Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (7): 1297-1308.doi: 10.3724/SP.J.1006.2021.04180

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato

SONG Tian-Xiao1,2, LIU Yi2,3, RAO Li-Ping2,3, Soviguidi Deka Reine Judesse2,3, ZHU Guo-Peng1,*(), YANG Xin-Sun2,*()   

  1. 1Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Horticulture College, Hainan University, Haikou 570228, Hainan, China
    2Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
    3College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2020-08-06 Accepted:2020-11-13 Online:2021-07-12 Published:2020-12-24
  • Contact: ZHU Guo-Peng,YANG Xin-Sun E-mail:guopengzhu@163.com;yangxins013@163.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2018YFD1000700);This study was supported by the National Key Research and Development Program of China(2018YFD1000705-3);This study was supported by the National Key Research and Development Program of China(2019YFD1001304);This study was supported by the National Key Research and Development Program of China(2019YFD1001305);This study was supported by the National Key Research and Development Program of China(2019YFD1001300);the National Modern Sweet Potato Industrial Technology System Construction Project(CARS-11-C-15);the Open Project of Hubei Provincial Key Laboratory of Food Crop Germplasm Innovation and Genetic Improvement(2019lzjj04);the Hubei Province Technological Innovation Project (Foreign Science and Technology Cooperation)(2018AHB012)

Abstract:

Sweet potato is an important food, feed, industrial raw material crop and a new type of bioenergy crop. Cell wall sucrose invertase is a key enzyme for sucrose metabolism in plant sources and sink. However, the research of sweet potato cell wall sucrose gene invertase (IbCWIN) family members has not been reported. In this study, the content of sucrose starch in different tissues of the tested varieties was determined, and the physicochemical properties, conserved domains, phylogenetic relationships, promoter acting elements and tissue-specific expression patterns of IbCWIN gene family were analyzed by bioinformatics methods. The results showed that the sucrose content of sweet potato stems was the highest, followed by fibrous roots and leaves, and the lowest in tuber root; the starch content of tubers was the highest, which was significantly higher than other parts. There were 10 IbCWIN genes in sweet potato, encoding 442-1115 amino acids, protein molecular weight range 49.56-124.44 kD with isoelectric point of 5.0-9.1. Distributed on 8 chromosomes, they all contained the Glyco_32 conserved domain and the same or similar conserved motif, belonging to the glycosyl hydrolase gene family GH32. IbCWIN has a high homology relationship with cassava MeCWINV. The promoter region of the IbCWIN gene family contained many types of cis-acting elements. The results of qRT-PCR showed that the IbCWIN gene family was expressed in different tissues of sweet potato and had multiple expression patterns. Among them, the expression levels of IbCWIN2 and IbCWIN9 in tubers were significantly higher than those in other tissues. This study provides a theoretical guidance for the next step in exploring the functions of the sweet potato IbCWIN gene family and regulating the relationship between the source and sink of sweet potato.

Key words: sweet potato, cell wall sucrose invertase, gene family, gene expression

Table 1

Primers used in this study"

基因名称
Gene name
正向引物序列
Forward primer sequence (5'-3')
反向引物序列
Reverse primer sequence (5'-3')
IbCWIN1 GGGTGTTGCATGCTGTTCC ACCCAACTGCACCGATTGTC
IbCWIN2 ACTTGGATGGGTGTGG TTGATACCCGGCCCGTTTG
IbCWIN3 GTATGTGGGAGTGCGTGGAT CGTCGTCGTAACTTCCCAGG
IbCWIN4 ACCCTCATTTGCTGGATTTG TGCCTCTGTGCCATTGTTG
IbCWIN5 GGTTAGTTACAATAGGGTCCAAGG TCCACGCATTCCCACATA
IbCWIN6 GTTCTTGCATTCGGTTCCGC ATCGAGTCTCAACCCGTGTC
IbCWIN7 TAGGGAGCAAAGTTGAGCGG AGAGGGTGTTCGGCTTTGAC
IbCWIN8 GGATCACAACACTGGTCGGT ATTAAGTTCGTGCATGCGGC
IbCWIN9 GACACCGAGGACTTCAAGCA GGTGGTCGAAACCGGGTAAA
IbCWIN10 TGGGGAACGAGAGAAAGCAC AAAAGTCAGGGCACTCCCAC
β-Actin AGCAGCATGAAGATTAAGGTTGTAGCAC TGGAAAATTAGAAGCACTTCCTGTGAAC

Fig. 1

Comparison of CWIN gene family between sweet potato and other species Accession numbers of MeCWINV1-MeCWINV6 in GenBank are JQ339929, JX291160, JN801147, JQ792172, JX291159, JQ339930; Accession numbers of AtCWINV1-AtCWINV6 are At3g13790, At3g52600, At1g55120, At2g36190, At3g13784, At5g11920; and accession numbers of StCWIN1-StCWIN4 are Z21486, Z22645, AJ133765, and AJ133765, respectively."

Fig. 2

Distribution of IbCWIN gene family on chromosomes in sweet potato"

Table 2

IbCWIN gene family in sweet potato"

基因名称
Gene name
基因序列号
Gene ID
氨基酸
Amino acid
分子量
Molecular weight (kD)
等电点
Isoelectric point
预测亚细胞定位
Predicting subcellular localization
IbCWIN1 g1732 657 72.01 5.19 液泡Vacuole
IbCWIN2 g1764 680 74.64 5.00 液泡Vacuole
IbCWIN3 g15600 1115 124.44 5.96 液泡Vacuole
IbCWIN4 g25102 467 52.68 6.47 细胞壁Cell wall
IbCWIN5 g25369 792 86.78 5.58 液泡Vacuole
IbCWIN6 g49879 552 61.99 8.30 细胞壁Cell wall
IbCWIN7 g55209 442 49.56 9.01 细胞壁Cell wall
IbCWIN8 g55220 913 100.07 8.61 细胞壁Cell wall
IbCWIN9 g55625 591 66.10 5.53 细胞壁Cell wall
IbCWIN10 g60985 577 64.50 8.78 细胞壁Cell wall

Fig. 3

Phylogenetic tree and gene structure of IbCWIN gene family in sweet potato"

Fig. 4

Collinearity analysis of IbCWIN gene family in sweet potato"

Fig. 5

Promoter prediction of IbCWIN gene family in sweet potato"

Fig. 6

Contents of sucrose and starch in E11 and Fu18 Different letters in the figure indicate significant differences among the treatments. Uppercase letter indicates significant differences at the 0.01 probability level, and lowercase letter indicates significant differences at the 0.05 probability level."

Fig. 7

Tissue specific expression analysis of IbCWIN gene family Different letters in the figure indicate significant differences among the treatments. Uppercase letter indicates significant differences at the 0.01 probability level, and lowercase letter indicates significant differences at the 0.05 probability level."

[1] 张立明, 王庆美, 王荫墀. 甘薯的主要营养成分和保健作用. 杂粮作物, 2003,23(3):162-166.
Zhang L M, Wang Q M, Wang Y C. Main nutritional components of Ipomoea batatas and its healthy functions. Rain Fed Crops, 2003,23(3):162-166 (in Chinese).
[2] 刘庆昌. 甘薯在我国粮食和能源安全中的重要作用. 科技导报, 2004,22(9):21-22.
Liu Q C. Importance of sweet potato in the security of food and energy in China. Sci Technol Rev, 2004,22(9):21-22 (in Chinese with English abstract).
[3] 马剑凤, 程金花, 汪洁, 戴红君, 戴起伟. 国内外甘薯产业发展概况. 江苏农业科学, 2012,40(12):1-5.
Ma J F, Cheng J H, Wang J, Dai H J, Dai Q W. General situation of development of sweet potato industry at home and abroad. Jiangsu Agric Sci, 2012,40(12):1-5 (in Chinese with English abstract).
[4] Qin G, Zhu Z, Wang W, Cai J, Chen Y, Li L, Shi P T. A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening. Plant Physiol, 2016,172:1596-1611.
doi: 10.1104/pp.16.01269 pmid: 27694342
[5] Goetz M, Guivarch A, Hirsche J, Bauerfeind M A, Gonzalez M C, Hyun T K, Eom S H, Chriqui D, Engelke T, Großkinsky D K, Roitsch T. Metabolic control of tobacco pollination by sugars and invertases. Plant Physiol, 2017,173:984-997.
doi: 10.1104/pp.16.01601 pmid: 27923989
[6] Rende U, Wang W, Gandla M L, Jonsson L J, Niittyla T. Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood. New Phytol, 2017,214:796-807.
doi: 10.1111/nph.14392 pmid: 28032636
[7] 俞锞. 蔗糖转化酶基因调控番茄果实耐热性的初步分析. 浙江师范大学硕士学位论文, 浙江金华, 2014.
Yu K. The Preliminary Analysis of Invertase Gene Regulating the Heat Tolerance of Tomato Fruit. MS Thesis of Zhejiang Normal University, Jinhua, Zhejiang, China, 2014 (in Chinese with English abstract).
[8] 刘永忠, 李道高. 柑橘果实糖积累与蔗糖代谢酶活性的研究. 园艺学报, 2003,30:457-459.
Liu Y Z, Li D G. Study on sugar accumulation and sucrose metabolizing enzyme activity in citrus fruit. Acta Hortic Sin, 2003,30:457-459 (in Chinese with English abstract).
[9] Sturm A. Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci, 1999,4:401-407.
pmid: 10498964
[10] Sturm A. Invertase, primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol, 1999,121:1-7.
doi: 10.1104/pp.121.1.1 pmid: 10482654
[11] Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol, 2004,7:235-246.
doi: 10.1016/j.pbi.2004.03.014 pmid: 15134743
[12] Tang G Q, Luscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell, 1999,11:177-189.
doi: 10.1105/tpc.11.2.177 pmid: 9927637
[13] Jin Y, Ni D A, Ruan Y L. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell, 2009,21:2072-2089.
doi: 10.1105/tpc.108.063719 pmid: 19574437
[14] Zanor M I, Osorio S, Nunes N A, Carrari F, Lohse M, Usadel B, Kuhn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou Y H, Fernie A R. RNA interference of LIN5 in Solanum lycopersicum confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol, 2009,150:1204-1218.
doi: 10.1104/pp.109.136598 pmid: 19439574
[15] Roy K L, Vergauwen R, Struyf T, Yuan S G, Lammens W, Matrai J, Maeyer M D, Ende W V D. Understanding the role of defective invertases in plants: tobacco Nin88 fails to degrade sucrose. Plant Physiol, 2013,161:1670-1681.
pmid: 23447526
[16] Deryabin A N, Burakhanova E A, Trunova T I. Apoplastic sugars and cell-wall invertase are involved in formation of the tolerance of cold-resistant potato plants to hypothermia. Doklady Biochem Biophys, 2015,465:366-369.
[17] 牛俊奇, 苗小荣, 王露蓉, 杨丽涛, 李杨瑞. 甘蔗细胞壁转化酶基因(SoCIN1)克隆及其在转基因烟草中的表达特性分析. 南方农业学报, 2017,48:1727-1733.
Niu J Q, Miao X R, Wang L R, Yang L T, Li Y R. Cloning of cell wall invertase gene ( SoCIN1) in sugarcane and its expression characteristics in transgenic tobacco. J Southern Agric, 2017,48:1727-1733 (in Chinese with English abstract).
[18] Yuan Y, Geng M T, Wu X H, Liu J, Li R M, Hu X W, Guo J C. Genome-wide identification, 3D modeling, expression and enzymatic activity analysis of cell wall invertase gene family from cassava (Manihot esculenta Crantz). Int J Mol Sci, 2014,15:7313-7331.
doi: 10.3390/ijms15057313 pmid: 24786092
[19] Cho J I, Lee S K, Ko S, Kim H K, Jun S H, Lee Y H, Bhoo S H, Lee K W, An G, Hahn T R, Jeon J S. Molecular cloning and expression analysis of the cell-wall invertase gene family in rice ( Oryza sativa L.). Plant Cell Rep, 2005,24:225.
doi: 10.1007/s00299-004-0910-z pmid: 15759120
[20] Liu X, Zhang C, Ou Y, Lin Y, Song B, Xie C H, Liu J, Li X Q. Systematic analysis of potato acid invertase genes reveals that a cold-responsive member StvacINV1, regulates cold-induced sweetening of tubers. Mol Genet Genomics, 2011,286:109-118.
pmid: 21691778
[21] Chen Z, Gao K, Su X X, Rao P, An X M. Genome-wide identification of the invertase gene family in populus. PLoS One, 2015,10:e0138540.
doi: 10.1371/journal.pone.0138540 pmid: 26393355
[22] 严丹凤, 吴晓慧, 耿梦婷, 范洁, 姚远, 李瑞梅, 郭建春. 番木瓜酸性转化酶基因家族预测及生物信息学初步分析. 基因组学与应用生物学, 2014,33:374-381.
Yan D F, Wu X H, Geng M T, Fan J, Yao Y, Li R M, Guo J C. Gene family prediction and preliminary analysis of bioinformatics of acid invertase in Carica papaya. Genomics Appl Biol, 2014,33:374-381 (in Chinese with English abstract).
[23] Wu L J, Huang W C, Sung H Y. Partial purification and characterization of soluble acid invertase from sweet potato suspension cells. Food Sci Agric Chem, 2000,2:49-54.
[24] Wang L T, Wang A Y, Hsieh C W, Chen C Y, Sung H Y. Vacuolar invertases in sweet potato: molecular cloning, characterization, and analysis of gene expression. J Agric Food Chem, 2005,53:3672-3678.
doi: 10.1021/jf0480851 pmid: 15853418
[25] 苏宁. 拟南芥蔗糖转化酶基因AtCWINV4的功能研究及对油菜的遗传转化. 华中师范大学硕士学位论文,湖北武汉, 2013.
Su N. Arabidopsis thaliana Cell Wall Invertase AtCWINV4 Function Research and Genetic Transformation of Brassica napus. MS Thesis of Central China Normal University, Wuhan, Hubei, China, 2013 (in Chinese with English abstract).
[26] 刘勋. 马铃薯转化酶及其抑制子基因家族分析及与低温糖化关系研究. 华中农业大学博士学位论文, 湖北武汉, 2010.
Liu X. Analysis of Potato Acid Invertase and Invertase Inhibitor Gene Families and Their Relationship with Cold-induced Sweetening of Tubers. PhD Dissertation of Hua Zhong Agricultural University, Wuhan, Hubei, China, 2010 (in Chinese with English abstract).
[27] 何照范. 粮油籽粒品质及其分析技术. 北京: 农业出版社. 1985. pp 148-150.
He Z F. Quality of Grain and Oil Analytical Techniques. Beijing: Agricultural Press, 1985. pp 148-150(in Chinese).
[28] 汤章城. 现代植物生理学实验指南. 北京: 科学出版社, 1999. p 131.
Tang Z C. Modern Laboratory Manual of Plant Physiology. Beijing: Science Press, 1999. p 131 (in Chinese).
[29] 周喆, 张彩霞, 张利义, 王强, 李武兴, 田义, 丛佩华. 苹果LysM基因家族的生物信息学及表达分析. 中国农业科学, 2014,47:2602-2612.
Zhou Z, Zhang C X, Zhang L Y, Wang Q, Li W X, Tian Y, Cong P H. Bioinformatics and expression analysis of the LysM gene family in apple. Sci Agric Sin, 2014,47:2602-2612 (in Chinese with English abstract).
[30] 石晓雯, 贺立恒, 焦晋华, 刘霞宇, 王婷, 刘世芳, 贾小云, 李润植. 甘薯二倍体近缘野生种三裂叶薯MYB转录因子全基因组分析及逆境胁迫响应. 核农学报, 2018,32:1338-1348.
Shi X W, He L H, Jiao J H, Liu X Y, Wang T, Liu S F, Jia X Y, Li R Z. Sweet potato diploid, wild relatives, trilobate leaf potato MYB transcription factor full genome analysis and stress response. J Nucl Agric Sci, 2018,32:1338-1348 (in Chinese).
[31] Yang J, Moeinzadeh M, Kuhl H, Helmuth J, Xiao P, Haas S, Liu G, Zheng J L, Sun Z, Fan W J, Deng G F, Wang H X, Hu F H, Zhao S S, Fernie A R, Boerno S F, Timmermann B, Zhang P, Vingron M. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants, 2017,3:696-703.
doi: 10.1038/s41477-017-0002-z pmid: 28827752
[32] 张莉, 荐红举, 杨博, 张翱翔, 张超, 杨鸿, 张立源, 刘列钊, 徐新福, 卢坤, 李加纳. 甘蓝型油菜蔗糖磷酸合酶(SPS)基因家族成员鉴定及表达分析. 作物学报, 2018,44:197-207.
Zhang L, Jian H J, Yang B, Zhang A X, Zhang C, Yang H, Zhang L Y, Liu L Z, Xu X F, Lu K, Li J N. Genome-wide analysis and expression profiling of SPS gene family in Brassica nupus L. Acta Agron Sin, 2018,44:197-207 (in Chinese with English abstract).
[33] 庞文玉, 王安, 杨宝谊, 刘振宁. 大白菜ENT基因家族的鉴定与生物信息学分析. 江苏农业科学, 2019,47(12):52-57.
Pang W Y, Wang A, Yang B Y, Liu Z N. Identification and bioinformatics analysis of Chinese cabbage ENT gene family. Jiangsu Agric Sci, 2019,47(12):52-57 (in Chinese).
[34] 王影, 李慧, 蔺经, 杨青松, 张绍铃, 常有宏. 杜梨NHX基因家族的鉴定及其在非生物胁迫下的表达分析. 果树学报, 2019,36:825-836.
Wang Y, Li H, Lan J, Yang Q S, Zhang X L, Chang Y H. Identification of NHX gene family in Pyrus betulaefolia Bunge and its expression under abiotic stress. J Fruit Sci, 2019,36:825-836 (in Chinese with English abstract).
[35] Roitsch T, Bittner M, Godt D E. Induction of apoplastic invertase of Chenopodium rubrum by D-glucose and a glucose analogue and tissue-specific expression suggest a role in sinksource regulation. Plant Physiol, 1995,108:285-294.
doi: 10.1104/pp.108.1.285 pmid: 7784506
[36] 李淑君. 玉米细胞壁转化酶基因Incw2在玉米籽粒中的过量表达. 四川农业大学硕士学位论文, 四川雅安, 2011.
Li S J. Overexpression of Incw2 Gene Maize Cell Wall Invertase in Maize Kernels. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2011 (in Chinese with English abstract).
[37] 魏华伟, 柴松琳, 胡克玲, 侯金锋, 高朋, 高优洋, 陈友根. 辣椒酸性蔗糖转化酶基因家族鉴定及表达. 分子植物育种, 2019,17:4900-4907.
Wei H W, Chai S L, Hu K L, Hou J F, Gao P, Gao Y Y, Chen Y G. Genome identification and expression of acid invertase gene in pepper. Mol Plant Breed, 2019,17:4900-4907 (in Chinese with English abstract).
[38] 潘坤, 王海燕, 卢诚, 周新成, 陈新, 王文泉. 实时荧光定量PCR检测木薯转化酶和蔗糖合酶的mRNA表达量. 分子植物育种, 2016,14:1788-1794.
Pan K, Wang H Y, Lu C, Zhou X C, Chen X, Wang W Q. Detection of mRNA expression of cassava acid invertases and sucrose synthase by fluorescent quantitative real-time PCR. Mol Plant Breed, 2016,14:1788-1794 (in Chinese with English abstract).
[39] Liu J, Chen X, Wang S, Wang Y Y, Ou-Yang Y J, Yao Y, Li R M, Fu S P, Hu X W, Guo J C. MeABL5, an ABA insensitive 5-like basic leucine zipper transcription factor, positively regulates MeCWINV3 in cassava(Manihot esculenta Crantz). Front Plant Sci, 2019,10:772.
doi: 10.3389/fpls.2019.00772 pmid: 31316528
[40] 胡艳平. 木薯细胞壁酸性转化酶基因MeCWINV1启动子的克隆与功能分析. 海南大学硕士学位论文, 海南海口, 2014.
Hu Y P. Isolation and Functional Characterization of MeCWINV1 Promoter from Manihot esculenta Crantz. MS Thesis of Hainan University, Haikou, Hainan, China, 2014 (in Chinese with English abstract).
[41] Wei Y, Wu X Y, Li Y N, Liu G H, Cui Z F, Jiang T L, Ma Q X, Luo L J, Zhang P. Cell wall invertase 3 affects cassava productivity via regulating sugar allocation from source to sink. Front Plant Sci, 2019,10:541.
doi: 10.3389/fpls.2019.00541 pmid: 31114601
[42] 郭育强, 刘姣, 符少萍, 段瑞军, 李瑞梅, 姚远, 胡新文, 郭建春. MeCWINV6酵母单杂交文库构建及其调控基因筛选. 分子植物育种, 2016,14:2777-2784.
Guo Y Q, Liu J, Fu S P, Duan R J, Li R M, Yao Y, Hu X W, Guo J C. Constructing yeast one-hybrid library and screening the potential regulator of MeCWINV6 in cassava. Mol Plant Breed, 2016,14:2777-2784 (in Chinese with English abstract).
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[4] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[5] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
[6] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[7] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[8] HUANG Ning, HUI Qian-Long, FANG Zhen-Ming, LI Shan-Shan, LING Hui, QUE You-Xiong, YUAN Zhao-Nian. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(5): 882-893.
[9] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[10] WANG Cui-Juan, CHAI Sha-Sha, SHI Chun-Yu, ZHU Hong, TAN Zhong-Peng, JI Jie, REN Guo-Bo. Anatomy characteristics and IbEXP1 gene expression of tuberization under ammonia nitrogen treatment in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(2): 305-319.
[11] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[12] HUANG Su-Hua, LIN Xi-Yue, LEI Zheng-Ping, DING Zai-Song, ZHAO Ming. Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability [J]. Acta Agronomica Sinica, 2021, 47(11): 2278-2289.
[13] HUANG Xiao-Fang,BI Chu-Yun,SHI Yuan-Yuan,HU Yun-Zhuo,ZHOU Li-Xiang,LIANG Cai-Xiao,HUANG Bi-Fang,XU Ming,LIN Shi-Qiang,CHEN Xuan-Yang. Discovery and analysis of NBS-LRR gene family in sweet potato genome [J]. Acta Agronomica Sinica, 2020, 46(8): 1195-1207.
[14] Yong-Chen LIU,Cheng-Cheng SI,Hong-Juan LIU,Bin-Bin ZHANG,Chun-Yu SHI. Reason exploration for soil aeration promoting photosynthate transportation between sink and source in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(3): 462-471.
[15] ZHANG Huan, YANG Nai-Ke, SHANG Li-Li, GAO Xiao-Ru, LIU Qing-Chang, ZHAI Hong, GAO Shao-Pei, HE Shao-Zhen. Cloning and functional analysis of a drought tolerance-related gene IbNAC72 in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1649-1658.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!