Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (5): 869-881.doi: 10.3724/SP.J.1006.2021.01051

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158

JIANG Peng1,2(), ZHANG Xu1,3, WU Lei1, HE Yi1, ZHANG Ping-Ping1, MA Hong-Xiang1,*(), KONG Ling-Rang2,*()   

  1. 1Provincial Key Laboratory for Agrobiology / Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2State Key Laboratory of Crop Biology / Shandong Agricultural University, Tai’an 271018, Shandong, China
    3Co-Innovation Center for Modern Production Technology of Grain Crops Wheat Research Center / Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2020-06-18 Accepted:2020-10-15 Online:2021-05-12 Published:2020-11-18
  • Contact: MA Hong-Xiang,KONG Ling-Rang E-mail:hmjp2005@163.com;hxma@jaas.ac.cn;lkong@sdau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2017YFD0100801);Jiangsu Agricultural Science and Technology Innovation Fund(CX181001);Key Research and Development Program of Jiangsu Province(BE2019377);China Agriculture Research System(CARS-3)

Abstract:

Ningmai 9 and Yangmai 158 are the main commercial wheat varieties, as well as the backbone parents in wheat breeding programs in the middle and lower reaches of the Yangtze River in China. Both of them have high yield potential, while they showed significant difference in yield components. To understand the genetic mechanism of their high yield potential, 282 recombinant inbred lines (RILs) derived from the cross between Ningmai 9 and Yangmai 158 were genotyped with the Illumina iSelect 90K wheat single nucleotide polymorphism (SNP) assay to construct a high-density genetic map. Yield (YD) and yield-related traits including spike number (SN), kernel number per spike (KN), and 1000-kernel weight (TKW) were evaluated for three consecutive growing seasons. The results indicated that the KN of Ningmai 9 was higher than that of Yangmai 158, while TKW was lower than that of Yangmai 158. In total, 9, 8, 10, and 12 QTLs associated with SN, KN, TKW and YD were identified by QTL mapping, respectively. Among these traits, TKW possessed the highest heritability, and three QTL associated with TKW were identified repetitively. The markers related to such QTLs were then transferred to Kompetitive Allele Specific PCR (KASP) markers for high throughput selection in 139 wheat accessions. It was indicated that pyramiding 2 or 3 QTLs was more effective than single QTL for TKW improvement. The results in this study could provide more information for marker assisted selection in wheat yield breeding program.

Key words: wheat (Triticum aestivum L.), Ningmai 9, Yangmai 158, yield, KASP marker

Table 1

Phenotypic analysis for yield and its components"

性状
Trait
年份
Year
宁麦9号
Ningmai 9
扬麦158
Yangmai 158
重组自交系群体 RIL population 遗传力
Heritability
最大值
Max.
最小值
Min.
平均值
Mean
标准差
SD
变异系数
CV (%)
穗数
Spike number (×104 hm-2)
2016 197.30 292.21 729.27 137.36 343.77 84.10 24.46 0.13
2017 549.45 412.09 779.22 252.25 497.33 96.53 19.41
2018 479.52 534.47 816.68 249.75 495.31 94.39 19.06
穗粒数
Kernel number per spike
2016 69.00 53.33 75.14 32.00 52.53 7.18 13.68 0.37
2017 65.00 58.40 82.80 37.60 63.31 7.98 12.60
2018 52.20 46.60 74.00 31.00 44.17 6.36 14.40
千粒重
1000-kernel weight (g)
2016 32.55 35.48 47.63 21.75 34.98 3.90 11.16 0.60
2017 30.98 32.94 51.96 25.37 35.55 4.50 12.67
2018 40.40 47.01 50.62 31.51 41.79 3.27 7.82
产量
Yield (kg hm-2)
2016 3238.43 3887.78 7251.08 1506.83 3903.92 940.63 24.09 0.18
2017 6018.98 4920.08 11,163.83 2006.33 6492.86 1752.69 26.99
2018 6993.00 8658.00 12,321.00 3330.00 7128.55 1420.14 19.92

Table 2

ANOVA of yield and its components by F-value"

项目
Item
穗数
Spike number (×104 hm-2)
穗粒数
Kernel number per spike
千粒重
1000-kernel weight (g)
产量
Yield (kg hm-2)
基因型 Genotype 0.78 1.92** 2.64** 0.86
年份 Year 214.54** 754.62** 415.05** 320.18**
基因型×年份 Genotype×Year 0.64 1.21 1.06 0.64

Table 3

Correlation analysis of yield and its components"

性状
Trait
环境
Environment
穗数
Spike number
(×104 hm-2)
穗粒数
Kernel number per spike
千粒重
1000-kernel weight
(g)
产量
Yield
(kg hm-2)
穗数
Spike number (×104 hm-2)
2016 (0.136*)
2017 (0.128*)
2018 (-0.042)
穗粒数
Kernel number per spike
2016 -0.154** (0.081)
2017 -0.157** (0.344**)
2018 -0.054 (-0.014)
千粒重
1000-kernel weight (g)
2016 -0.004 -0.131* (0.316**)
2017 -0.025 -0.284** (0.364**)
2018 -0.171** -0.146** (0.288**)
产量
Yield (kg hm-2)
2016 0.169** -0.077 0.289** (0.242**)
2017 0.418** -0.201** 0.439** (0.052)
2018 0.312** 0.306** 0.085 (0.120*)

Table 4

QTL analysis of yield and its components"

性状
Traits
序号No. QTL 环境
Environment
遗传位置
Genetic position (cM)
物理区间
Physical interval (Mb)
区间
Interval
LOD 表型贡献率
PVEa (%)
加性效应
AEb
前人研究中的产量相关性状
Yield-related traits in previous studies
穗数
Spike number
1 Qsn-1A 2018 101.45-101.95 543-574 Tdurum_contig96086_74-RFL_Contig3683_1784 4.85 7.54 -27.00 产量、穗粒数、单穗产量、收获指数[19]
Yield, kernel number per spike, kernel weight per spike, harvest index[19]
2 Qsn-1B.1 2016 6.35-11.15 614-616 wsnp_BE590634B_Ta_2_5-Tdurum_contig10362_555 4.03 5.11 19.22 产量[20] Yield[20]
3 Qsn-1B.2 2016 15.95-20.55 630-641 BS00069044_51-wsnp_Ex_rep_c78209_74462664 7.40 10.39 -29.21 穗长、千粒重、穗粒数[21,22]
Spike length, 1000-kernel weight, kernel number per spike[21,22]
4 Qsn-1B.3 2017 97.75-98.25 678-680 BobWhite_c4482_73-Tdurum_contig52086_342 2.97 3.45 -19.25 千粒重[23] 1000-kernel weight[23]
5 Qsn-2B 2017 78.05-79.35 781-783 Ku_c2936_1987-RAC875_c18928_455 3.21 3.68 19.78
6 Qsn-4B 2016 14.95-15.95 603-620 BS00039402_51-Excalibur_rep_c109675_738 3.44 3.62 14.41
7 Qsn-5A 2017 49.45-50.35 505-520 tplb0056b09_1000-BS00085826_51 6.27 7.56 28.32 千粒重、穗粒数[23]
1000-kernel weight, kernel number per spike[23]
8 Qsn-7A.1 2017 38.25-39.45 688-697 Tdurum_contig31699_276-wsnp_Ku_c4035_7363089 3.18 4.48 24.15 千粒重[23] 1000-kernel weight[23]
9 Qsn-7A.2 2017 108.35-111.1 730-735 BS00069019_51-BS00022284_51 3.74 4.66 -22.28
穗粒数
Kernel number per spike
10 Qkn-2B 2016 68.25-69.35 768-776 Kukri_c24939_378-RAC875_rep_c83950_222 3.69 5.84 -1.75
12 Qkn-3B.1 2018 105.45-105.85 146-151 RAC875_c45525_131-IAAV1079 6.10 8.66 -3.41
11 Qkn-3B.2 2017 62.95-65.35 724-742 BobWhite_c2937_1426-BS00040739_51 3.08 4.42 -1.88 穗数、产量[5] Spike number, yield[5]
13 Qkn-4A 2017 4.05-14.95 664-683 BS00066066_51-IAAV5722 2.76 5.03 1.76 穗粒数、穗数、千粒重[23,24]
Kernel number per spike, spike number, 1000-kernel weight[23,24]
14 Qkn-5B.1 2018 91.25-93.35 615-618 Tdurum_contig85060_121-Kukri_rep_c101622_604 3.78 5.30 1.60 产量[25] Yield[25]
15 Qkn-5B.2 2017 129.35-130.05 682-698 Excalibur_c6346_266-IAAV8023 3.06 4.40 -1.77 千粒重、穗粒数[23]
1000-kernel weight, kernel number per spike[23]
16 Qkn-6B 2016 49.35-50.95 96-141 RAC875_c23812_187-wsnp_Ku_c12559_20252463 3.02 5.18 1.64
17 Qkn-7A 2018 0-7.05 670-680 Ku_c62742_888-wsnp_Ku_c42539_50247333 2.68 3.76 -1.40 千粒重、穗粒数、穗数[23]
1000-kernel weight, kernel number per spike, spike number[23]
千粒重
1000-kernel weight
18 Qtkw-1A 2016 47.05-48.95 31-33 BS00084022_51-wsnp_Ex_c31983_40709866 3.08 3.60 0.76 千粒重、单穗产量、穗粒数[23,26] 1000-kernel weight, kernel weight per spike, kernel number per spike[23,26]
19 Qtkw-1B 2017/2018 35.25-39.55 640-653 IAAV1683-IAAV565 3.68 5.80 -1.15 穗长、千粒重、穗粒数[21]
Spike length, 1000-kernel weight, kernel number per spike[21]
20 Qtkw-2B 2018 51.45-52.05 748-750 CAP8_c8516_542-BS00094578_51 8.09 9.43 1.06 千粒重[24] 1000-kernel weight[24]
21 Qtkw-3A 2016 0-6.15 9-10 Excalibur_c10014_307-RAC875_c36922_829 3.29 3.71 0.88
22 Qtkw-4A 2016/2017 3.75-19.75 661-683 BS00066066_51-BS00066891_51 5.55 6.42 -1.02 穗粒数、穗数、千粒重[23,24]
Kernel number per spike, spike number, 1000-kernel weight[23,24]
23 Qtkw-4B 2018 4.85-5.05 427-428 GENE-2847_1060-wsnp_Ex_rep_c70265_69211592 7.90 8.82 -1.02 千粒重[27] 1000-kernel weight[27]
24 Qtkw-5A 2016 55.85-56.55 537-539 BS00096758_51-RAC875_c103967_76 7.51 8.85 1.20 千粒重、穗粒数[23]
1000-kernel weight, kernel number per spike[23]
25 Qtkw-5B 2018 67.15-70.95 586-587 Kukri_c45964_273-RAC875_c43383_483 2.88 3.10 -0.65 穗粒数[28] Kernel number per spike[28]
26 Qtkw-7A 2017/2018 48.55-49.55 261-285 RFL_Contig428_290-RAC875_c16624_970 4.21 4.57 -0.79
27 Qtkw-7B 2016 0-4.95 15-25 wsnp_CAP7_c44_26549-Ex_c101666_634 4.74 5.99 -0.99 产量、小穗数[20,28]
Yield, the spikelet number per spike[20,28]
产量
Yield
28 Qyd-1B.1 2017 37.55-38.65 236-433 BobWhite_c4147_1429-BS00033681_51 5.40 5.33 441.75 千粒重、单穗产量、产量[29,30]
1000-kernel weight, kernel weight per spike, yield[29,30]
29 Qyd-1B.2 2017 65.55-73.25 480-498 Ra_c68984_1882-Tdurum_contig81102_102 4.27 4.17 -611.83
30 Qyd-2A 2018 47.85-55.05 653-706 BS00090569_51-BS00029332_51 3.87 6.19 332.86 单株产量、小穗数、千粒重、穗粒数[31]
Kernel weight per plant, the spikelet number per spike, 1000-kernel weight, kernel number per spike[31]
31 Qyd-4B 2017 68.85-70.45 101-168 BS00071792_51-Tdurum_contig28490_463 3.26 3.23 337.82 穗粒数、单穗产量、千粒重[5,23,32]
Kernel number per spike, kernel weight per spike, 1000-kernel weight[5,23,32]
32 Qyd-5A.1 2016 13.35-14.55 389-420 BS00086963_51-BS00001322_51 4.11 7.91 242.37 千粒重、穗粒数[23]
1000-kernel weight, kernel number per spike[23]
33 Qyd-5A.2 2017 53.35-54.45 511-540 wsnp_Ex_c49211_53875575-CAP7_c1404_72 10.88 11.79 642.73 千粒重、穗粒数[23]
1000-kernel weight, kernel number per spike[23]
34 Qyd-5B.1 2018 45.15-46.15 545-547 Tdurum_contig25513_195-wsnp_Ex_c8659_14515623 3.59 4.45 -418.08 产量[27]
Yield[27]
35 Qyd-5B.2 2017 113.05-113.85 663-665 BobWhite_c36154_81-Kukri_c41_858 4.87 4.80 -285.41
36 Qyd-6A 2017 35.35-38.2 609-617 Excalibur_c96749_512-Excalibur_c98257_136 3.82 3.88 -408.26 产量、千粒重[20,23] Yield, 1000-kernel weight[20,23]
37 Qyd-6B 2018 53.35-53.75 144-148 BobWhite_c1905_98-wsnp_Ku_c5891_10414090 3.08 3.88 -281.40
38 Qyd-7A 2018 33.25-34.25 83-109 Excalibur_rep_c101407_222-BS00011072_51 2.92 3.60 -256.01 穗重、千粒重、穗粒数、穗数[23,33-34]
Ear weight per tiller, 1000-kernel weight, kernel number per spike, spike number[23,33-34]
39 Qyd-7B 2018 133.15-133.95 743-745 Tdurum_contig51105_1538-tplb0040b02_681 4.36 5.48 313.01 产量、千粒重[20,23] Yield, 1000-kernel weight[20,23]

Fig. 1

QTL mapping for yield and its components The numbers in the figure are consistent with the sequence numbers of QTL in Table 4."

Table 5

t-test of different alleles of the QTL for 1000-kernel weight"

QTL 环境
Environment
优势等位变异
Favorable alleles (g)
非优势等位变异
Unfavorable alleles (g)
差值
Difference (g)
t
t-value
P
P-value
Qtkw-1B 2016 35.21 (121) 34.56 (133) 0.65 1.36 0.18
2017 36.47 (121) 34.62 (133) 1.85 3.31 <0.01
2018 42.37 (121) 40.95 (133) 1.42 3.56 <0.01
Qtkw-4A 2016 35.68 (110) 33.71 (98) 1.97 3.86 <0.01
2017 36.48 (110) 34.41 (98) 2.07 3.41 <0.01
2018 42.38 (110) 40.68 (98) 1.7 3.94 <0.01
Qtkw-7A 2016 34.78 (168) 35.03 (78) -0.25 -0.47 0.64
2017 36.31 (168) 34.46 (78) 1.85 2.97 <0.01
2018 42.02 (168) 41.30 (78) 0.72 1.38 0.17
Qtkw-1B+Qtkw-4A 2016 36.62 (46) 33.48 (51) 3.14 4.22 <0.01
2017 37.03 (46) 33.59 (51) 3.44 4.11 <0.01
2018 43.32 (46) 40.56 (51) 2.76 4.24 <0.01
Qtkw-1B+Qtkw-7A 2016 35.42 (74) 35.48 (34) -0.06 -0.09 0.93
2017 37.51 (74) 33.58 (34) 3.93 4.26 <0.01
2018 42.82 (74) 40.79 (34) 2.03 2.98 <0.01
Qtkw-4A+Qtkw-7A 2016 35.46 (68) 33.73 (34) 1.73 2.11 0.04*
2017 37.42 (68) 34.56 (34) 2.86 3.04 <0.01
2018 42.27 (68) 40.51 (34) 1.76 2.85 <0.01
Qtkw-1B+Qtkw-4A+Qtkw-7A 2016 36.55 (26) 33.73 (12) 2.82 2.14 0.04*
2017 38.42 (26) 33.08 (12) 5.34 5.22 <0.01
2018 43.10 (26) 41.16 (12) 1.94 1.55 0.14

Table S1

Sequence of KASP markers for 1000-kernel weight"

SNP QTL F1 (5°-3°) F2 (5°-3°) R (5°-3°)
Kukri_c18109_682 Qtkw-1B AACGACGCCTGGTTTTCCTCA CGACGCCTGGTTTTCCTCG TCCGAGATGGACGAGGAACTG
IAAV1683 Qtkw-1B TGTTCTTACCTGAACTTGTGTGACA GTTCTTACCTGAACTTGTGTGACG CTGAAGCTCTGATATCATCATCATCC
Kukri_c42354_263 Qtkw-1B TCGACGATACTGGCGGTGTA TCGACGATACTGGCGGTGTG TGATCGCAAAGTGCATTATGTT
BS00066891_51 Qtkw-4A TGGACGGATGGTTGATGGCTCG ATGGACGGATGGTTGATGGCTCA TATAAGCTACTACCGCTCCGGC
IAAV5722 Qtkw-4A AGCTGCAACCCATCCTCT AGCTGCAACCCATCCTCC TGTGACCTACTCGATGTTCATAAC
Excalibur_rep_c70004_275 Qtkw-7A GGTGTTCTCCCTGGTAGCTCA GGTGTTCTCCCTGGTAGCTCG CTTCTGGCACCTGCTTTCATCG
RFL_Contig428_290 Qtkw-7A GGATGTCCCGGTTGGAGAAGAC GGATGTCCCGGTTGGAGAAGAT GACAAGTACGGCCCCATCTTCT
IACX1477 Qtkw-7A CCAAAATGGCTTGTCAAATGAGATA CCAAAATGGCTTGTCAAATGAGA
TG
GCTTGACCCTTAGCTCATGA

Fig. S1

Development of KASP markers for the QTLs for 1000-kernel weight A indicates the allele of Ningmai 9 and B indicates the allele of Yangmai 158."

Table 6

Detection of the KASP marker for 1000-kernel weight"

QTL 优势等位变异
Favorable alleles (g)
非优势等位变异
Unfavorable alleles (g)
差值
Difference (g)
t
t-value
P
P-value
Qtkw-1B 48.32 (62) 45.92 (77) 2.40 -3.79 <0.01
Qtkw-4A 47.67 (100) 45.26 (39) 2.41 3.40 <0.01
Qtkw-7A 47.47 (122) 43.53 (17) 3.95 -4.15 <0.01
Qtkw-1B+Qtkw-4A 48.73 (49) 44.49 (26) 4.23 4.61 <0.01
Qtkw-1B+Qtkw-7A 48.43 (60) 43.32 (15) 5.11 -4.73 <0.01
Qtkw-4A+Qtkw-7A 47.67 (98) 43.01 (15) 4.66 -4.59 <0.01
Qtkw-1B+Qtkw-4A+Qtkw-7A 48.73 (49) 42.69 (13) 6.03 -5.27 <0.01
[1] 周延辉, 朱新开, 郭文善, 封超年. 稻茬小麦中高产水平下产量及其构成因素分析. 麦类作物学报, 2018,38:293-297.
Zhou Y H, Zhu X K, Guo W S, Feng C N. Analysis of yield and yield components of wheat after rice on medium-high-yielding level. J Triticeae Crop, 2018,38:293-297 (in Chinese with English abstract).
[2] 田纪春, 邓志英, 胡瑞波, 王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006,32:1699-1705.
Tian J C, Deng Z Y, Hu R B, Wang Y X. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agron Sin, 2006,32:1699-1705 (in Chinese with English abstract).
[3] 肖世和, 何中虎. 小麦产量潜力和品质的改良. 见: 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 497-542.
Xiao S H, He Z H. Improvement of Wheat Yield Potential and Quality. In: Zhuang Q S eds. Chinese Wheat Improvement and Pedigree. Beijing: China Agriculture Press, 2003. pp 497-542(in Chinese).
[4] Zhang L Y, Liu D C, Guo X L, Yang W L, Sun J Z, Wang D W, Zhang A. Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol, 2010,52:996-1007.
[5] Mason R E, Hays D B, Mondal S, Ibrahim A M H, Basnet B R. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica, 2013,194:243-259.
[6] Hu J, Wang X, Zhang G, Jiang P, Chen W, Hao Y, Ma X, Xu S, Jia J, Kong L, Wang H. QTL mapping for yield-related traits in wheat based on four RIL populations. Theor Appl Genet, 2020,133:917-933.
[7] Tura H, Edwards J, Gahlaut V, Garcia M, Sznajder B, Baumann U, Shahinnia F, Reynolds M, Langridge P, Balyan H S, Gupta P K, Schnurbusch T, Fleury D. QTL analysis and fine mapping of a QTL for yield-related traits in wheat grown in dry and hot environments. Theor Appl Genet, 2020,133:239-257.
[8] Cavanagh C R, Shiaoman C, Shichen W, Bevan Emma H, Stuart S, Seifollah K, Kerrie F, Cyrille S, Brown-Guedira G L, Alina A. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013,110:8057-8062.
[9] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, MacCaferri M, Salvi S, Milner S G, Cattivelli L. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014,12:787-796.
[10] Cui F, Zhang N, Fan X, Zhang W, Zhao C, Yang L, Pan R, Chen M, Han J, Zhao X. Utilization of a wheat 660k SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017,7:3788.
[11] Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014,33:1-14.
[12] 姚金保, 马鸿翔, 张平平, 姚国才, 杨学明, 任丽娟, 张鹏, 周淼平. 小麦优良亲本宁麦9号的研究与利用. 核农学报, 2012,26:17-21.
Yao J B, Ma H X, Zhang P P, Yao G C, Yang X M, Ren L J, Zhang P, Zhou M P. Research of wheat elite parent Ningmai 9 and its utilization. Acta Agric Nucl Sin, 2012,26:17-21 (in Chinese with English abstract).
[13] 施汉萍, 冯永明, 余敦智, 易峰, 孙丽. “扬麦158”高产栽培技术. 上海农业科技, 2009, (4):84.
Shi H P, Feng Y M, Yu D Z, Yi F, Sun L. High-yield culture technique of Yangmai 158. Shanghai Agric Sci Technol, 2009, (4):84 (in Chinese).
[14] Lan C, Zhang Y, Herrera-Foessel S A, Basnet B R, Huerta-Espino J, Lagudah E S, Singh R P. Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata. Theor Appl Genet, 2015,128:549-561.
[15] He X, Lillemo M, Shi J, Wu J, Bjørnstad Å, Belova T, Dreisigacker S, Duveiller E, Singh P. QTL characterization of Fusarium head blight resistance in CIMMYT bread wheat line Soru#1. PLoS One, 2016,11:e0158052.
[16] Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathol, 2020,69:249-258.
[17] Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283.
[18] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984,81:8014-8018.
[19] Cuthbert J, Somers D, Brule-Babel A, Brown P, Crow G. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat ( Triticum Aestivum L.). Theor Appl Genet, 2008,117:595-608.
[20] Fu Y B, Somers D J. Allelic changes in bread wheat cultivars were associated with long-term wheat trait improvements. Euphytica, 2011,179:209-225.
[21] Zheng B S, Le Gouis J, Leflon M, Rong W Y, Laperche A, Brancourt-Hulmel M. Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat. Theor Appl Genet, 2010,121:1501-1517.
[22] Zhang H, Zhang F, Li G, Zhang S, Zhang Z, Ma L. Genetic diversity and association mapping of agronomic yield traits in eighty six synthetic hexaploid wheat. Euphytica, 2017,213:111.
[23] Cao S, Xu D, Hanif M, Xia X, He Z. Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet, 2020,133:1811-1823.
[24] Sherman J D, Martin J M, Blake N K, Lanning S P, Talbert L E. Genetic basis of agronomic differences between a modern and a historical spring wheat cultivar. Crop Sci, 2014,54:1-13.
[25] Reif J, Maurer H P, Korzun V, Ebmeyer E, Miedaner T, Würschum T. Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet, 2011,123:283-292.
[26] Roncallo P F, Cervigni G L, Jensen C, Miranda R, Carrera A D, Helguera M, Echenique V. QTL analysis of main and epistatic effects for flour color traits in durum wheat. Euphytica, 2012,185:77-92.
[27] Genc Y, Oldach K, Gogel B, Wallwork H, McDonald G K, Smith A B. Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels. Mol Breed, 2013,32:39-59.
[28] Zhang J, Dell B, Biddulph B, Khan N, Xu Y, Luo H, Appels R. Vernalization gene combination to maximize grain yield in bread wheat ( Triticum aestivum L.) in diverse environments. Euphytica, 2014,198:439-454.
[29] Zorić M, Dodig D, Kobiljski B, Quarrie S, Barnes J. Population structure in a wheat core collection and genomic loci associated with yield under contrasting environments. Genetica, 2012,140:259-275.
[30] Sallam A, Amro A, Elakhdar A, Dawood M F A, Moursi Y S, Baenziger P S. Marker-trait association for grain weight of spring barley in well-watered and drought environments. Mol Biol Rep, 2019,46:2907-2918.
[31] Yao J, Wang L, Liu L, Zhao C, Zheng Y. Association mapping of agronomic traits on chromosome 2A of wheat. Genetica, 2009,137:67-75.
[32] Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu 8679. Theor Appl Genet, 2009,118:313-325.
[33] Lin H, Guo H, Wagner C, Xiao S, Friedt W. Genomic regions for yield and yield parameters in Chinese winter wheat ( Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Sci, 2008,175:226-232.
[34] Su J Y, Zheng Q, Li H W, Li B, Jing R L, Tong Y P, Li Z S. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci, 2009,176:824-836.
[35] 何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011,37:202-215.
He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011,37:202-215 (in Chinese with English abstract).
[36] 贾继增, 高丽锋, 赵光耀, 周文斌, 张卫建. 作物基因组学与作物科学革命. 中国农业科学, 2015,48:1-32.
Jia J Z, Gao L F, Zhao G Y, Zhou W B, Zhang W J. Crop genomics and crop science revolutions. Sci Agric Sin, 2015,48:1-32 (in Chinese with English abstract).
[37] 何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018,8:107-114.
He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. Wheat production and technology improvement in China. J Agric, 2018,8:107-114 (in Chinese with English abstract).
[38] 程顺和, 郭文善, 王龙俊. 中国南方小麦. 南京: 江苏科学技术出版社, 2012. pp 255-259.
Cheng S H, Guo W S, Wang L J. Wheat in Southern China. Nanjing: Jiangsu Science and Technology Publishing House, 2012. pp 255-259(in Chinese).
[39] 宋健民, 戴双, 李豪圣, 程敦公, 刘爱峰, 曹新有, 刘建军, 赵振东. 山东省近年来审定小麦品种农艺和品质性状演变分析. 中国农业科学, 2013,46:1114-1126.
Song J M, Dai S, Li H S, Cheng D G, Liu A F, Cao X Y, Liu J J, Zhao Z D. Evolution of agronomic and quality traits of wheat cultivars released in Shandong province recently. Sci Agric Sin, 2013,46:1114-1126 (in Chinese with English abstract).
[40] 沈磊, 赵凯铭. 近年来河南省小麦审定品种主要性状的演变规律. 农业科技通讯, 2016, (1):54-56.
Shen L, Zhao K M. The evolvement rule for the main characters of wheat cultivars in Henan province in recent years. Bull Agric Sci Technol, 2016, (1):54-56 (in Chinese).
[41] 蒋进, 蒋云, 王淑荣. 四川省近年育成小麦品种农艺性状和品质性状分析. 麦类作物学报, 2019,39:682-691.
Jiang J, Jiang Y, Wang S R. Agronomic and quality traits of wheat varieties in Sichuan in recent years. J Triticeae Crop, 2019,39:682-691 (in Chinese with English abstract).
[42] 姚国才, 马鸿翔, 姚金保, 张鹏, 杨学明. 长江中下游地区小麦产量育种方向及策略探讨. 中国农学通报, 2010,26(17):168-171.
Yao G C, Ma H X, Yao J B, Zhang P, Yang X M. The breeding strategies and direction on wheat yield in region of middle and lower reaches of the Yangtze River. Chin Agric Sci Bull, 2010,26(17):168-171 (in Chinese with English abstract).
[43] 王翠玲, 王书子, 张学品, 吴少辉, 段国辉, 吕树作. 冬小麦主要性状的杂种优势测定和遗传分析. 安徽农业科学, 2003,31(2):173-174.
Wang C L, Wang S Z, Zhang X P, Wu S H, Duan G H, Lyu S Z. Analysis of heterosis and heredity of main characters in winter wheat. J Anhui Agric Sci, 2003,31(2):173-174 (in Chinese with English abstract).
[44] 张晗, 孙加梅, 韩瑞玺, 陈建省, 刘宾, 邓志英, 李汝玉, 田纪春. 基于小麦产量三要素的产量条件QTL分析. 麦类作物学报, 2019,39:46-53.
Zhang H, Sun J M, Han R X, Chen J S, Liu B, Deng Z Y, Li R Y, Tian J C. Conditional QTL analysis of three yield components in wheat ( Triticum aestivum L.). J Triticeae Crop, 2019,39:46-53 (in Chinese with English abstract).
[45] 卢娟, 姚永定, 史华伟, 史雨刚, 王曙光, 孙黛珍. 小麦产量构成因素相关性状与群体产量的遗传相关分析. 山西农业科学, 2018,46:501-503.
Lu J, Yao Y D, Shi H W, Shi Y G, Wang S G, Sun D Z. Genetic correlation analysis between yield components related traits and population yield in wheat. J Shanxi Agric Sci, 2018,46:501-503 (in Chinese with English abstract).
[46] 丁安明, 李君, 崔法, 赵春华, 马航运, 王洪刚. 利用小麦关联RIL群体定位产量相关性状QTL. 作物学报, 2011,37:1511-1524.
Ding A M, Li J, Cui F, Zhao C H, Ma H Y, Wang H G. QTL mapping for yield related traits using two associated RIL populations of wheat. Acta Agron Sin, 2011,37:1511-1524 (in Chinese with English abstract).
[47] Heidari B, Sayed-Tabatabaei B E, Saeidi G, Kearsey M, Suenaga K, Gulick P. Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome, 2011,54:517-527.
[48] Bhusal N, Sarial A K, Sharma P, Sareen S. Mapping QTLs for grain yield components in wheat under heat stress. PLoS One, 2017,12:e0189594.
[49] 阎素红, 杨兆生, 柴升. 小麦上三叶性状与产量及其构成因素的关系. 麦类作物学报, 2004,24:39-42.
Yan S H, Yang Z S, Chai S. Relation between characters of the top-three leaves and yield and its compositions of wheat. J Triticeae Crop, 2004,24:39-42 (in Chinese with English abstract).
[50] Narasimhamoorthy B, Gill B S, Fritz A K, Nelson J C, Brown-Guedira G L. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet, 2006,112:787-796.
[51] Campbell B T, Baenziger P S, Gill K S, Eskridge K M, Budak H, Erayman M, Dweikat I, Yen Y. Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci, 2003,43:1493-1505.
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[4] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[5] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[6] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[7] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[8] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[9] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[10] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[11] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[12] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[13] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[14] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[15] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!