Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (5): 882-893.doi: 10.3724/SP.J.1006.2021.04128


Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane

HUANG Ning2,*(), HUI Qian-Long1, FANG Zhen-Ming2, LI Shan-Shan2, LING Hui2, QUE You-Xiong1, YUAN Zhao-Nian1,*()   

  1. 1National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2College of Crop Science, Yulin Normal University, Yulin 537000, Guangxi, China
  • Received:2020-06-15 Accepted:2020-09-13 Online:2021-05-12 Published:2020-09-30
  • Contact: HUANG Ning,YUAN Zhao-Nian E-mail:hningch@ylu.edu.cn;yzn05@sina.com
  • Supported by:
    China Agriculture Research System(CARS-170208)


Strigolactones (SLs), a class of plant hormones, exists widely in plants and involves in the regulation of plant tillering and environmental adaptation. β-carotene isomerase (D27) is a key enzyme for SLs synthesis, but there are few reports about the identification and analysis of D27 gene family in sugarcane. In this study, five members of D27 gene family from one of the original parent of modern sugarcane cultivars, Saccharum spontaneum, were analyzed. Phylogenetic tree analysis showed that these D27s from S. spontaneum was clustered into 3 different branches and were highly homologous to sorghum D27s. Conserved domain prediction revealed that D27s contained a typical domain of β-carotene isomerase, Pfam: DUF4033. The results of cis-element analysis showed that D27s mainly involved in the regulation of hormone response, plant growth and development, and stress response. Based on the transcriptomic data of the modern cultivated varieties, the expression analysis of the homologous transcripts of Saccharum spontaneum D27s showed that Sspon.06G0012830-1A was regulated at tillering stage and under Sporisorium scitamineum infection. Besides, the cDNA sequence of Sspon.06G0012830-1A was cloned from sugarcane cultivar ROC22 and named as ScD27.1 (GenBank accession number: MT499895). Bioinformatics analysis indicated that ScD27.1 encoded an unstable protein of 266 amino acids with an isoelectric point of 8.91 and a molecular weight of 30.00 kD, and might be located in the chloroplast, containing chloroplast transit peptides, 4 ubiquitination sites and 18 phosphorylation sites. Its secondary structure mainly included alpha helix and random coils. qRT-PCR analysis demonstrated that ScD27.1 was significantly induced by ABA and H2O2 and did not respond to MeJA and SA. Subcellular localization revealed that ScD27.1 might be located in cell membrane and chloroplast and involved in the vesicle sorting or transported by sorting vesicle in plant cells. The results suggested that ScD27.1 may involve in the tillering induced by S. scitamineum and signaling pathway of ABA and H2O2. The present study provides a basic understanding of intracellular transport and tillering in sugarcane and the involvement of ScD27.1 during sugarcane-S. scitamineum interaction.

Key words: β-carotene isomerase, gene family, bioinformatics, tillering, Sporisorium scitamineum

Table 1

List of primers"

引物名称 Primer name 引物序列 Primer sequence (5°-3°)

Fig. 1

Genome wide identification of D27 gene family in Saccharum spontaneum A: chromosomal location of D27s in Saccharum spontaneum; B: amino acid sequence similarity of D27s in Saccharum spontaneum."

Fig. 2

Phylogenetic tree and domain analysis based on the amino acid sequences of D27s in Saccharum spontaneum and other 5 species The horizontal axis indicates the amino acid length of the proteins; the color line represents the protein from the different species; the color bar code represents the different domain of protein."

Fig. 3

Prediction of cis-elements in Saccharum spontaneum D27s The horizontal axis indicates region nucleotide length of gene promoter; the color bar code represents the different cis-element in the promoter region."

Table 2

Sequence similarity between D27s from Saccharum spontaneum and sugarcane cultivar"

Gene ID
Transcriptome of sugarcane cultivar ROC22
treated with 6-BA and DA-6
Transcriptome of sugarcane cultivar ROC22 and YC05-179 responding to Sporisorium scitamineum infection
Sugarcane_ Unigene.87626
Sspon.06G0012830-3C 94.57 94.96
Sspon.06G0012830-1A 97.93 98.34
Sspon.07G0014180-2B 82.33 98.31
Sspon.07G0014180-3C 80 82.42
Sspon.06G0016140-2C 97.06 95.83

Fig. 4

Expression of D27s gene in different transcriptome in sugarcane cultivar A: the transcriptomic data from 6-BA and DA-6 induced tillering in sugarcane cultivar ROC22; B: the transcriptomic data from sugarcane cultivar ROC22 and YC05-179 in response to Sporisorium scitamineum infection. X-axial represents the accession of transcript presenting in the sugarcane transcriptomic data, while Y-axial represents the relative expression of transcript in the treatment sample comparing to the control and the significantly different expression data (P < 0.05) was marked by the asterisk (*)."

Fig. 5

Cloning and sequencing of ScD27.1 gene in sugarcane cultivar A: agrose electrophoretic analysis of RT-PCR product of ScD27.1; M: 100 bp-III DNA marker (Generay, Shanghai, China). B: the open reading frame of ScD27.1 (*, stop codon) and its aa sequence; the sequence fragment complementary to primer is bolded."

Table 3

Result of bioinformatics analysis"

生物信息学分析 Bioinformatics analysis 结果Result
Primary structure characteristics
氨基酸长度 Length of amino acids 266
等电点 Theoretical pI 8.91
分子量 Molecular weight (kD) 30.00
不稳定系数 Instability index (II) 56.40
Secondary structure types
α-螺旋 Alpha helix 30.08%
延伸链 Extended strand 12.41%
无规则卷曲 Random coil 57.52%
Protein subcellular location
Plant-Ploc工具 Plant-Ploc tool 叶绿体Chloroplast
ProtComp 9.0工具 ProtComp 9.0 tool 膜结合叶绿体Membrane bound Chloroplast
WoLFPSORT工具 WoLFPSORT tool 叶绿体Chloroplast
Function sites
靶向肽类型 Type of targeting peptide 叶绿体转运肽Chloroplast transit peptide
泛素化位点 Ubiquitination sites 4
磷酸化位点 Phosphorylation sites 18

Fig. 6

Expression of ScD27.1 gene under different stresses A: the amplification efficiency curve of the primer pairs of ScD27.1; B: expression of ScD27.1 gene under different stress of ABA, MeJA, SA, and H2O2. *: significant difference at the 0.05 probability level; the error bars represent the standard error of the group (n = 3)."

Fig. 7

Identification of the subcellular location of ScD27.1 protein The figures from A to F indicate the cellular location of the protein under natural condition and the bar scale was 10 μm; the figures from G to L indicate the cellular location of the protein under wortmannin (16.5 μmol L-1) treatment and the bar scale was 15 μm."

[1] McSteen P, Leyser O. Shoot branching. Annu Rev Plant Biol, 2005,56:353-374.
[2] 丘立杭, 范业庚, 罗含敏, 黄杏, 陈荣发, 杨荣仲, 吴建明, 李杨瑞. 甘蔗分蘖发生及成茎的调控研究进展. 植物生理学报, 2018,54:192-202.
Qiu L H, Fan Y G, Luo H M, Huang X, Chen R F, Yang R Z, Wu J M, Li Y R. Advances of regulation study on tillering formation and stem forming from available tillers in sugarcane ( Saccharum officinarum). J Plant Physiol, 2018,54:192-202 (in Chinese with English abstract).
[3] 罗宝杰, 许俊旭, 丁艳锋, 李刚华, 刘正辉, 王绍华. 内源CTK和IAA平衡对水稻分蘖芽休眠与萌发的影响. 作物学报, 2014,40:1619-1628.
Luo B J, Xu J X, Ding Y F, Li G H, Liu Z H, Wang S H. Effects of endogenous hormone balance on dormancy and germination of tiller bud. Acta Agron Sin, 2014,40:1619-1628 (in Chinese with English abstract).
[4] Wu C Y, Trieu A, Radhakrishnan P, Kwok S F, Pennell R I. Brassinosteroids regulate grain filling in rice. Plant Cell, 2008,20:2130-2145.
doi: 10.1105/tpc.107.055087 pmid: 18708477
[5] 王宝祥, 江玲, 陈亮明, 卢百关, 王琦, 黎光泉, 樊继伟, 程遐年, 翟虎渠, 徐大勇. 水稻黑条矮缩病抗性资源的筛选和抗性QTL的定位. 作物学报, 2010,36:1258-1264.
Wang B X, Jiang L, Chen L M, Lu B G, Wang Q, Li G Q, Fan J W, Cheng X N, Zhai H Q, Xu D Y. Screening of rice resources against rice black-streaked dwarf virus and mapping of resistant QTL. Acta Agron Sin, 2010,36:1258-1264 (in Chinese with English abstract).
[6] 莫祎, 段美娟, 孙志忠, 丁佳, 余东, 孙学武, 盛夏冰, 谭炎宁, 袁贵龙, 袁定阳. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位. 作物学报, 2019,45:1050-1058.
Mo Y, Duan M J, Sun Z Z, Ding J, Yu D, Sun X W, Sheng X B, Tan Y N, Yuan G L, Yuan D Y. Genetic analysis and fine mapping of white stripe leaf mutant wsl1 in rice. Acta Agron Sin, 2019,45:1050-1058 (in Chinese with English abstract).
[7] 蔡铁, 徐海成, 尹燕枰, 杨卫兵, 彭佃亮, 倪英丽, 徐彩龙, 杨东清, 王振林. 外源IAA、GA3和ABA影响不同穗型小麦分蘖发生的机制. 作物学报, 2013,39:1835-1842.
Cai T, Xu H C, Yin Y P, Yang W B, Peng D L, Ni Y L, Xu C L, Yang D Q, Wang Z L. Mechanisms of tiller occurrence affected by exogenous IAA, GA3, and ABA in wheat with different spike-types. Acta Agron Sin, 2013,39:1835-1842 (in Chinese with English abstract).
[8] Lorenzo M, Assuero S G, Tognetti J A. Low temperature differentially affects tillering in spring and winter wheat in association with changes in plant carbon status. Ann Appl Biol, 2015,166:236-248.
[9] Tena E, Mekbib F, Ayana A. Correlation and path coefficient analyses in sugarcane genotypes of ethiopia. Am J Plant Sci, 2016,7:1498-1520.
[10] Mehnaz S. Microbes—friends and foes of sugarcane. J Basic Microbe, 2013,53:954-971.
[11] Cook C E, Whichard L P, Turner B, Wall M E, Egley G H. Germination of witchweed ( Striga lutea Lour.): isolation and properties of a potent stimulant. Science, 1966,154:1189-1190.
pmid: 17780042
[12] Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008,455:195-200.
[13] Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pages V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, Becard G, Beveridge C A, Rameau C, Rochange S F. Strigolactone inhibition of shoot branching. Nature, 2008,455:189-194.
[14] Aliche E B, Screpanti C, Mesmaeker A D, Munnik T, Bouwmeester H J. Science and application of strigolactones. New Phytol, 2020,227:1001-1011.
[15] Waters M T, Brewer P B, Bussell J D, Smith S M, Beveridge C A. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol, 2012,159:1073-1085.
[16] Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y. DWARF27, an Iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009,21:1512-1525.
[17] Zhao B, Wu T T, Ma S S, Jiang D J, Bie X M, Sui N, Zhang X S, Wang F. TaD27-B gene controls the tiller number in hexaploid wheat. Plant Biotechnol J, 2020,18:513-525.
[18] 吴转娣, 刘新龙, 刘家勇, 昝逢刚, 李旭娟, 刘洪博, 林秀琴, 陈学宽, 苏火生, 赵培方, 吴才文. 甘蔗独脚金内酯生物合成关键基因ScD27的克隆与表达分析. 作物学报, 2017,43:31-41.
Wu Z D, Liu X L, Liu J Y, Zan F G, Li X J, Liu H B, Lin X Q, Chen X K, Su H S, Zhao P F, Wu C W. Cloning and expression analysis of key gene ScD27 in strigolactones biosynthesis pathway. Acta Agron Sin, 2017,43:31-41 (in Chinese with English abstract).
[19] Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lv M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M-A, Souza G M, Moore P H, Sankoff D, VanBuren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018,50:1565-1573.
[20] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020,13:1194-1202.
pmid: 32585190
[21] Ling H, Wu Q, Guo J, Xu L, Que Y. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One, 2014,9:e97469.
[22] Que Y, Su Y, Guo J, Wu Q, Xu L. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq. PLoS One, 2014,9:e106476.
[23] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001,25:402-408.
[24] Su L, Shan J X, Gao J P, Lin H X. OsHAL3, a blue light-responsive protein, interacts with the floral regulator Hd1 to activate flowering in rice. Mol Plant, 2016,9:233-244.
pmid: 26537047
[25] Wang J, Cai Y, Miao Y, Lam S K, Jiang L. Wortmannin induces homotypic fusion of plant prevacuolar compartments. J Exp Bot, 2009,60:3075-3083.
[26] Wei T, Zhang C, Hong J, Xiong R, Kasschau K D, Zhou X, Carrington J C, Wang A. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog, 2010,6:e1000962.
pmid: 20585568
[27] Emans N, Zimmermann S, Fischer R. Uptake of a fluorescent marker in plant cells is sensitive to brefeldin A and wortmannin. Plant Cell, 2002,14:71-86.
[28] Marek M. Strigolactones as part of the plant defence system. Trends Plant Sci, 2016,21:900-903.
[29] Torres-Vera R, García J M, Pozo M J, López-Ráez J A. Do strigolactones contribute to plant defence? Mol Plant Pathol, 2014,15:211-216.
pmid: 24112811
[30] Piisilä M, Keceli M A, Brader G, Jakobson L, Jõesaar I, Sipari N, Kollist H, Palva E T, Kariola T. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. BMC Plant Biol, 2015,15:53.
[31] Stes E, Depuydt S, De Keyser A, Matthys C, Audenaert K, Yoneyama K, Werbrouck S, Goormachtig S, Vereecke D. Strigolactones as an auxiliary hormonal defence mechanism against leafy gall syndrome in Arabidopsis thaliana. J Exp Bot, 2015,66:5123-5134.
[32] Kunkel B N, Brooks D M. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol, 2002,5:325-331.
[33] Asselbergh B, De Vleesschauwer D, Hofte M. Global switches and fine-tuning—ABA modulates plant pathogen defense. Mol Plant Microbe Interact, 2008,21:709-719.
[34] Xia X J, Zhou Y H, Shi K, Zhou J, Foyer C H, Yu J Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot, 2015,66:2839-2856.
[35] Abuauf H, Haider I, Jia K P, Ablazov A, Mi J, Blilou I, Al-Babili S. The Arabidopsis DWARF27 gene encodes an all-trans-/9- cis-β-carotene isomerase and is induced by auxin, abscisic acid and phosphate deficiency. Plant Sci, 2018,277:33-42.
[36] Bonneau L, Huguet S, Wipf D, Pauly N, Truong H N. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol, 2013,199:188-202.
[37] Haider I, Andreo-Jimenez B, Bruno M, Bimbo A, Floková K, Abuauf H, Ntui V O, Guo X, Charnikhova T, Al-Babili S, Bouwmeester H J, Ruyter-Spira C. The interaction of strigolactones with abscisic acid during the drought response in rice. J Exp Bot, 2018,69:2403-2414.
pmid: 29538660
[38] Davidi L, Pick U. Novel 9-cis/all-trans β-carotene isomerases from plastidic oil bodies in Dunaliella bardawil catalyze the conversion of all-trans to 9-cis β-carotene. Plant Cell Rep, 2017,36:807-814.
pmid: 28285407
[39] van Zeijl A, Liu W, Xiao T T, Kohlen W, Yang W C, Bisseling T, Geurts R. The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis. BMC Plant Biol, 2015,15:260.
[40] Cooper J W, Hu Y, Beyyoudh L, Dasgan H Y, Kunert K, Beveridge C A, Foyer C H. Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell Environ, 2018,41:1298-1310.
pmid: 29341173
[41] Toh S, McCourt P, Tsuchiya Y. HY5 is involved in strigolactone-dependent seed germination in Arabidopsis. Plant Signal Behav, 2012,7:556-558.
pmid: 22516816
[42] Wu H, Li H, Chen H, Qi Q, Ding Q, Xue J, Ding J, Jiang X, Hou X, Li Y. Identification and expression analysis of strigolactone biosynthetic and signaling genes reveal strigolactones are involved in fruit development of the woodland strawberry ( Fragaria vesca). BMC Plant Biol, 2019,19:73.
doi: 10.1186/s12870-019-1673-6
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[3] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[4] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
[5] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[6] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[7] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[8] ZHAO Jie, LI Shao-Ping, CHENG Shuang, TIAN Jin-Yu, XING Zhi-Peng, TAO Yu, ZHOU Lei, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, GAO Hui, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield and quality of dry direct seeding rice under “solo-stalk” cultivation mode [J]. Acta Agronomica Sinica, 2021, 47(6): 1162-1174.
[9] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[10] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[11] HUANG Xiao-Fang,BI Chu-Yun,SHI Yuan-Yuan,HU Yun-Zhuo,ZHOU Li-Xiang,LIANG Cai-Xiao,HUANG Bi-Fang,XU Ming,LIN Shi-Qiang,CHEN Xuan-Yang. Discovery and analysis of NBS-LRR gene family in sweet potato genome [J]. Acta Agronomica Sinica, 2020, 46(8): 1195-1207.
[12] WEI Huan-He,GE Jia-Lin,ZHANG Xu-Bin,MENG Tian-Yao,LU Yu,LI Xin-Yue,TAO Yuan,DING En-Hao,CHEN Ying-Long,DAI Qi-Gen. Tillering characteristics and its relationships with population productivity of japonica rice Nanjing 9108 under salinity stress [J]. Acta Agronomica Sinica, 2020, 46(8): 1238-1247.
[13] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[14] WANG Yan,YI Jun,GAO Ji-Ping,ZHANG Li-Na,YANG Ji-Fen,ZHAO Yan-Ze,XIN Wei,ZHEN Xiao-Xi,ZHANG Wen-Zhong. Effects of precision leaf age fertilization on yield and nitrogen utilization of
japonica rice
[J]. Acta Agronomica Sinica, 2020, 46(01): 102-116.
[15] SHI Li-Jie,JIANG Cong-Cong,WANG Fang-Mei,YANG Ping,FENG Zong-Yun. Genome-wide characterization and transcriptional analysis of the protein disulfide isomerase-like genes in barley (Hordeum vulgare) [J]. Acta Agronomica Sinica, 2019, 45(9): 1365-1374.
Full text



No Suggested Reading articles found!