Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (7): 1021-1031.doi: 10.3724/SP.J.1006.2018.01021


Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber

Huan TAN1,Yu-Hui LIU1,*(),Li-Xia LI1,Li WANG2,Yuan-Ming LI1,Jun-Lian ZHANG1,*()   

  1. 1 Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Enhancement / College of Horticulture / Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2017-10-27 Accepted:2018-03-26 Online:2018-07-10 Published:2018-04-09
  • Contact: Yu-Hui LIU,Jun-Lian ZHANG E-mail:lyhui@aliyun.com;zhangjunlian77@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (31601356), Gansu Science Foundation for Distinguished Young Scholars (17JR5RA138), the Agricultural Biotechnology Research and Application Development Foundation of Gansu Province (GNSW-2015-15), Gansu Scientific Research Foundation for the Universities (2016A-030), and Fuxi Talent Project of Gansu Agricultural University (Gaufx-02Y04).


The anthocyanins biosynthesis is regulated by transcription factors, and R2R3 MYB is the most important transcriptional regulator in plant. In this study, three homologous genes were isolated from tetraploid potato, belonging to R2R3 MYB gene family. The structure and function analysis of the three homologous genes were characterized by bioinformatics analysis, stable tobacco genetic transformation and qPCR assays. The three homologous genes contained R2 and R3 conserved domains, differed in the number of repeats (R) consisting of 10 amino acid sequences, and named as StAN1-R0, StAN1-R1, and StAN1-R3 according to the number of R. The coding proteins are hydrophilic with molecular weight of 28 047.91, 29 458.35, 31 527.60 Da, and isoelectric points (pI) of 6.14, 6.90, and 8.39, respectively. The accumulation of anthocyanin was significantly increased in StAN1-R0, StAN1-R1 and StAN1-R3 overexpressed plants. The leaf color of StAN1-R1-overexpressed plants was dark red with the highest anthocyanin content among the three transgenic events. The qPCR assays showed that exogenous StAN1 genes enhanced the expression of endogenous NtbHLH transcription factor as well as NtCHS, NtCHI, NtF3H, NtF3’H, NtDFR, NtANS, and NtUFGT, involved in anthocyanin biosynthesis in transgenic tobacco leaves. The overexpression of StAN1-R1 resulted in higher expression of NtDFR, NtANS, and endogenous NtbHLH in transgenic tobacco. The results showed that three homologous genes of StAN1 can regulate anthocyanin biosynthesis, among them StAN1-R1 containing one R has the strongest regulatory capacity.

Key words: potato, anthocyanin, R2R3 MYB, gene cloning, bioinformatics analysis, stable tobacco transformation, gene expression analysis

Table 1

Primer sequences for qRT-PCR in this study"

Accession number
Forward primer (5'-3')
Reverse primer (5'-3')

Fig. 1

Electrophoresis of the total RNARS1: GN, red skin; WS: XD, white skin; PS: HM, purple skin; RS2: QS, red skin; WF1: GN, white flesh; WF: XD, white flesh; PF: HM, purple flesh; WF2: QS, white flesh; RFV: QS, red vascular bundle; M: DNA marker."

Fig. 2

PCR map of gene cloningRS1: GN, red skin; WS: XD, white skin; PS: HM, purple skin; RS2: QS, red skin; WF1: GN, white flesh; WF: XD, white flesh; PF: HM, purple flesh; WF2: QS, white flesh; RFV: QS, red vascular bundle; M: DNA marker."

Fig. 3

Sequence comparison chart R indicates the repeat structure for TIAPQPQEGI."

Table 2

Primary structure prediction of potato StAN1 gene encoding proteins"

Molecular weight (Da)
Instability index
Average of hydropathicity
Aliphatic index
StAN1-R0 C1227H1936N362O365S14 28047.91 8.39 46.97 -0.693 79.14
StAN1-R1 C1284H2019N377O390S15 29458.35 6.90 48.64 -0.720 74.88
StAN1-R3 C1371H2164N402O423S15 31527.60 6.14 50.76 -0.712 76.15

Table 3

Secondary structure analysis of StAN1 gene encoding protein (%)"

Alpha helix
Beta turn
Random coil
Extended strand
StAN1-R0 34.84 9.84 40.57 14.75
StAN1-R1 35.27 8.91 42.25 13.57
StAN1-R3 28.06 7.55 47.84 16.55

Fig. 4

Multiple alignment of amino acid sequence of R2R3 MYB in some solanaceae plants and other subfamilyStAN1-R0_PSAK277, StAN1-R1_PSAK277, StAN1-R3_PSAK277: Solanum tuberosum; AAF66727.1: Petunia×hybrida; AAA33482.1: Zea mays; AAG42001.1-AAG42002.1: Arabidopsis thaliana; ABB84753.1: Malus pumila; ABD72956.1: Vitis vinifera; ABO26065.1: Solanum chilense; ABX71488.1: Pyrus pyrifolia; ACI195261.1: Solanum habrochites; ACN79541.1: Medicago truncatula; ACO52470.1: Nicotiana tabacum; ADW94950.1: Petunia×hybrida; AFD31843.1: Solanum tuberosum; AIP93873.1: Solanum melongena; AMK01804.1: Solanum melongena; BAF45114.1: Ipomoes batats; NP_001311547.1: Capsicum annuum; ABX71493.1: Cerasus avium; sp_O23892.1: Oryza sativa."

Fig. 5

Phylogenetic tree analysis of the amino acid sequence of StAN1 genes and some R2R3 MYB transcription factor families in solanaceae and other plants"

Fig. 6

Phenotypic analysis of StAN1 transgenic tobacco a: whole plant of StAN1 transgenic tobacco; b: leaves of StAN1 transgenic tobacco."

Fig. 7

PCR identification of StAN1 transgenic tobaccoM: DNA marker; CK: non-genetically modified tobacco; R0, R1, R3: the transgenic tobacco of StAN1-R0, StAN1-R1, StAN1-R3, respectively."

Fig. 8

Average content of anthocyanin in StAN1 transgenic tobacco and controlDuncan’s multiple comparisons were used to analyze (P < 0.05,n = 3)."

Fig. 9

Gene expression relative to anthocyanin biosynthesis in transgenic tobaccoDuncan’s multiple comparisons were used to analyze (P < 0.05, n = 3)."

[1] Jaakola L . New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci, 2013,18:477-483
徐春明, 庞高阳, 李婷 . 花青素的生理活性研究进展. 中国食品添加剂, 2013, ( 3):205-210
Xu C M, Pang G Y, Li T . Research progress on the physiological activities of anthocyanins. China Food Addit, 2013, ( 3):205-210 (in Chinese with English abstract)
[2] Tanaka Y, Sasaki N, Ohmiya A . Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J, 2008,54:733-749
doi: 10.1111/j.1365-313X.2008.03447.x pmid: 18476875
[3] 张学英, 张上隆, 骆军, 叶正文, 李世诚 . 果实花色素苷合成研究进展. 果树学报, 2004,21:456-460
Zhang X Y, Zhang S L, Luo J, Ye Z W, Li S C . Research progress on anthocyanin synthesis of fruits. J Fruit Sci, 2004,21:456-460 (in Chinese with English abstract)
[4] Chagné D, Wang K L, Espley R V, Volz R K, How N M, Rouse S, Brendolise C, Carlisle C M, Kumar S, De Silva N, Micheletti D, McGhie T, Crowhurst R N, Storey R D, Velasco R, Hellens R P, Gardiner S E, Allan A C . An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol, 2013,161:225-239
doi: 10.1104/pp.112.206771 pmid: 23096157
[5] Deluc L, Bogs J, Walker A R, Ferrier T, Decendit A, Merillon J M, Robinson S P, Barrieu F . The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol, 2008,147:2041-2053
doi: 10.1104/pp.108.118919
[6] Ogata K, Morikawa S, Nakamura H, Hojo H, Yoshimura S, Zhang R, Aimoto S, Ametani Y, Hirata Z, Sarai A, Ishii S, Nishimura Y . Comparison of the free and DNA-complexed forms of the DNA-binding domain from c-Myb. Nat Struct Biol, 1995,2:309-320
doi: 10.1046/j.1365-2923.2001.00865.x pmid: 7796266
[7] Heisler M G, Atkinson A, Bylstra Y H, Walsh R, Smyth D R . SPATULA, a gene that controls development of carpel margin tissues in Aarbidopsis, encodes a bHLH protein. Development, 2001,128:1089-1098
doi: 10.1007/s004290100164 pmid: 11245574
[8] Boutorrent J, Roigvillanova I, Galstyan A, Martínezgarcía J F . PAR1 and PAR2 integrate shade and hormone transcriptional networks. Plant Signal Behav, 2008,3:453-454
doi: 10.4161/psb.3.7.5599 pmid: 19704482
[9] 李永杰, 谢让金, 邓烈 . R2R3MYB转录因子在果树花青素合成中的调控作用. 中国南方果树, 2014,43:1007-1431
Li Y J, Xie R J, Deng L . Regulation of R2R3MYB transcription factor in anthocyanin biosynthesis in fruit trees. South China Fruits, 2014,43:1007-1431 (in Chinese)
[10] 王延谦, 张波, 陈文杰, 刘登才, 刘宝龙, 张怀刚 . 小麦R2R3-MYB转录因子TaMYB3-4D的克隆及功能分析 . 西北植物学报, 2015, 35: 646-652
Wang Y Q, Zhang B, Chen W J, Liu D C, Liu B L, Zhang H G . Cloning and functional analysis of R2R3-MYB transcription factor TaMYB3-4D in wheat. Acta Bot Boreali-Occident Sin, 2015,35:646-652 (in Chinese with English abstract)
[11] 樊锦涛, 蒋琛茜, 邢继红, 董金皋 . 拟南芥R2R3-MYB家族22亚族的结构与功能. 遗传, 2014,36(10):1-10
doi: 10.3724/SP.J.1005.2014.0985
Fan J T, Jiang C Q, Xing J H, Dong J G . Structure and function of Arabidopsis R2R3-MYB family 22 subfamily. Hereditas, 2014,36(10):1-10 (in Chinese with English abstract)
doi: 10.3724/SP.J.1005.2014.0985
[12] 郭晋隆, 李国印, 苏亚春, 王恒波, 阙友雄, 徐景升, 许莉萍 . 甘蔗R2R3-MYB类似基因Sc2RMyb1的克隆及表达特性分析. 农业生物技术学报, 2012,20:1009-1017
doi: 10.3969/j.issn.1674-7968.2012.09.004
Guo J L, Li G Y, Su Y C, Wang H B, Que Y X, Xu J S, Xu L P . Cloning and expression analysis of R2R3-MYB like gene Sc2RMyb1 from sugarcane. Chin J Agric Biotechol, 2012,20:1009-1017 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2012.09.004
[13] Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan A C . Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J, 2007,49:414-427
doi: 10.1111/j.1365-313X.2006.02964.x pmid: 1865000
[14] Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T . Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol, 2007,48:958-970
doi: 10.1093/pcp/pcm066 pmid: 17526919
[15] Takos A M, Jaffe F W, Jacob S R, Bogs J, Robinson S P, Walker A R . Light induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol, 2006,142:1216-1232
doi: 10.1104/pp.106.088104 pmid: 17012405
[16] Ravaglia D, Espley R V, Henry-Kirk R A, Andreotti C, Ziosi V, Hellens R P, Costa G, Allan A C . Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol, 2013,13:68-81
doi: 10.1186/1471-2229-13-68 pmid: 3648406
[17] Bhargava A, Mansfield S D, Hall H C, Douglas C J, Ellis B E . MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiol, 2010,154:1428-1438
doi: 10.1104/pp.110.162735 pmid: 20807862
[18] Böhner S, Gatz C . Characterisation of novel target promoters for the dexamethasone-inducible/tetracycline-repressible regulator TGV using luciferase and isopenteny1 transferase as sensitive reporter genes. Mol Gen Genet, 2001,264:860-870
doi: 10.1007/s004380000376 pmid: 11254134
[19] Zuluaga D L, Gonzali S, Loreti E, Pucciariello C, Deg1’-Innocenti E, Guidi L, Alpi A, Perata P . Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Funct Plant Biol, 2008,35:606-618
doi: 10.1016/j.carres.2003.11.008
[20] Knight H, Trewavas A J, Knight M R . Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J, 1997,12 : 1067-1078
[21] 黄艳岚 . 马铃薯花青素转录激活基因的克隆与序列分析. 华南热带农业大学硕士学位论文, 广东广州, 2006
Huang Y L . Cloning and Sequence Analysis of Potato Anthocyanin Transcriptional Activated Genes. MS Thesis of South China Tropical Agricultural University, Guangzhou, China, 2006 ( in Chinese with English abstract)
[22] D’Amelia V, Aversano R, Batelli G, Caruso I, Castellano Moreno M, Castro-SanzA B, Chiaiese P, Fasano C, Palomba F, Carputo D . High AN1 variability and interaction with basic helix-loop-helix co-factors related to anthocyanin biosynthesis in potato leaves. Plant J, 2014 , 80:527-540
doi: 10.1111/tpj.12653 pmid: 25159050
[23] Hong Y, Tang X J, Huang H, Zhang Y, Dai S L . Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum. BMC Genomics, 2015,16:202
doi: 10.1186/s12864-015-1428-1 pmid: 4404602
[24] 武红霞, 马小卫, 王松标, 许文天, 罗纯, 姚全胜, 詹儒林, 高中山 . 不同生态条件杧果着色及花色苷合成相关基因表达比较. 果树学报, 2016,33:16-23
Wu H X, Ma X W, Wang S B, Xu W T, Luo C, Yao Q S, Zhan R L, Gao Z S . Comparison of gene expression related to anthocyanin coloring and anthocyanin biosynthesis in different ecological conditions. J Fruit Sci, 2016,33:16-23 (in Chinese with English abstract)
[25] 孟富宣, 周军, 辛培尧, 董娇, 徐世宏, 段淋渊 . 苹果花色素苷生物合成及调控的研究现状. 北方园艺, 2015, ( 7):180-187
doi: 10.11937/bfyy.201507050
Meng F X, Zhou J, Xin P Y, Dong J, Xu S H, Duan L Y . Research status of anthocyanin biosynthesis and regulation in apple. North Hortic, 2015, ( 7):180-187 (in Chinese with English abstract)
doi: 10.11937/bfyy.201507050
[26] D’Amelia V, Aversano R, Ruggiero A, Batelli G, Appelhagen I, Dinacci C, Hill L, Martin C, Carputo D . Subfunctionalization of duplicate MYB genes in Solanum commersonii generated the cold-induced ScAN2 and the anthocyanin regulator ScAN1. Plant Cell Environ, 2017. doi: 10.1111/pce.12966
[27] Qin Y Z, Tai G, Xie K Y, He C Z, Xiong X Y . Ambient light aters gene expression pattern of enzymes and transcription factor involved in phenylpropanoid metabolic pathway in potato under chilling stress. Agric Sci Technol, 2014,15:1899-1904
[28] Jung C S, Griffiths H M, De Jong D M, Cheng S, Bodis M, Kim T S, De Jong W S . The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theor Appl Genet, 2009,120:45-57
doi: 10.1007/s00122-009-1158-3
[29] Horsch R B, Fry J E, Hoffmann N L, Eichholtz D, Rogers S G, Fraley R T . A simple and general method for transferring genes into plants. Science, 1985,227:1229-1231
doi: 10.1126/science.227.4691.1229 pmid: 17757866
[30] Livaka K J, Schmittgen T D . Analysis of relative gene expression date using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25:402-408
doi: 10.1006/meth.2001.1262
[31] 邓素芳, 王天池, 赖钟雄 . pH示差法测定野生蕉果皮花青素含量. 中国南方果树, 2014,43(2):5-7
Deng S F, Wang T C, Lai Z X . pH differential method to determine the content of anthocyanin of wild banana. South China Fruits, 2014,43(2):5-7 (in Chinese with English abstract)
[32] 殷丽琴, 韦献雅, 钟成, 章明海, 郭世星, 牛应泽 . 不同品种彩色马铃薯总花色苷含量与总抗氧化活性. 食品科学, 2014,11(5):97
Yin L Q, Wei X Y, Zhong C, Zhang M H, Guo S X, Niu Y Z . Total anthocyanin content and total antioxidant activity of different varieties of color potato. Food Sci, 2014,11(5):97 (in Chinese with English abstract)
[33] Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu D T, Bligny R, Maurel C . Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature, 2003,425:393-397
doi: 10.1038/nature01853 pmid: 14508488
[34] Kulik A, Wawer I, Krzywinska E, Bucholc M, Dobrowolska G . SnRK2 protein Kinases-Key regulators of plant response to abiotic stresses. OMICS, 2011,15:859-873
doi: 10.1089/omi.2011.0091 pmid: 3241737
[35] Kyte J, Doolittle R F . A simple method for displaying the hydropathic character of protein. J Mol Biol, 1982,157:105-132
doi: 10.1016/0022-2836(82)90515-0 pmid: 7108955
[36] 邢文, 金晓玲 . 调控植物类黄酮生物合成的MYB转录因子研究进展. 分子植物育种, 2015,13:689-696
Xing W, Jin X L . Research advances on MYB transcription regulators regulating plant flavanone biosynthesis. Mol Plant Breed, 2015,13:689-696 (in Chinese with English abstract)
[37] 段岩娇, 张鲁刚, 何琼, 张明科, 石姜超 . 紫心大白菜花青素积累特性及相关基因表达分析. 园艺学报, 2012,39:2159-2167
Duan Y J, Zhang L G, He Q, Zhang M K, Shi J C . Analysis of anthocyanin accumulation and related gene expression in chinese cabbage. Acta Hortic Sin, 2012,39:2159-2167 (in Chinese with English abstract)
[38] Hichri I, Heppel S C, Pillet J, Léon C, Czemmel S, Delrot S, Lauvergeat V, Bogs J . The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol Plant, 2010,3:509-523
doi: 10.1093/mp/ssp118 pmid: 20118183
[39] Nesi N, Jond C, Debeaujon I, Lepiniec L . The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell, 2001,13:2099-2114
[1] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[2] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[3] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[4] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[5] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[6] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[7] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[8] TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694.
[9] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[10] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[11] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[12] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[13] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[14] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[15] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
Full text



No Suggested Reading articles found!