsELP6 was significantly up-regulated under the four kinds of abiotic stresses, which may mediate the comprehensive resistance to various abiotic stresses in rice.

Key words: rice (Oryza sativa), Elongator complex, bioinformatics, abiotic stresses

Table 1

Primers of OsELPs and internal reference genes for qRT-PCR"

Primer name
Sequence (5°-3°)
Length (bp)

Table 2

Information of ELP family genes in rice"

Gene name
Gene ID
LOC loucs
AA size (aa)
Molecular weight
Isoelectric point
OsELP1 Os07g0563700 LOC_Os07g37640 1344 148.99 5.47 PMa, Nuclb/Mbb
OsELP2 Os08g0493900 LOC_Os08g38570 850 92.67 6.69 Extraa/PMa, Mbb
OsELP3 Os04g0484900 LOC_Os04g40840 574 63.78 8.63 M.t.ma, Nuclb
OsELP4 Os06g0639600 LOC_Os06g43280 378 27.46 7.96 Nucla, C.t.sb
OsELP5 Os03g0201700 LOC_Os03g10460 385 42.52 5.01 Nucla, Cytob
OsELP6 Os03g0284000 LOC_Os03g17560 250 27.97 6.23 Cytoa, Cytob

Fig. 1

Phylogenetic trees of ELP proteins from rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), human (Homo sapiens), and yeast (Saccharomyces cerevisiae) In this study, OsELPs are shown in black circles, AtELPs in green square, HsELPs in cyan rhombus, and ScELPs in blue triangle. The scale bar represents 0.2 amino acid substitutions at each synonymous site."

Fig. 2

Gene structures of OsELPs genes"

Fig. 3

Conserved domains of OsELPs proteins"

Fig. 4

Prediction of cis-regulatory elements in the promoters of OsELPs"

Fig. 5

Relative expression patterns of OsELPs genes under PEG, cold, and NaCl stresses"

Fig. 6

Relative expression patterns of OsELPs genes under dehydration treatment"

[1] Wittschieben B, Otero G, Bizemont T D, Fellows J, Svejstrup J, Erdjument-Bromage H, Ohba R, Li Y, Allis D, Tempst P, Svejstrup J Q. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell, 1999, 4:123-128.
pmid: 10445034
[2] Otero G, Fellows J, Li Y, Bizemont T D, Svejstrup J Q. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell, 1999, 3:109-118.
pmid: 10024884
[3] Versées W, Groeve S D, Lijsebettens M V. Elongator, a conserved multitasking complex? Mol Microbiol, 2010, 76:1065-1069.
doi: 10.1111/j.1365-2958.2010.07162.x pmid: 20398217
[4] Dauden M I, Jaciuk M, Weis F, Lin T Y, Kleindienst C, Abbassi N E H, Khatter H, Krutyhołowa R, Breunig K D, Kosinski J, Müller C W, Glatt S. Molecular basis of tRNA recognition by the Elongator complex. Sci Adv, 2019, 5: eaaw2326.
doi: 10.1126/sciadv.aaw2326
[5] Jarosz M, Van Lijsebettens M, Woloszynska M. Plant Elongator-protein complex of diverse activities regulates growth, development, and immune responses. Int J Mol Sci, 2020, 21:6912.
doi: 10.3390/ijms21186912
[6] Abdel-Fattah W, Jablonowski D, Santo R D, Ring K L T, Stark M J R. Phosphorylation of Elp1 by Hrr25 is required for elongator-dependent tRNA modification in yeast. PLoS Genet, 2015, 11:e1004931.
doi: 10.1371/journal.pgen.1004931
[7] Sant R D, Bandau S, Star M J R. A conserved and essential basic region mediates tRNA binding to the Elp1 subunit of the Saccharomyces cerevisiae Elongator complex. Mol Microbiol, 2014, 92:1227-1242.
doi: 10.1111/mmi.2014.92.issue-6
[8] Dong C, Lin Z, Diao W, Li D, Chu X, Wang Z, Zhou H, Xie Z, Shen Y, Long J. The Elp2 subunit is essential for elongator complex assembly and functional regulation. Structure, 2015, 23:1078-1086.
doi: 10.1016/j.str.2015.03.018
[9] Nelissen H, Fleury D, Bruno L, Robles P, De Veylder L, Traas J, Micol J L, Van Montagu M, Inzé D, Van Lijsebettens M. The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Proc Natl Acad Sci USA, 2005, 102:7754-7759.
doi: 10.1073/pnas.0502600102
[10] Qi L, Zhang X, Zhai H, Liu J, Wu F, Li C, Chen Q. Elongator is required for root stem cell maintenance by regulating SHORTROOT transcription. Plant Physiol, 2019, 179:220-232.
doi: 10.1104/pp.18.00534
[11] Dalwadi U, Yip C K. Structural insights into the function of Elongator. Cell Mol Life Sci, 2018, 75:1613-1622.
doi: 10.1007/s00018-018-2747-6 pmid: 29332244
[12] Lin Z, Zhao W, Diao W, Xie X, Wang Z, Zhang J, Shen Y, Long J. Crystal structure of elongator subcomplex Elp4-6. J Biol Chem, 2012, 287:21501-21508.
doi: 10.1074/jbc.M112.341560
[13] Glatt S, Létoquart J, Faux C, Taylor N M, Séraphin B, Müller C W. The Elongator subcomplex Elp456 is a hexameric RecA-like ATPase. Nat Struct Mol Biol, 2012, 19:314-320.
[14] Krogan N J, Greenblatt J F. Saccharomyces cerevisiae Saccharomyces cerevisiae. Mol Cell Biol, 2001, 21:8203-8212.
pmid: 11689709
[15] Zhou X, Hua D, Chen Z, Zhou Z, Gong Z. Arabidopsis Arabidopsis. Plant J, 2009, 60:79-90.
doi: 10.1111/tpj.2009.60.issue-1
[16] An C, Ding Y, Zhang X, Wang C, Mou Z. Arabidopsis Arabidopsis. Mol Plant Microbe Interact, 2016, 29:396-404.
doi: 10.1094/MPMI-01-16-0005-R
[17] Nelissen H, De Groeve S, Fleury D, Neyt P, Bruno L, Bitonti M B, Vandenbussche F, Van der Straeten D, Yamaguchi T, Tsukaya H, Witters E, De Jaeger G, Houben A, Van Lijsebettens M. Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proc Natl Acad Sci USA, 2010, 107:1678-1683.
doi: 10.1073/pnas.0913559107
[18] Wang Y, An C, Zhang X, Yao J, Zhang Y, Sun Y, Yu F, Amador D M, Mou Z. Arabidopsis elongator complex subunit 2 epigenetically regulates plant immune responses Arabidopsis elongator complex subunit 2 epigenetically regulates plant immune responses. Plant Cell, 2013, 25:762-776.
doi: 10.1105/tpc.113.109116
[19] Gould K S. Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotech, 2004, 2004:314-320.
doi: 10.1155/S1110724304406147
[20] Chen Z, Zhang H, Jablonowski D, Zhou X, Ren X, Hong X, Schaffrath R, Zhu J K, Gong Z. Arabidopsis thaliana Arabidopsis thaliana. Mol Cell Biol, 2006, 26:6902-6912.
doi: 10.1128/MCB.00433-06
[21] Huang B, Johansson M J, Byström A S. An early step in wobble uridine tRNA modification requires the Elongator complex. RNA, 2005, 11:424-436.
pmid: 15769872
[22] Matsui K, Umemura Y, Ohme-Takagi M. Arabidopsis Arabidopsis. Plant J, 2008, 55:954-967
doi: 10.1111/tpj.2008.55.issue-6
[23] Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul J M, Alboresi A, Weisshaar B, Lepiniec L. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J, 2008, 55:940-953.
[24] Pereira J A, Yu F, Zhang Y, Jones J B, Mou Z. Arabidopsis Elongator subunit ELP3 and ELP4 confer resistance to bacterial speck in tomato Arabidopsis Elongator subunit ELP3 and ELP4 confer resistance to bacterial speck in tomato. Front Plant Sci, 2018, 9:1066.
doi: 10.3389/fpls.2018.01066
[25] 王开, 张增艳. 小麦TaELP4促进染色质组蛋白乙酰化正向调节免疫反应. 第十届全国小麦基因组学及分子育种大会摘要集. 中国作物学会, 2019.
Wang K, Zhang Z Y. Triticum aestivum TaELP4 promotes chromatin histone acetylation and positively regulates immune response. Summary of the 10th National Conference on Wheat Genomics and Molecular Breeding, Crop Science Society of China 2019 (in Chinese).
[26] 袁隆平. 发展杂交水稻保障粮食安全. 科学新闻, 2014, (12):32-33.
Yuan L P. Development of hybrid rice, ensure food security. Sci News, 2014, (12):32-33 (in Chinese).
[27] 王胜昌, 涂海甫, 胡丹, 吴奈, 岑祥, 熊立仲. 水稻抗非生物逆境功能基因的发掘. 生命科学, 2016, 28:1216-1229.
Wang S C, Tu H F, Hu D, Wu N, Cen X, Xiong L Z. The exploitation of rice functional genes for abiotic stress. Chin Bull Life Sci, 2016, 28:1216-1229 (in Chinese with English abstract).
[28] Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res, 1997, 25:4876-4882.
doi: 10.1093/nar/25.24.4876
[29] DeFraia C, Mou Z. The role of the Elongator complex in plants. Plant Sign Behav, 2011, 6:19-22.
doi: 10.4161/psb.6.1.14040
[30] 张卫娜, 范艳玲, 康益晨, 杨昕宇, 石铭福, 要凯, 赵章平, 张俊莲, 秦舒浩. 对马铃薯类受体激酶CRK基因家族的鉴定及响应病原真菌信号的表达分析. 作物学报, 2020, 4:680-689.
Zhang W N, Fan Y L, Kang Y C, Yang X Y, Shi M F, Yao K, Zhao Z P, Zhang J L, Qin S H. Genome wide identification and expression analysis of CRK gene family in response to fungal pathogen signals in potato. Acta Agron Sin, 2020, 46:680-689 (in Chinese with English abstract).
[31] 杨琳, 王宇, 杨剑飞, 李玉花. 花青素积累相关负调控因子的研究进展. 园艺学报, 2014, 41:1873-1884.
Yang L, Wang Y, Yang J F, Li Y H. Research advances on negative regulators of anthocyanin accumulation. Acta Hortic Sin, 2014, 41:1873-1884 (in Chinese with English abstract).
[32] 华静静, 陈晓静. 植物体中WD40蛋白的研究进展. 黑龙江农业科学, 2015, (5):153-156.
Hua J J, Chen X J. Progress of WD40 proteins in Plant. Heilongjiang Agric Sci, 2015, (5):153-156.
[33] Mehlgarten C, Jablonowski D, Wrackmeyer U, Tschitschmann S, Sondermann D, Jäger G, Gong Z, Byström A S, Schaffrath R, Breunig K D. Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Mol Microbiol, 76:1082-1094.
doi: 10.1111/mmi.2010.76.issue-5
[34] Esberg A, Huang B, Johansson M J, Byström A S. Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol Cell, 2006, 24:139-148.
doi: 10.1016/j.molcel.2006.07.031
[35] Laguesse S, Close P, Van Hees L, Chariot A, Malgrange B, Nguyen L. Loss of Elp3 impairs the acetylation and distribution of connexin-43 in the developing cerebral cortex. Front Cell Neurosci, 2017, 11:122.
doi: 10.3389/fncel.2017.00122 pmid: 28507509
[36] Fang X, Cui Y, Li Y, Qi Y. Arabidopsis Arabidopsis. Nat Plants, 2015, 1:15075.
doi: 10.1038/nplants.2015.75
[37] Woloszynska M, Le Gall S, Van Lijsebettens M. Plant Elongator-mediated transcriptional control in a chromatin and epigenetic context. Biochim Biophys Acta, 2016, 1859:1025-1033.
doi: 10.1016/j.bbagrm.2016.06.008 pmid: 27354117
[38] 郭晋艳, 郑晓瑜, 邹翠霞, 李秋莉. 植物非生物胁迫诱导启动子顺式元件及转录因子研究进展. 生物技术通报, 2011, (4):16-20.
Guo J Y, Zheng X Y, Zou C X, Li Q L. Research progress of cis-elements of abiotic stress inducible promoters and associated transcription factors. Biotech Bull, 2011, (4):16-20 (in Chinese with English abstract).
[39] Baker S S, Wilhelm K S, Thomashow M F. Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24:701-713.
pmid: 8193295
[40] Agarwal M, Hao Y, Kapoor A, Dong C H, Fujii H, Zheng X, Zhu J K. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem, 2006, 281:37636-37645.
pmid: 17015446
[41] Onishi M, Tachi H, Kojima T, Shiraiwa M, Takahara H. Molecular cloning and characterization of a novel salt-inducible gene encoding an acidic isoform of PR-5 protein in soybean (Glycine max [L.] Merr.). Plant Physiol Biochem, 2006, 44:574-580.
doi: 10.1016/j.plaphy.2006.09.009
[42] Yamaguchi-Shinozaki K, Shinozaki K. Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol, 1993, 101:1119-1120.
pmid: 8310052
[43] White A J, Alison D M, Kate B, Hughes M A. Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. J Exp Bot, 1994, 45:1885-1892.
doi: 10.1093/jxb/45.12.1885
[44] Glatt S, Létoquart J, Faux C, Taylor N M, Séraphin B, Müller C W. The Elongator subcomplex Elp456 is a hexameric RecA-like ATPase. Nat Struc Mol Biol, 2012, 19:314-320.
[45] Leitner J, Retzer K, Malenica N, Bartkeviciute R, Lucyshyn D, Jäger G, Korbei B, Byström A, Luschnig C. Arabidopsis auxin responses depends on tRNA maturation Arabidopsis auxin responses depends on tRNA maturation. Cell Rep, 2015, 11:516-526.
doi: 10.1016/j.celrep.2015.03.054
[1] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[2] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[3] HUANG Ning, HUI Qian-Long, FANG Zhen-Ming, LI Shan-Shan, LING Hui, QUE You-Xiong, YUAN Zhao-Nian. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(5): 882-893.
[4] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[5] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[6] HUANG Xiao-Fang,BI Chu-Yun,SHI Yuan-Yuan,HU Yun-Zhuo,ZHOU Li-Xiang,LIANG Cai-Xiao,HUANG Bi-Fang,XU Ming,LIN Shi-Qiang,CHEN Xuan-Yang. Discovery and analysis of NBS-LRR gene family in sweet potato genome [J]. Acta Agronomica Sinica, 2020, 46(8): 1195-1207.
[7] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[8] YAO Jun-Yue,HUA Ying-Peng,ZHOU Ting,WANG Tao,SONG Hai-Xing,GUAN Chun-Yun,ZHANG Zhen-Hua. Identification and function analysis of AVP1, VHA-a2, and VHA-a3 genes in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(8): 1146-1157.
[9] SUN Ting-Ting,WANG Wen-Ju,LOU Wen-Yue,LIU Feng,ZHANG Xu,WANG Ling,CHEN Yu-Feng,QUE You-Xiong,XU Li-Ping,LI Da-Mei,SU Ya-Chun. Cloning and expression analysis of sugarcane lipoxygenase gene ScLOX1 [J]. Acta Agronomica Sinica, 2019, 45(7): 1002-1016.
[10] Gui-Hong LIANG,Ying-Peng HUA,Ting ZHOU,Qiong LIAO,Hai-Xing SONG,Zhen-Hua ZHANG. Bioinformatics analysis and response to nitrate-cadmium stress of NRT1.5 and NRT1.8 family genes in Brassica napus [J]. Acta Agronomica Sinica, 2019, 45(3): 365-380.
[11] Zuo-Min WANG,Jin LIU,Shi-Chao SUN,Xin-Yu ZHANG,Fei XUE,Yan-Jun LI,Jie SUN. Identification and Expression Analysis of Multidrug and Toxic Compound Extrusion Protein Family Genes in Colored Cotton [J]. Acta Agronomica Sinica, 2018, 44(9): 1380-1392.
[12] Ling WANG,Feng LIU,Ming-Jian DAI,Ting-Ting SUN,Wei-Hua SU,Chun-Feng WANG,Xu ZHANG,Hua-Ying MAO,Ya-Chun SU,You-Xiong QUE. Cloning and Expression Characteristic Analysis of ScWRKY4 Gene in Sugarcane [J]. Acta Agronomica Sinica, 2018, 44(9): 1367-1379.
[13] Kun GAO,Ying-Peng HUA,Hai-Xing SONG,Chun-Yun GUAN,Zhen-Hua ZHANG,Ting ZHOU. Identification and Bioinformatics Analysis of the PIN Family Gene in Brassica napus [J]. Acta Agronomica Sinica, 2018, 44(9): 1334-1346.
[14] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
[15] Jun-Qiong SHI, Ya-Qin WANG, Tian-Quan ZHANG, Ling MA, Guang-Hua HE. Expression Pattern and Protein Localization of a Yellow-Green Leaf 6 (YGL6) Gene in Rice (Oryza sativa) [J]. Acta Agronomica Sinica, 2018, 44(05): 650-656.
Full text



[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .