Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (11): 2278-2289.doi: 10.3724/SP.J.1006.2021.02070

• RESEARCH NOTES • Previous Articles     Next Articles

Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability

HUANG Su-Hua1(), LIN Xi-Yue2, LEI Zheng-Ping2, DING Zai-Song1,*(), ZHAO Ming1   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Agricultural Technology Extension Station, Chongyi 341300, Jiangxi, China
  • Received:2020-10-23 Accepted:2021-04-27 Online:2021-11-12 Published:2021-05-20
  • Contact: DING Zai-Song E-mail:hsuhua@163.com;dingzaisong@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2017YFD0301602)


It is of great significance to clarify the physiological basis and hormone regulation characteristics of axillary bud germination for the selection of ratoon rice cultivars with strong ratooning ability and the regulation of cultivation techniques. In this study, the content of non-structural carbohydrate (NSC) and total nitrogen in different parts of 13 cultivars selected in 2019 were analyzed at the first harvest stage using the screening platform established in Chongyi County, Jiangxi Province. The biosynthesis and signal transduction genes of brassinolides and strigolactones, which promoted and inhibited axillary bud germination, were also studied. The results showed that there were significant differences in the regeneration rate of 13 cultivars, ranging from 1.26 to 2.38. The contents of soluble sugar, starch and non-structural carbohydrate in leaves, leaf sheaths, and stems were significantly different among different cultivars at different node positions (P-values were all less than 0.001). The total nitrogen content was also significant difference among them except for the upper and lower node stems. The correlation analysis showed that the contents of the soluble sugar, starch and NSC of the stem at the lower node had significant or extremely significant correlation with the regeneration rates (R2 = 0.4442*, 0.9000**, and 0.8303**, respectively), while there was no significant correlation in others. The relative expression levels of tillering promoting genes (CYP90A, CYP85A2, D2, BRI, BSK, and CYCD3) in BR synthesis and signal pathway were higher, while the inhibited tillering genes (CYP734A1, BZR, and BKI) were lower in Guyou 676 with higher regeneration rates. In conclusion, the starch content in the stem at the lower node could be used as the screening index of strong regeneration ability cultivar, and also the relative expression levels of BR pathway related genes could be used as supplementary indexes.

Key words: ratoon rice, regeneration rate, starch content, brassinosteroid, gene expression

Table 1

Names, types, and yield characteristics of experimental materials"

Cultivar type
Cultivar name
Variety source
Three-line indica hybrid rice
谷优676 Guyou 676 (GY676) 谷丰A×福恢676 Gufeng A×Fuhui 676
赣优7076 Ganyou 7076 (GY7076) 赣香A×福恢7076 Ganxiang A×Fuhui 7076
泸优明占 Luyoumingzhan (LYMZ) 泸香078A×华占 Luxiang 078A×Huazhan
Two-line indica hybrid rice
晶两优534 Jingliangyou 534 (JLY534) 晶4155S×R534 Jing 4155S×R534
晶两优华占 Jingliangyouhuazhan (JLYHZ) 晶4155S×华占 Jing 4155S×Huazhan
智两优5336 Zhiliangyou 5336 (ZLY5336) 智农S×闽恢5336 Zhinong S×Minhui 5336
晶两优粤农丝苗 Jingliangyouyuenongsimiao (JLYSM) 4155S×R1212
隆两优华占 Longliangyouhuazhan (LLYHZ) 隆科638S×华占 Longke 638S×Huazhan
隆两优3463 Longliangyou 3463 (LLY3463) 隆科638S×R3463 Longke 638S×R3463
晶两优1377 Jingliangyou 1377 (JLY1377) 晶4155S×R1377 Jing 4155S×R1377
徽两优丝苗 Huiliangyousimiao (HLYSM) 1892S×五山丝苗 1892S×Wushansimiao
深两优7011 Shenliangyou 7011 (SLY7011) 深08S×福恢7011 Shen 08S×Fuhui 7011
Three-line indica-japonica hybrid rice
甬优4949 Yongyou 4949 (YY4949) 甬粳49A×F9249 Yongjing 49A×F9249

Table 2

Primers for qRT-PCR"

Gene function
Forward primer (5′-3′)
Reverse primer (5′-3′)
BR synthesis
BR signal transduction
SLs synthesis
SLs signal transduction

Table 3

Life duration, yield, and regeneration rate of different rice cultivars"

Main crop
duration (d)
Ratoon crop
duration (d)
Whole crop
duration (d)
Main yield
(t hm-2)
Ratoon yield
(t hm-2)
Annual yield
(t hm-2)
Regeneration rate
谷优676 GY676 136 71 207 9.42 b 5.25 c 14.37 cd 2.38 a
晶两优534 JLY534 145 72 217 9.48 b 6.17 b 15.65 a 1.99 b
晶两优华占 JLYHZ 140 72 212 8.98 c 5.03 c 14.01 cd 1.97 b
智两优5336 ZLY5336 145 72 217 7.65 e 4.45 d 12.10 f 1.94 b
晶两优粤农丝苗 JLYSM 145 72 217 8.80 c 4.58 d 13.38 e 1.86 b
隆两优华占 LLYHZ 142 72 214 10.13 a 4.53 d 14.66 b 1.85 b
隆两优3463 LLY3463 145 72 217 9.90 a 4.68 d 14.60 b 1.71 c
晶两优1377 JLY1377 147 74 221 9.83 a 5.10 c 14.93 b 1.68 c
深两优7011 SLY7011 147 74 221 8.40 d 4.58 d 12.98 e 1.60 c
甬优4949 YY4949 134 77 210 9.08 c 6.57 a 15.65 a 1.57 d
徽两优丝苗 HLYSM 145 72 217 8.18 d 4.05 e 12.23 f 1.55 d
赣优7076 GY7076 136 71 207 8.94 c 4.73 d 13.67 c 1.43 d
泸优明占 LYMZ 135 71 206 9.20 bc 4.65 d 13.85 c 1.26 e

Fig. 1

Relationships between regeneration rate and ratoon season, main season, and annual yields for 13 hybrid rice cultivars"

Fig. 2

Soluble sugar, starch, and NSC content of the upper and lower leaves (A), sheaths (B), and stems (C) before main crop harvest in rice Abbreviations are the same as those given in Table 1."

Table 4

ANOVA of soluble sugar, starch, and NSC contents of leaf, sheath, and stem in different rice varieties"

Source of variation
可溶性糖SS 淀粉Starch 非结构性碳水化合物NSC
叶片Leaf 节位 Node site 1 2113.78 8.66E-44 1727.37 1.44E-41 594.95 3.92E-30
品种 Cultivar 12 854.64 3.12E-55 387.53 2.20E-46 497.91 3.51E-49
叶鞘Sheath 节位 Node site 1 12,932.43 5.13E-64 832.86 1.13E-33 2473.73 1.59E-45
品种 Cultivar 12 1391.03 1.05E-60 173.85 1.63E-37 308.29 7.72E-44
茎秆Stem 节位 Node site 1 3384.81 5.26E-49 1396.50 3.03E-39 3923.92 1.19E-50
品种 Cultivar 12 2564.40 1.35E-67 1476.25 2.24E-61 3189.50 4.71E-70

Fig. 3

Descriptive statistics of soluble sugar, starch, and NSC content of the upper and lower leaves (A), sheaths (B), and stems (C) before main crop harvest in rice The solid and dashed lines within the boxes indicate medians and means, respectively; the upper and lower box edges of the boxes represent the 25th and 75th percentiles of all the data, the bottom and top bars represent the 5th and 95th percentiles, and the bottom and top dots represent the outliers, respectively."

Table 5

Correlation between the biomass and the contents of SS, starch, and NSC in different parts of leaves, sheaths, and stems"

可溶性糖 SS 淀粉 Starch 非结构性碳水化合物 NSC
R2 F P R2 F P R2 F P
叶片Leaf 上部 Upper 0.0684 0.8077 0.3881 0.1077 1.3276 0.2737 0.1593 2.0851 0.1766
下部 Lower 0.0150 0.1678 0.6900 0.1692 2.2408 0.1625 0.1029 1.2623 0.2851
叶鞘Sheath 上部 Upper 0.0002 0.0026 0.9603 0.1917 2.6093 0.1345 0.0706 0.8362 0.3801
下部 Lower 0.2005 2.7586 0.1249 0.0784 0.9356 0.3542 0.1709 2.2681 0.1602
茎秆Stem 上部 Upper 0.3241 5.2743 0.0423 0.2771 4.2160 0.0646 0.3317 5.4589 0.0394
下部 Lower 0.4442* 8.7913 0.0129 0.9000** 98.9956 0.0000 0.8303** 53.8256 0.0000

Fig. 4

Total nitrogen content of the upper and lower leaves (left), sheaths (mid), and stems (right) before main crop harvest in rice Abbreviations are the same as those given in Table 1."

Fig. 5

Relative expression levels of key genes in BR synthesis and metabolism in rice buds and leaves before main crop harvest Abbreviations are the same as those given in Table 1. Bars superscripted by different lowercase letters are significantly different at the 0.05 probability level."

Fig. 6

Relative expression levels of key genes in BR signalling pathway in rice buds and leaves before main crop harvest Abbreviations are the same as those given in Table 1. Bars superscripted by different lowercase letters are significantly different at the 0.05 probability level."

Fig. 7

Relative expression levels of key genes in SL synthesis and signalling pathway in rice buds and leaves before main crop harvest Abbreviations are the same as those given in Table 1. Bars superscripted by different lowercase letters are significantly different at the 0.05 probability level."

[1] 徐富贤, 熊洪, 张林, 朱永川, 蒋鹏, 郭晓艺, 刘茂. 再生稻产量形成特点与关键调控技术研究进展. 中国农业科学, 2015, 48: 1702-1717.
Xu F X, Xiong H, Zhang L, Zhu Y C, Jiang P, Guo X Y, Liu M. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies. Sci Agric Sin, 2015, 48: 1702-1717 (in Chinese with English abstract).
[2] 林文雄, 陈鸿飞, 张志兴, 徐倩华, 屠乃美, 方长旬, 任万军. 再生稻产量形成的生理生态特性与关键栽培技术的研究与展望. 中国生态农业学报, 2015, 23: 392-401 (in Chinese with English abstract).
Lin W X, Chen H F, Zhang Z X, Xu Q H, Tu N M, Fang C X, Ren W J. Research and prospect on physio-ecological properties of ratoon rice yield formation and its key cultivation technology. Chin J Eco-Agric, 2015, 23: 392-401.
[3] Lin W. Developmental status and problems of rice ratooning. J Integr Agric, 2019, 18: 246-247.
doi: 10.1016/S2095-3119(19)62568-2
[4] 徐富贤, 熊洪. 杂交中稻粒叶比与再生力的关系. 中国水稻科学, 2000, 14: 249-252.
Xu F X, Xiong H. Relationship between ratio of grain to leaf area and ratooning ability in middle season hybrid rice. Chin J Rice Sci, 2000, 14: 249-252 (in Chinese with English abstract).
[5] 徐富贤, 熊洪, 赵甘霖, 洪松. 杂交中稻强再生力品种的冠层特征研究. 作物学报, 2002, 28: 426-430.
Xu F X, Xiong H, Zhao G L, Hong S. A study on the canopy characters of mid-season hybrid rice in relation to their ratooning ability. Acta Agron Sin, 2002, 28: 426-430 (in Chinese with English abstract).
[6] 任天举, 张晓春, 王培华, 李经勇. 杂交中稻、再生稻两季高产组合的主要特征特性及配合力效应. 西南农业学报, 2005, 18: 382-386.
Ren T J, Zhang X C, Wang P H, Li J Y. Analysis of combining ability effect and the dominant characteristics of crosses with high yields in twice of hybrid mid-season and ratooning rice. Southwest Chin J Agric Sci, 2005, 18: 382-386 (in Chinese with English abstract).
[7] 任天举, 蒋志成, 王培华, 李经勇, 张晓春, 鲁远源, 刘贤双. 杂交中稻再生力与头季稻农艺性状的相关性研究. 作物学报, 2006, 32: 613-617.
Ren T J, Jiang Z C, Wang P H, Li J Y, Zhang X C, Lu Y Y, Liu X S. Correlation of ratooning ability with its main crop agronomic traits in midseason hybrid rice. Acta Agron Sin, 2006, 32: 613-617 (in Chinese with English abstract).
[8] 徐富贤, 熊洪, 洪松. 杂交中稻抽穗后再生芽生长与头季稻茎鞘物质积累的关系. 中国水稻科学, 1997, 11: 160-164.
Xu F X, Xiong H, Hong S. Relation between axillary bud growth and matter accumulation of stem-sheath after heading of main crop in hybrid rice. Chin J Rice Sci, 1997, 11: 160-164 (in Chinese with English abstract).
[9] Chen Q, He A B, Wang W Q, Peng S B, Huang J L, Cui K H, Nie L X. Comparisons of regeneration rate and yields performance between inbred and hybrid rice cultivars in a direct seeding rice-ratoon rice system in central China. Field Crops Res, 2018, 223: 164-170.
doi: 10.1016/j.fcr.2018.04.010
[10] He A B, Wang W Q, Jiang G L, Sun H J, Jiang M, Man J G, Cui K H, Huang J L, Peng S B, Nie L X. Source-sink regulation and its effects on the regeneration ability of ratoon rice. Field Crops Res, 2019, 236: 155-164.
doi: 10.1016/j.fcr.2019.04.001
[11] 凌启鸿, 苏祖芳, 侯康平, 郭宏文. 水稻潜伏芽生长和穗分化形成规律及其应用的研究. 中国农业科学, 1989, 22(1):35-43.
Ling Q H, Su Z F, Hou K P, Guo H W. Studies on the growth and panicle differentiation of resting bud and its application in rice plants. Sci Agric Sin, 1989, 22(1):35-43 (in Chinese with English abstract).
[12] Wang Y C, Zheng C, Xiao S, Sun Y T, Huang J L, Peng S B. Agronomic responses of ratoon rice to nitrogen management in central China. Field Crops Res, 2019, 236: 107569.
[13] 陈鸿飞, 庞晓敏, 张仁, 张志兴, 徐倩华, 方长旬, 李经勇, 林文雄. 不同水肥运筹对再生季稻根际土壤酶活性及微生物功能多样性的影响. 作物学报, 2017, 43: 1507-1517.
Chen H F, Pang X M, Zhang R, Zhang Z X, Xu Q H, Fang C X, Li J Y, Lin W X. Effects of different irrigation and fertilizer application regimes on soil enzyme activities and microbial functional diversity in rhizosphere of ratooning rice. Acta Agron Sin, 2017, 43: 1507-1517 (in Chinese with English abstract).
[14] Zhang C, Bai M Y, Chong K. Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep, 2014, 33: 683-696.
doi: 10.1007/s00299-014-1578-7 pmid: 24667992
[15] Liang J, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504: 401-405.
doi: 10.1038/nature12870
[16] Lu K, Li T, He J, Chang W, Zhang R, Liu M, Yu M N, Fan Y H, Ma J Q, Sun W, Qu C M, Liu L Z, Li N N, Liang Y, Wang R, Qian W, Tang Z L, Xu X F, Lei B, Zhang K, Li J N. qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Res, 2018, 46: D1229-D1236.
doi: 10.1093/nar/gkx725
[17] 唐浩, 陈立云, 杨益善, 肖应辉, 李军民. 水稻的再生率及其与产量性状的关系. 杂交水稻, 2003, 18(3):55-58.
Tang H, Chen L Y, Yang Y S, Xiao Y H, Li J M. Correlation of ratoon rate of rice to yield characters. Hybrid Rice, 2003, 18(3):55-58 (in Chinese with English abstract).
[18] 胡志华, 李大明, 徐小林, 黄庆海, 柳开楼, 胡惠文, 叶会财, 周利军, 余喜初. 再生稻轻简化种植技术研究进展. 中国稻米, 2017, 23(3):13-17.
Hu Z H, Li D M, Xu X L, Huang Q H, Liu K L, Hu H W, Ye H C, Zhou L J, Yu C X. Research progress of simplified cultivation technology of ratoon rice. China Rice, 2017, 23(3):13-17 (in Chinese with English abstract).
[19] 刘怀珍, 黄庆, 陆秀明, 李康活, 李惠芬, 张彬. 一季中晚稻-再生稻高产栽培技术研究. 广东农业科学, 2012, 39(20):1-3.
Liu H Z, Huang Q, Lu X M, Li K H, Li H F, Zhang B. Study on high-yielding cultivation techniques in the ratoon rice of single-middle-late season rice. Guangdong Agric Sci, 2012, 39(20):1-3 (in Chinese with English abstract).
[20] 李义珍. 南方再生稻超高产理论与技术模式研究及应用. 福州: 福建科学技术出版社, 2008.
Li Y Z. Research and Application of Super High Yield Theory and Technical Model of Ratoon Rice in Southern China. Fuzhou: Fujian Science and Technology Press, 2008 (in Chinese).
[21] 何爱斌, 于朋超, 陈乾, 姜广磊, 王慰亲, 聂立孝. 甬优4949和超优1000在华中地区再生稻种植的氮肥运筹研究. 中国水稻科学, 2019, 33: 47-56.
He A B, Yu P C, Chen Q, Jiang G L, Wang W Q, Nie L X. Optimizing the nitrogen management for Yongyou 4949 and Chaoyou 1000 in ratoon rice system in central China. Chin J Rice Sci, 2019, 33: 47-56.
[22] Wang Y H, Li J Y. The plant architecture of rice (Oryza sativa). Plant Mol Biol, 2005, 59: 75-84.
doi: 10.1007/s11103-004-4038-x
[23] Binne Z, Pospísil T, Zeljkovic S A. Strigolactones: new plant hormones in action. Planta, 2016, 243: 1311-1326.
doi: 10.1007/s00425-015-2455-5
[24] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900-2910.
pmid: 14615594
[25] Tong H N, Liu L C, Jin Y, Du L, Yin Y H, Qian Q, Zhu L H, Chu C C. DWARF AND LOWTILLERING acts as a direct downstream target of a GSK3/ SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell, 2012, 24: 2562-2577.
doi: 10.1105/tpc.112.097394
[26] Bai M Y, Zhang L Y, Gampala S S, Zhu S W, Chong K, Wang Z Y. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA, 2007, 104: 13839-13844.
doi: 10.1073/pnas.0706386104
[27] Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng Xi B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. DWARF53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504: 401-405.
doi: 10.1038/nature12870
[28] Lin H, Wang R, Qian Q, Yan, M X, Meng X B, Fu Z M, Yan C Y, Jiang B, Su Z, Li J Y, Wang Y H. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009, 21: 1512-1525.
doi: 10.1105/tpc.109.065987
[29] Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Ueno K, Ito S, Asami T, Cheng Z J, Wang J, Lei C L, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14-SCF D3-dependent degradation of D53 regulates strigolactone signaling. Nature, 2013, 504: 406-410.
doi: 10.1038/nature12878
[30] Xu H B, Lian L, Wang F X, Jiang J H, Lin Q, Xie H G, Luo X, Zhu Y S, Zhuo C Y, Wang J L, Xie H A, Jiang Z W, Zhang J F. Brassinosteroid signaling may regulate the germination of axillary buds in ratoon rice. BMC Plant Biol, 2020, 20: 76.
doi: 10.1186/s12870-020-2277-x
[31] 张荟, 郑轶, 涂诗航, 周鹏, 卓传营, 张上守. 杂交稻新品种高留桩再生力筛选试验. 福建稻麦科技, 2015, 33(3):11-14.
Zhang H, Zheng Y, Tu S H, Zhou P, Zhuo C Y, Zhang S S. Screening of ratooning ability with high stubble for new hybrid rice combinations. Fujian Sci Technol Rice Wheat, 2015, 33(3):11-14 (in Chinese with English abstract).
[1] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[2] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[3] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[4] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[5] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[6] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[7] YAO Jia-Yu, YU Ji-Xiang, WANG Zhi-Qin, LIU Li-Jun, ZHOU Juan, ZHANG Wei-Yang, YANG Jian-Chang. Response of endogenous brassinosteroids to nitrogen rates and its regulatory effect on spikelet degeneration in rice [J]. Acta Agronomica Sinica, 2021, 47(5): 894-903.
[8] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[9] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[10] MI Wen-Bo, FANG Yuan, LIU Zi-Gang, XU Chun-Mei, LIU Gao-Yang, ZOU Ya, XU Ming-Xia, ZHENG Guo-Qiang, CAO Xiao-Dong, FANG Xin-Ling. Differential proteomics analysis of fertility transformation of the winter rape thermo-sensitive sterile line PK3-12S (Brassica rapa L.) [J]. Acta Agronomica Sinica, 2020, 46(10): 1507-1516.
[11] JIN Shu-Rong,WANG Yan-Mei,CHANG Yue,WANG Yue-Hua,LI Jia-Na,NI Yu. Activity and gene family expression of β-amylase in Brassica napus differing in harvest index [J]. Acta Agronomica Sinica, 2019, 45(8): 1279-1285.
[12] Tao FENG,Chun-Yun GUAN. Cloning and characterization of phytochrome interacting factor 4 (BnaPIF4) gene from Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(2): 204-213.
[13] Jing ZHAO,Xu-Tong LI,Xue-Zhong LIANG,Zhi-Cheng WANG,Jing CUI,Bin CHEN,Li-Qiang WU,Xing-Fen WANG,Gui-Yin ZHANG,Zhi-Ying MA,Yan ZHANG. Genome-wide identification of Laccase gene family in update G. hirsutum L. genome and expression analysis under V. dahliae stress [J]. Acta Agronomica Sinica, 2019, 45(12): 1784-1795.
[14] Sha-Sha LI,Geng MA,Wei-Xing LIU,Juan KANG,Yu-Lu CHEN,Yang-Yang HU,Pan-Pan ZHANG,Chen-Yang WANG. Effects of Long-Term Irrigation and Nitrogen Regimes on Soil Nitrogen Content and Paste Property of Wheat Grain [J]. Acta Agronomica Sinica, 2018, 44(7): 1067-1076.
[15] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
Full text



No Suggested Reading articles found!