Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (7): 1010-1020.doi: 10.3724/SP.J.1006.2018.01010

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Establishment of DNA Molecular Identification for A Sesame (Sesamum indicum L.) Applied Core Collection

Wen-Juan YANG,Yan-Xin ZHANG,Lin-Hai WANG,Xin WEI,Dong-Hua LI,Yuan GAO,Pan LIU,Xiu-Rong ZHANG()   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, Hubei, China
  • Received:2017-04-14 Accepted:2018-03-20 Online:2018-07-10 Published:2018-04-08
  • Contact: Xiu-Rong ZHANG E-mail:zhangxr@oilcrops.cn
  • Supported by:
    This study was supported by the National Infrastructure for Crop Germplasm Resources (NICGR2017-014), the Project of Crop Germplasm Resources Protection (2017NWB033), and the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2013-OCRI).

Abstract:

The establishment and research of sesame applied core collection are significantly effective to facilitate the improvement of breeding techniques and exploration of out-standing genes. A sesame applied core collection, including 131 sesame accessions with 23 application-oriented features such as big seeds, high oil content and high lignan content, was established according to the observation and statistics in four various environments for four years. Based on 32 pairs of SSR primers developed from the sesame genome, we screened out seven pairs of primers, bearing high polymorphism, distinct bands and excellent repetition, using the technique of denatured polyacrylamide gel electrophoresis for detecting SSR The more precise detection technique of capillary electrophoresis with fluorescent SSR markers was utilized simultaneously to analyze the 131 sesame germplasm of applied core collection. Totally 53 polymorphic locations were detected out by using six primer pairs, and the most sensitive primer pair could detect 12 polymorphic locations. Subsequently, the results were shown in the form of numbers combined with English letters. As per the rule that the least primer pairs detect the most sesame germplasm, the combinations of six core primer pairs, namely ZMM1494, ZMM1648, ZMM3037, ZMM2818, ZMM1851, and ZMM1935 effectively distinguishing the 131 sesame germplasm of applied core collection were screened out by ID Analysis 4.0. So that, the simple and easy-applied DNA molecular identifications such as “4A32645(AC017)” were constructed, and the various combinations of primers distinguishing the germplasm within groups were screened out simultaneously. The DNA molecular identifications of character strings, bar code and quick response (QR) codes, easily scanned and recognized by electric gadget, were constructed based on the molecular data of 131 sesame germplasm of applied core collection so as to broaden their application ranges, also provide important technical foundation for the standardization of sesame germplasm and the construction of DNA identification bank of sesame varieties.

Key words: applied core collection of sesame germplasm, SSR, DNA molecular identification

Supplementary Table 1

Information of 32 primer pairs"

SSR引物SSR Primer 连锁群Linkage group SSR重复基元
SSR Repeat Motif
碱基数目Base No. 上游引物序列
Forward Primer
(5°-3°)
下游引物序列
Reverse Primer
(5°-3°)
ZMM0987 LG1 (AT)15 30 CTTTGATTGGGCCACCCTA TGTTTGTTCTTCTTCCCCCA
ZMM2254 LG1 (TA)7ttgtgtctgtatgtatagatagcatgggagggattgcatgaacaatcatgattcttggaagttttgtgtaggtactgttgatgggcttttatgggat(AC)7att(TA)8tgtac(AT)7 163 GCTTCCACCTA
GCTCGGTTAT
CCAGCAATCAT
GTCTGCTTAAT
ZMM2133 LG2 (AT)13gctttgatataaaaatggggggttttaatttgttaattagagtgggaaaaaggagttagtggaaagtcatcagaaattgcacagatgcgta(TAATT)3tgtata(AT)6 150 TTCAATGACTC
AACACCCACA
CCATTTAGAAGAGCAAATCATGC
ZMM2313 LG3 (GAGATG)3gagatagagccatcccatctcaaagtttgttgtacatataatactgagttagtgtaagaaatgagagtgagagtgagatgaaaaaatagt(AGGGG)3agttgaacttcaccatcaagattttaatgggcatcc(ATCA)4 175 TCAAAGTGTAC
CACAAAACGC
TCTTTCTCTCT
CAATCATTTGT
TTATG
ZMM2218 LG3 (TAT)4aagttgaatgtttggtcaactaatgctacttatttagaataacttagcgtaattcatttcattttttactagtaatatatttctactgacaaactac(TTTTA)3 124 GATGGGGAAA
GAGATTGGGT
ATTGAATCGACGTAATTTATCCTT
ZMM1832 LG4 (AT)13 26 ACGATGAGGGCATATTCGAT CCAATTGTATGGTAATGGGCA
ZMM1935 LG4 (TA)13 26 TGGTACACAATTTGGTGCTTG GAAGGGGGTCAGGTTTAAATA
ZMM2818 LG5 (TTA)4tttaatatagtataatttttatgaaaaaatcatttaaaaaattggacctc(AT)15 92 CGTGTGCCCAATATTTGAGTT TCAACCTCCTCCCTACACAA
ZMM2295 LG6 (TAAT)3aattaaattta(TAAT)3aattaaattta(TAAT)3 58 CATAGCCGTTCGAATCCTGT AAATTCATGATCCAGGGCAA
ZMM2202 LG6 (ATG)4aactctttgattttccattttgattgattagtcttcaatgtatgatcaaatttcagaagctgtattgattcatttccgggcagtggaagagttgcat(TCA)4 121 TCAGGAAGAA
AGAATTGCTGC
CAACCCAACC
ATCCTGACTC
ZMM1762 LG6 (TA)11gacacacacacgagtagagat(AG)13 69 TGCAAGGACAACCAAAATCA TGCACTGCATTGTCTCCTTT
ZMM4045 LG7 (AT)8 16 TGTTTGCTCATTCGATTCCTT AAAACAACATGGTTTGGCATC
ZMM1851 LG7 (AT)16 32 TGACTCTTTCGATTTGGGCT CGAAAAATACGGGCGTTACT
ZMM2543 LG8 (AT)7 14 TTGAGAGGGGCGAAAAACTA GCACAATCATCGAAAAACCA
ZMM1494 LG8 (TA)17 34 TTTATCAGATACAATGCGGGA GCCACTACTGGACAGCATGA
ZMM4097 LG8 (TTAA)3 12 CTGGGTTCATT GGACCAAATTAATCTTTTTCCCT
ZMM2321 LG9 (TA)8(GA)7 30 CAACACCACCAACGCATATC AGCAACGATTCACGACATTG
ZMM1648 LG9 (GA)19 38 TCCTGAATTCAAACGCATTG TCCTAAACCCTCTGCACCAC
ZMM2524 LG9 (CT)12gggtgtggctcatttctctaataccctttattttatgccaaaaccccaaccccagatccagccttttctgtatccatcc(CT)12 127 TCACTCCTATGCCAAAACCC CCTTGAAGAAGCAGTGCAGC
ZMM2494 LG9 (GA)8 16 GTCCGTCAACTCGATCACCT TTCAACCAAACCCCATCATT
ZMM3037 LG10 (AT)11(CAC)4cgaggccgtcgtctgcttcttggtagggtgg(AGC)5 80 ACACATACGGACAGGCACAG ATATAGCCAGTTTGGCTGCG
ZMM1550 LG10 (CA)7(TA)9 32 GGTAAAATGGGTGTCCGTCA CCCTAGCCGATGGGTTTAAT
ZMM0689 LG11 (AT)9 18 CGCTTGAATTAATTGCATCTACC CCAAGTGAACATAGAAATCTGCC
ZMM1816 LG11 (AT)8(AG)10 36 CCAGCTCTATTGTGCGTTGA CACTGCTTTCTCTGAAAGGCT
ZMM2283 LG12 (TTA)6agtagattataacaacctcttgtaatagataatataattataaaatataaaattagtttgactattaatatgaacacgcatatgagtacctttattgtc(T)18 135 CGCCTTTCTCC
TCCTTATCC
CATTCAGTCTTACGTCCAAATTTCT
ZMM2285 LG12 (TA)8tttataaaa(AG)6 37 ACTGCACCCTCTGCATTTTT GCACGTGTGGGGTACCTTTA
ZMM0334 LG12 (AT)14 28 AATTGGACTCCGGCTAGGAT CGCCCTCATCCTTACAATCT
ZMM0715 LG12 (AT)12 24 CCCCTCTCAAATAAGCCCTC AGGAAGGAGGGTGTCCCTAA
ZMM0294 LG13 (TCA)5(CCA)4 27 GGCCAACCCTTTTCAGATTT GGGCTTCACAACACAAGACA
ZMM0425 LG13 (AT)15 30 CAAGTCGCCATCACACTCAT TCGAGTTGGAATGCAACAAA
ZMM1303 LG13 (AT)11 22 TCCCAATCAGTTAGGTCGAG TTAAGCTTAGGGGTCGGGTT
ZMM2345 LG13 (TA)10 20 CAACATTCTGATTTGGGGAAA GCTCCAAACCCACTCTGGTA

Supplementary Table 2

Applied core collection of sesame"

育种目标
Breeding goal
编号
Code
种质名称
Germplasm name
产地或来源
Origin
特性
Property
高产
High yield
AC001 芝麻
Zhima
中国陕西洛川
Luochuan, Shaanxi, China
大粒
Big-sized seed
AC002 霸王鞭
Bawangbian
中国内蒙古敖汉旗
Aohan banner, Inner Mongolia, China
大粒
Big-sized seed
AC003 角盘芝麻
Jiaopanzhima
中国山西孝义
Xiaoyi, Shanxi, China
大粒
Big-sized seed
AC004 一把鞭
Yibabian
中国河南获嘉
Huojia, Henan, China
大粒
Big-sized seed
AC005 八筒芝麻
Batongzhima
中国河北任邱
Renqiu, Hebei, China
大粒
Big-sized seed
AC006 芝麻
Zhima
中国辽宁北镇
Beizhen, Liaoning, China
大粒
Big-sized seed
AC007 灯明寺芝麻
Dengmingsizhima
中国河北东光
Dongguang, Hebei, China
大粒
Big-sized seed
AC008 小八杈
Xiaobacha
中国河北故城
Gucheng, Hebei, China
大粒
Big-sized seed
AC009 芝麻
Zhima
中国河北巨鹿
Julu, Hebei, China
大粒
Big-sized seed
AC010 白芝麻
Baizhima
中国河南济源
Jiyuan, Henan, China
大粒
Big-sized seed
AC011 叶二三
Ye’ersan
中国河南平舆
Pingyu, Henan, China
大粒
Big-sized seed
AC012 芝麻
Zhima
中国四川雷波
Leibo, Sichuan, China
大粒
Big-sized seed
AC013 VIR80 乌兹别克斯坦
Uzbekistan
大粒
Big-sized seed
AC014 广产
Gungcan
韩国
Republic of Korea
大粒
Big-sized seed
AC015 U.C.R/82No.16NS 美国
United States
密蒴
Short internode with more capsules
AC016 犀牛角
Xiniujiao
中国湖北谷城
Gucheng, Hubei, China
长蒴
Long capsule
优质
High quality
AC017 莘东褐芝麻
Shendonghezhima
中国上海市上海县
Shanghaixian, Shanghai, China
高木酚素
High lignan content
AC018 烈桥黑芝麻
Lieqiaoheizhima
中国江西弋阳
Yiyang, Jiangxi, China
高木酚素
High lignan content
AC019 S.J 墨西哥
Mexico
高木酚素
High lignan content
AC020 芝麻
Zhima
中国贵州桐梓
Tongzi, Guizhou, China
高油
High oil content
AC021 芝麻
Zhima
中国云南楚雄
Chuxiong, Yunnan, China
高油
High oil content
AC022 EC-351868 印度
India
高油
High oil content
AC023 L-185 埃及
Egypt
高油
High oil content
AC024 K2 几内亚
Guinea
高油
High oil content
AC025 VIR741 乌兹别克斯坦
Uzbekistan
高油
High oil content
AC026 L161 埃及
Egypt
高油
High oil content
AC027 白芝麻
Baizhima
中国湖北竹山
Zhushan, Hubei, China
高油
High oil content
AC028 中芝12
Zhongzhi 12
中国湖北武昌
Wuchang, Hubei, China
高油
High oil content
AC029 辽品芝2号
Liaopinzhi 2
中国辽宁辽阳
Liaoyang, Liaoning, China
高油
High oil content
AC030 靖芝1号
Jinzhi 1
中国江西靖安
Jingan, Jiangxi, China
高油
High oil content
AC031 辽芝2号
Liaozhi 2
中国辽宁阜新
Fuxin, Liaoning, China
高油
High oil content
AC032 中芝20
Zhongzhi 20
中国湖北武昌
Wuchang, Hubei, China
高油
High oil content
AC033 白芝麻
Baizhima
中国湖北襄阳
Xiangyang, Hubei, China
高油酸
High acid content
AC034 绿茎芝麻
Lyujingzhima
中国黑龙江伊春
Yichun, Heilongjiang, China
高油酸
High acid content
AC035 白芝麻
Baizhima
中国黑龙江依兰
Yilan, Heilongjiang, China
高油酸
High acid content
AC036 白芝麻
Baizhima
中国贵州晴隆
Qinglong, Guizhou, China
高油酸
High acid content
AC037 435(40) 日本
Japan
高油酸
High acid content
AC038 360(36) 日本
Japan
高油酸
High acid content
AC039 TKV-726(16) 日本
Japan
高油酸
High acid content
AC040 725(39) 日本
Japan
高油酸
High acid content
AC041 No. 763 意大利
Italy
高油酸
High acid content
AC042 白芝麻
Baizhima
中国陕西宝鸡
Baoji, Shaanxi, China
高芝麻素
High sesamin
AC043 四方芝麻
Sifangzhima
中国湖北通城
Tongcheng, Hubei, China
高芝麻素
High sesamin
AC044 芝麻
Zhima
中国云南
Yunnan, China
高芝麻素
High sesamin
AC045 激光2号
Jiguang 2
中国海南海秀油料站
Haixiu, Hainan, China
高芝麻素
High sesamin
AC046 竹畈芝麻
Zhufanzhima
中国安徽金寨
Jinzhai, Anhui, China
高芝麻素
High sesamin
AC047 多枝麻
Duozhima
中国重庆云阳
Yunyang, Chongqing, China
高芝麻素
High sesamin
AC048 黑芝麻
Heizhima
中国安徽肥东
Feidong, Anhui, China
高芝麻素
High sesamin
AC049 芝麻
Zhima
中国西藏墨脱
Motuo, Tibet, China
高芝麻素
High sesamin
AC050 双湖芝麻
Shuanghuzhima
中国湖南慈利
Cili, Hunan, China
高芝麻素
High sesamin
AC051 鄂芝6号
E’zhi 6
中国湖北襄阳
Xiangyang, Hubei, China
高芝麻素
High sesamin
AC052 中丰芝1号
Zhongfengzhi 1
中国湖北武昌
Wuchang, Hubei, China
高芝麻素
High sesamin
AC053 Sinyadanar 缅甸
Myanmar
高芝麻素
High sesamin
AC054 白芝麻
BaiZhima
中国海南琼中
Qiongzhong, Hainan, China
高芝麻素
High sesamin
抗病抗逆Stress and disease resistant AC055 芝麻
Zhima
中国北京大兴
Daxing, Beijing, China
抗病
Disease resistant
AC056 和尚帽
Heshangmao
中国山东金乡
Jinxiang, Shandong, China
抗病
Disease resistant
AC057 河南1号
Henan 1
中国河南郑州
Zhengzhou, Henan, China
抗病
Disease resistant
AC058 芝麻
Zhima
中国云南
Yunnan, China
抗病
Disease resistant
AC059 半汤芝麻
Bantangzhima
中国安徽巢县
Chaoxian, Anhui, China
抗病
Disease resistant
AC060 黄芝麻
Huangzhima
中国安徽南陵
Nanling, Anhui, China
抗病
Disease resistant
AC061 341(34) 日本
Japan
抗病
Disease resistant
AC062 10-2160 中国湖北武昌
Wuchang, Hubei, China
抗病
Disease resistant
AC063 11-PS56① 中国湖北武昌
Wuchang, Hubei, China
抗病
Disease resistant
AC064 中芝2771
Zhongzhi 2771
中国湖北武昌
Wuchang, Hubei, China
抗病
Disease resistant
AC065 长果黄
Changguohuang
中国重庆巫山
Wushan, Chongqing, China
抗倒
Lodging resistance
AC066 芝麻
Zhima
中国江西德兴
Dexing, Jiangxi, China
抗倒
Lodging resistance
AC067 白芝麻
Baizhima
中国广东澄海
Chenghai, Guangdong, China
抗倒
Lodging resistance
AC068 霸王鞭
Bawangbian
中国江苏盱眙
Xuyi, Jiangsu, China
抗倒
Lodging resistance
AC069 背三歇
Beisanxie
湖北宜昌
Wuchang, Hubei, China
抗倒
Lodging resistance
AC070 麻芝麻
Mazhima
中国四川宣汉
Xuanhan, Sichuan, China
抗倒
Lodging resistance
AC071 鄂芝5号
E’zhi 5
中国湖北襄阳
Xiangyang, Hubei, China
抗倒
Lodging resistance
AC072 98N09 中国河南郑州
Zhengzhou, Henan, China
抗倒
Lodging resistance
AC073 M20B1 越南
Vietnam
抗倒
Lodging resistance
AC074 中芝23
Zhongzhi 23
中国
China
抗倒
Lodging resistance
AC075 Suke No.5(2) 莫桑比克
Mozambique
抗倒
Lodging resistance
AC076 中芝17
Zhongzhi 17
中国湖北武昌
Wuchang, Hubei, China
抗倒
Lodging resistance
AC077 豫芝11
Yuzhi 11
中国河南郑州
Zhengzhou, Henan, China
抗倒
Lodging resistance
AC078 郑芝12
Zhengzhi 12
中国河南郑州
Zhengzhou, Henan, China
抗倒
Lodging resistance
AC079 驻芝14
Zhuzhi 14
中国河南驻马店
Zhumadian, Henan, China
抗倒
Lodging resistance
AC080 白芝麻
Baizhima
中国山东曹县
Caoxian, Shandong, China
抗旱
Drought resistant
AC081 八股杈
Bagucha
中国山东东明
Dongming, Shandong, China
抗旱
Drought resistant
AC082 白芝麻
Baizhima
中国新疆额敏
Emin, Xinjiang, China
抗旱
Drought resistant
AC083 白芝麻
Baizhima
中国广东博罗
Boluo, Guangdong, China
抗旱
Drought resistant
AC084 西关芝麻
Xiguanzhima
中国山西汾阳
Fenyang, Shanxi, China
抗旱
Drought resistant
AC085 九股钢杈
Jiugugangcha
中国安徽凤阳
Fengyang, Anhui, China
抗旱
Drought resistant
AC086 芦田黑芝麻
Lutianheizhima
中国江西波阳
Boyang, Jiangxi, China
抗旱
Drought resistant
AC087 一条鞭
Yitiaobian
中国山东临沂
Linyi, Shandong, China
抗旱
Drought resistant
AC088 白芝麻
Baizhima
中国广东定安
Dingan, Guangdong, China
抗旱
Drought resistant
AC089 黑芝麻
Heizhima
中国湖南平江
Pingjiang, Hunan, China
抗旱
Drought resistant
AC090 VIR214 土耳其
Turkey
抗旱
Drought resistant
AC091 Potepye 缅甸
Myanmar
抗旱
Drought resistant
AC092 豫芝1号
Yuzhi 1
中国河南郑州
Zhengzhou, Henan, China
抗旱
Drought resistant
AC093 汾芝2号
Fenzhi 2
中国山西汾阳
Fenyang, Shanxi, China
抗旱
Drought resistant
AC094 毛腿糙
Maotuicao
中国河南通许
Tongxu, Henan, China
抗旱
Drought resistant
AC095 晋芝2号
Jinzhi 2
中国山西汾阳
Fenyang, Shanxi, China
抗旱
Drought resistant
AC096 芝麻
Zhima
中国贵州遵义
Zunyi, Guizhou
耐湿
Waterlogging tolerant
AC097 芝麻
Zhima
中国陕西华阴
Huayin, Shaanxi, China
耐湿
Waterlogging tolerant
AC098 六梭芝麻
Liusuozhima
中国浙江松阳
Songyang, Zhejiang, China
耐湿
Waterlogging tolerant
AC099 雒荣串麻
Luorongchuanma
中国广西鹿寨
Luzhai, Guangxi, China
耐湿
Waterlogging tolerant
AC100 鄂芝1号
E’zhi 1
中国湖北襄阳
Xiangyang, Hubei, China
耐湿
Waterlogging tolerant
AC101 中芝11
Zhongzhi 11
湖北武昌
Wuchang, Hubei, China
耐湿
Waterlogging tolerant
AC102 U.C.R/82No.209shat 美国
United States
耐湿
Waterlogging tolerant
AC103 91-2191 以色列
Israel
耐湿
Waterlogging tolerant
AC104 393-3Bo 泰国
Thailand
耐湿
Waterlogging tolerant
AC105 Calinda 美国
United States
耐湿
Waterlogging tolerant
AC106 航芝2号
Hangzhi 2
中国湖北武昌
Wuchang, Hubei, China
耐湿
Waterlogging tolerant
AC107 中芝18
Zhongzhi 18
中国湖北武昌
Wuchang, Hubei, China
耐湿
Waterlogging tolerant
生育期适宜Suitable growth period AC108 11-1659 中国湖北武昌
Wuchang, Hubei, China
早熟
Early maturity
适应机械化Mechanization adaptive AC109 TKV-365(18) 日本
Japan
微裂蒴
Partially capsule dehiscence
AC110 芝麻
Zhima
中国陕西洛川
Luochuan, Shaanxi, China
微裂蒴
Partially capsule dehiscence
AC111 379(6) 日本
Japan
微裂蒴
Partially capsule dehiscence
AC112 VDM21 越南
Vietnam
微裂蒴
Partially capsule dehiscence
AC113 Suke No 5(1) 莫桑比克
Mozambique
有限型
Determinate growth habit
AC114 有限型No.3
Youxianxing 3
美国
United States
有限型
Determinate growth habit
AC115 水原117
Suwon 117
韩国
Republic of Korea
有限型
Determinate growth habit
AC116 7889 中国湖北武昌
Wuchang, Hubei, China
有限型
Determinate growth habit
AC117 芝麻
Zhima
中国山东加样
Jiayang, Shandong, China
矮杆
Dwarf
AC118 密蒴芝麻
Mishuozhima
中国浙江东阳
Dongyang, Zhejiang, China
矮杆
Dwarf
AC119 芝麻
Zhima
中国浙江东阳
Dongyang, Zhejiang, China
矮杆
Dwarf
AC120 芝麻
Zhima
中国湖北武昌
Wuchang, Hubei, China
矮杆
Dwarf
AC121 蜂窝油麻
Fengwoyouma
中国浙江东阳
Dongyang, Zhejiang, China
矮杆
Dwarf
株型特异
Specifics of plant morphology
AC122 芝麻
Zhima
中国山西
Shanxi, China
小叶
Small leaves
AC123 油芝麻
Youzhima
中国安徽肥西
Feixi, Anhui, China
小叶角
Small leaf angles
AC124 一把白
Yibabai
中国湖北襄阳
Xiangyang, Hubei, China
易再生
Regenerate easily
AC125 芝麻(8131)
Zhima (8131)
中国江西上饶
Shangrao, Jiangxi, China
紧凑型
Compact type
AC126 庙前芝麻
Miaoqianzhima
中国安徽青阳
Qingyang, Anhui, China
紧凑型
Compact type
综合性状优良Excellent properties overall AC127 宜阳白
Yiyangbai
中国河南宜阳
Yiyang, Henan, China
耐湿广适应性
Waterlogging tolerant, wide adaptability
AC128 紫花叶二三
Zihuayeersan
中国河南上蔡
Shangcai, Henan, China
抗病抗逆优质
Stress and disease resistant, high quality
AC129 中芝13
Zhongzhi 13
中国湖北武昌
Wuchang, Hubei, China
高产抗病抗逆高油
High yield, stress and disease resistant, high oil content
AC130 中芝16
Zhongzhi 16
中国湖北武昌
Wuchang, Hubei, China
高产抗病抗逆高油
High yield, stress and disease resistant, high oil content
AC131 豫芝4号
Yuzhi 4
中国河南驻马店
Zhumadian, Henan, China
耐湿抗病抗逆广适应性
Waterlogging tolerant, stress and disease resistant, wide adaptability

Fig. 1

Features for seven pairs of primers detected by PAGEa: ZMM1494; b: ZMM1851; c: ZMM1935; d: ZMM3037; e: ZMM1648; f: ZMM2818; g: ZMM2254."

Table 1

information for seven core pairs of SSR primes and their characteristic values of polymorphism"

Fig. 2

Features of primer ZMM1494 detected with capillary electrophoresis"

Table 2

Amplication results for seven pairs of core primers detected with capillary electrophoresis technique"

引物名称
Primer name
荧光基团Modify group 毛细管电泳多态性位点
Observed number of alleles (na)
毛细管电泳多态性片段及编码
Code of capillary electrophoresis polymorphism fragments (bp)
ZMM1494
FAM (blue)
12
234 (1), 230 (2), 225 (3), 223 (4), 221 (5), 219 (6), 217 (7), 215 (8), 213 (9), 211 (A), 209 (B), 206 (C)
ZMM1648 FAM (blue) 8 158 (1),156 (2),154 (3),152 (4),150 (5),148 (6),143 (7),139 (8)
ZMM3037 FAM (blue) 8 267 (1), 265 (2), 263 (3), 261 (4), 260 (5), 259 (6), 257 (7), 250 (8)
ZMM1851 FAM (blue) 7 284 (1), 280 (2), 278 (3), 276 (4), 274 (5), 272 (6), 268 (7)
ZMM2818 FAM (blue) 7 278 (1), 276 (2), 274 (3), 272 (4), 268 (5), 264 (6), 260 (7)
ZMM1935 FAM (blue) 6 282 (1), 280 (2), 278 (3), 276 (4), 274 (5), 272(6)
ZMM2254 FAM (blue) 5 282 (1), 280 (2), 278 (3), 276 (4), 274 (5)

Fig. 3

Bar code and quick response (QR) code of the applied core collection germplasma: bar code DNA molecular identification of AC001; b: bar code DNA molecular identification of AC002; c: quick response (QR) code DNA molecular identification of AC002; d: quick response (QR) code DNA molecular identification of AC002."

Table 3

Combinations of primers utilized in each sesame group"

组号
Group No.
特性
Properties
核心引物组合
Core primer combinations
001 大粒 Big-sized seed ZMM1494+ZMM1851
002 高木酚素 High lignan content ZMM1494
003 高油 High oil content ZMM1494+ZMM1851+ZMM3037
004 高油酸 High acid content ZMM1494+ZMM1935+ZMM2818+ZMM1851
005 高芝麻素 High sesamin ZMM1494+ZMM3037+ZMM1935
006 抗病 Disease resistance ZMM1494+ZMM2818
007 抗倒 Lodging resistance ZMM1494+ZMM1851+ZMM3037+ZMM2818+ZMM1648
008 抗旱 Drought resistance ZMM1494+ZMM1935+ZMM2818
010 耐湿 Waterlogging tolerant ZMM1494+ZMM1935
011 微裂蒴 Partially capsule dehiscence ZMM1494+ZMM1851
015 有限型 Determinate growth habit ZMM1494+ZMM1935
018 矮秆 Dwarf ZMM1494
019 紧凑型 Compact type ZMM2818
022
高产抗病抗逆高油
High yield, stress and disease resistance, high oil content
ZMM1494
[1] 陈翠云, 冯祥运, 陈和兴, 石淑稳 . 芝麻品种资源的研究与展望. 中国油料作物学报, 1982, ( 1):29-32
Chen C Y, Feng X Y, Chen H X, Shi S W . Research and prospect of sesame variety resources. Chin J Oil Crop Sci, 1982, ( 1):29-32 (in Chinese)
[2] Sesame Germplasm Resources, Oil Crops Research Institute, the Chinese Academy of Agricultural Sciences. Information database of sesame germplasm resources. 2017[2018-01-08].
[3] 中国农业科学院油料作物研究所. 中国芝麻品种资源目录, 续编二. 北京: 中国农业科技出版社, 1997. p 1
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences. Chinese Sesame Variety Resources Catalog Sequel 2. Beijing: China Agricultural Science and Technology Press, 1997. p 1 (in Chinese)
[4] 张艳欣, 王林海, 黎冬华, 危文亮, 高媛, 张秀荣 . 芝麻茎点枯病抗性关联分析及抗病载体材料挖掘. 中国农业科学, 2012,45:2580-2591
doi: 10.3864/j.issn.0578-1752.2012.13.003
Zhang Y X, Wang L H, Li D H, Wei W L, Gao Y, Zhang X R . Association mapping of sesame (Sesamum indicum L.) resistance to Macrophomina phaseolina and identification of resistant accessions. Sci Agric Sin, 2012,45:2580-2591 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2012.13.003
[5] 张艳欣, 王林海, 黎冬华, 高媛, 吕海霞, 张秀荣 . 芝麻耐湿性QTL定位及优异耐湿基因资源挖掘. 中国农业科学, 2013,47:422-430
Zhang Y X, Wang L H, Li D H, Gao Y, Lyu H X, Zhang X R . Mapping of sesame waterlogging tolerance QTL and identification of excellent waterlogging tolerant germplasm. Sci Agric Sin, 2013,47:422-430 (in Chinese with English abstract)
[6] Frankel O H. Genetic perspectives of germplasm conservation. In: Arber W, Llimensee K, Pecock W J, Starlinger P, eds. Genetic Manipulation: Impact on Man and Society. UK: Cambridge University Press, 1984. pp 161-170
[7] 李长涛, 石春海, 吴建国, 徐海明, 张海珍, 任玉玲, 费万辛 . 利用基因型值构建水稻核心种质的方法研究. 中国水稻科学, 2004,18:218-222
doi: 10.3321/j.issn:1001-7216.2004.03.007
Li C T, Shi C H, Wu J G, Xu H M, Zhang H Z, Ren Y L, Fei W X . Methods of constructing core collections for rice germplasm by using the genotypic value. Chin J Rice Sci, 2004,18:218-222 (in Chinese with English abstract)
doi: 10.3321/j.issn:1001-7216.2004.03.007
[8] Balfourier F, Roussel V, Strelchenko P P, Exbrayatvinson F, Spurdille P, Boutet G, Koening J L, Ravel C, Mitrofanova O P, Beckert M, Charmet G . A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet, 2007,114:1265-1275
doi: 10.1007/s00122-007-0517-1 pmid: 17318494
[9] Upadhyaya H D, Pundir R P, Dwivedi S L, Gowda C L L, Reddy V G, Singh S . Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci, 2009,49:1769-1780
doi: 10.2135/cropsci2009.01.0014
[10] 张微, 李斯更, 沈镝, 李锡香 . 黄瓜多样性固定核心样本集的构建与评价. 植物遗传资源学报, 2016,17:404-415
doi: 10.13430/j.cnki.jpgr.2016.03.002
Zhang W, Li S G, Shen D, Li X X . Establishment and analyses of genetic diversity dixed core collection of cucumber (Cucumis sativus L.). J Plant Genet Resour, 2016,17:404-415 (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2016.03.002
[11] 刘娟, 廖康, 曼苏尔·那斯尔, 曹倩, 江振斌, 贾杨 . 利用ISSR分子标记构建南疆杏种质资源核心种质. 果树学报, 2015,32:374-384
Liu J, Liao K, Mansur N, Cao Q, Jiang Z B, Jia Y . Core-germplasm construction of apricot collections in South of Xinjiang by ISSR molecular markers. J Fruit Sci, 2015,32:374-384 (in Chinese with English abstract)
[12] Zhang X, Zhao Y, Cheng Y, Feng X Y, Guo Q Y, Zhou M D, Hodgkin T . Establishment of sesame germplasm core collection in China. Genet Resour Crop Evol, 2000,47:273-279
doi: 10.1023/A:1008767307675
[13] Hodgkin T, Guo Q Y, Zhang X R, Zhao Y Z, Feng X Y, Gautam P L, Mahajan R K, Bisht I S, Loknathan T R, Mathur P N, Zhou M D, Johnson R C. Developing sesame core collections in China and India. In: Johnson R C.; Hodgkin T, eds. Core Collections for Today & Tomorrow. Italy: International Plant Genetic Resources Institute, 1999. pp 74-81
[14] Kang C W, Kim S Y, Lee S W, Mathur P N, Hodgkin T, Zhou M D, Lee J R . Selection of a core collection of Korean sesame germplasm by a stepwise clustering method. Breed Sci, 2006,56:85-91
doi: 10.1270/jsbbs.56.85
[15] 王丽侠, 程须珍, 王素华, 罗高玲, 刘振兴, 蔡庆生 . 我国小豆应用核心种质的生态适应性及评价利用. 植物遗传资源学报, 2013,14:794-799
Wang L X, Cheng X Z, Wang S H, Luo G L, Liu Z X, Cai Q S . Adaptability and variation of applied core collection of Adzuki bean (Vigna angularis) in China. J Plant Genet Resour, 2013,14:794-799 (in Chinese with English abstract)
[16] 赵静, 付家兵, 廖红, 何勇, 年海, 胡月明, 邱丽娟, 董英山, 严小龙 . 大豆磷效率应用核心种质的根构型性状评价. 科学通报, 2004,49:1249-1257
Zhao J, Fu J B, Liao H, He Y, Nian H, Hu Y M, Qiu L J, Dong Y S, Yan X L . Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chin Sci Bull, 2004,49:1249-1257 (in Chinese)
[17] 陈雨, 潘大建, 杨庆文, 刘斌, 范芝兰, 陈建西, 李晨 . 广东高州野生稻应用核心种质取样策略. 作物学报, 2009,35:459-466
doi: 10.3724/SP.J.1006.2009.00459
Chen Y, Pan D J, Yang Q W, Liu B, Fan Z L, Chen J X L C . Sampling strategy for an applied core collection of Gaozhou wild rice (Oryza rufipogon Griff.) in Guangdong, China. Acta Agron Sin, 2009,35:459-466 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00459
[18] Condit R, Hubbell S P . Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome, 1991,34:66-71
doi: 10.1139/g91-011 pmid: 1827419
[19] Morgante M, Olivieri A M . PCR-amplified microsatellites as markers in plant genetics. Plant J, 1993,3:175-182
doi: 10.1046/j.1365-313X.1993.t01-9-00999.x pmid: 8401603
[20] 王凤格, 赵久然, 戴景瑞, 郭景伦, 原亚萍, 王璐, 易红梅, 孙世贤, 吕波 . 玉米品种DNA指纹数据库构建的标准化规范. 分子植物育种, 2007,5:128-132
doi: 10.3969/j.issn.1672-416X.2007.01.023
Wang F G, Zhao J R, Dai J R, Guo J L, Yuan Y P, Wang L, Yi H M, Sun S X, Lyu B . Criteria for the construction of maize DNA fingerprint database. Mol Plant Breed, 2007,5:128-132 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-416X.2007.01.023
[21] 马红勃, 许旭明, 韦新宇, 杨旺兴, 邹文广 . 基于SSR标记的福建省若干水稻品种DNA指纹图谱构建及遗传多样性分析. 福建农业学报, 2010,25(1):33-38
Ma H B, Xu X M, Wei X Y, Yang W X, Zou W G . DNA fingerprints and genetic diversity analysis based on SSR markers for rice cultivars in Fujian. Fujian J Agric Sci, 2010,25(1):33-38 (in Chinese with English abstract)
[22] 匡猛, 杨伟华, 许红霞, 王延琴, 周大云, 冯新爱 . 中国棉花主栽品种DNA指纹图谱构建及SSR标记遗传多样性分析. 中国农业科学, 2011,44:20-27
Kuang M, Yang W H, Xu H X, Wang Y Q, Zhou D Y, Feng X A . Construction of DNA fingerprinting and analysis of genetic diversity with SSR markers for cotton major cultivars in China. Sci Agric Sin, 2011,44:20-27 (in Chinese with English abstract)
[23] 段艳凤, 刘杰, 卞春松, 段绍光, 徐建飞, 金黎平 . 中国88个马铃薯审定品种SSR指纹图谱构建与遗传多样性分析. 作物学报, 2009,35:1451-1457
Duan Y F, Liu J, Bian C S, Duan S G, Xu J F, Jin L P . Construction of fingerprinting and analysis of genetic diversity with SSR markers for eighty-eight approved potato cultivars (Solanum tuberosum L.) in China. Acta Agron Sin, 2009,35:1451-1457 (in Chinese with English abstract)
[24] 高运来, 朱荣胜, 刘春燕, 李文福, 蒋洪蔚, 李灿东, 姚丙晨, 胡国华, 陈庆山 . 黑龙江部分大豆品种分子ID的构建. 作物学报, 2009,35:211-218
doi: 10.3724/SP.J.1006.2009.00211
Gao Y L, Zhu R S, Liu C Y, Li W F, Jiang H W, Li C D, Yao B C, Hu G H, Chen Q S . Establishment of molecular ID in soybean varieties in Heilongjiang, China. Acta Agron Sin, 2009,35:211-218 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00211
[25] 龙卫华, 高建芹, 浦惠明, 戚存扣, 张洁夫, 陈松 . 油菜新品种宁杂15号分子指纹图谱的构建. 江苏农业学报, 2009,25:1238-1242
Long W H, Gao J Q, Pu H M, Qi C K, Zhang J F, Chen S . Molecular fingerprints construction of the new rapeseed variety Ningza No.15. Jiangsu J Agric Sci, 2009,25:1238-1242 (in Chinese with English abstract)
[26] 谢潮添, 陈昌生, 纪德华, 赵国瑞, 徐燕, 史修周 . 坛紫菜种质材料DNA指纹图谱的构建. 水产学报, 2010,34:733-740
doi: 10.3724/SP.J.1231.2010.06778
Xie C T, Chen C S, Ji D H, Zhao G R, Xu Y, Shi X Z . Molecular fingerprints construction of the Altar. J Fish Chin, 2010,34:733-740 (in Chinese with English abstract)
doi: 10.3724/SP.J.1231.2010.06778
[27] 石景, 宋波涛, 金开建, 柳俊 . SSR标记的彩色马铃薯遗传多样性分析及指纹图谱构建. 农业生物技术学报, 2012,20:362-371
doi: 10.3969/j.issn.1674-7968.2012.04.004
Shi J, Song B T, Jin K J, Liu J . Genetic diversity and fingerprinting of 50 pigmented potato (Solanum tuberosum L.) genetypes with SSR markers. J Agric Biotech, 2012,20:362-371 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2012.04.004
[28] 潘兆娥, 王希文, 孙君灵, 周忠丽, 贾银华, 何守朴, 王杰, 王立如, 庞保印, 杜雄明 . 中棉所48的SSR数字指纹图谱的构建. 中国农学通报, 2010,26(7):31-35
Pan Z E, Wang X W, Sun J L, Zhou Z L, Jia Y H, He S P, Wang J, Wang L R, Pang B Y, Du X M . Construction of digital fingerprint of Zhongmiansuo 48. Chin Agric Sci Bull, 2010,26(7):31-35 (in Chinese with English abstract)
[29] 邱杨, 李锡香, 李清霞, 陈亦辰, 沈镝, 王海平, 宋江萍 . 利用SSR标记构建萝卜种质资源分子身份证. 植物遗传资源学报, 2014,15:648-654
doi: 10.13430/j.cnki.jpgr.2014.03.029
Qiu Y, Li X X, Li Q X, Chen Y C, Shen D, Wang H P, Song J P . Establishment of the molecular for radish germplasm using SSR markers. J Plant Genet Resour, 2014,15:648-654 (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2014.03.029
[30] 陆徐忠, 倪金龙, 李莉, 汪秀峰, 马卉, 张小娟, 杨剑波 . 利用SSR分子指纹和商品信息构建水稻品种身份证. 作物学报, 2014,40:823-829
doi: 10.3724/SP.J.1006.2014.00823
Lu X Z, Ni J L, Li L, Wang X F, Ma H, Zhang X J, Yang J B . Construction of ricevariety indentity using SSR fingerprint and commodity information. Acta Agron Sin, 2014,40:823-829 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00823
[31] 高源, 刘凤之, 王昆, 王大江, 龚欣, 刘立军 . 苹果部分种质资源分子身份证的构建. 中国农业科学, 2015,48:3887-3898
doi: 10.3864/j.issn.0578-1752.2015.19.011
Gao Y, Liu F Z, Wang K, Wang D J, Gong X, Liu L J . Establishment of molecular ID for some apple germplasm resources. Sci Agric Sin, 2015,48:3887-3898 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2015.19.011
[32] 王凤格, 杨扬, 易红梅, 赵久然, 任洁, 王璐, 葛建镕, 江彬, 张宪晨, 田红丽, 侯振华 . 中国玉米审定品种标准SSR指纹库的构建. 中国农业科学, 2017,50:1-14
doi: 10.3864/j.issn.0578-1752.2017.01.001
Wang F G, Yang Y, Yi H M, Zhao J R, Ren J, Wang L, Ge J R, Jiang B, Zhang X C, Tian H L, Hou Z H . Construction of an SSR-based standard fingerprint database for corn variety authorized in China. Sci Agric Sin, 2017,50:1-14 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.01.001
[33] Tian H L, Wang F G, Zhao J R, Yi H M, Wang R, Yang Y, Song W . Development of maize SNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Mol Breed, 2015,35:136
doi: 10.1007/s11032-015-0335-0 pmid: 4449932
[34] 刘红艳, 吴坤, 杨敏敏, 左阳, 赵应忠 . 国家芝麻区域试验新品种(系)的DNA指纹分析. 作物学报, 2012,38:596-605
Liu H Y, Wu K, Yang M M, Zuo Y, Zhao Y Z . DNA fingerprinting of sesame (Sesamum indicum L.) varieties (lines) from recent national regional trials in China. Acta Agron Sin, 2012,38:596-605 (in Chinese with English abstract)
[35] Laurentin H, Karlovsky P . AFLP fingerprinting of sesame (Sesamum indicum L.) cultivars: identification, genetic relationship and comparison of AFLP informativeness parameters. Genet Resour Crop Evol, 2007,54:1437-1446
doi: 10.1007/s10722-006-9128-y
[36] Jompuk P, Jompuk C, Kotcha A, Wongyai W, Apisitwanich S . DNA fingerprints of sesame varieties developed by the Kasetsart University sesame breeding program, Thailand. Acad Agric J, 2016,1:76-79
[37] 孙建, 张艳欣, 车卓, 黄波, 张秀荣 . 我国江淮产区主要芝麻品种的SRAP指纹图谱分析. 中国油料作物学报, 2009,31:9-13
doi: 10.3321/j.issn:1007-9084.2009.01.002
Sun J, Zhang Y X, Che Z, Huang B, Zhang X R . SRAP fingerprinting analysis of sesame (Sesamum indicum L.) cultivars in Jianghuai areas. Chin J Oil Crop Sci, 2009,31:9-13 (in Chinese with English abstract)
doi: 10.3321/j.issn:1007-9084.2009.01.002
[38] Wei X, Liu K Y, Zhang Y X, Feng Q, Wang L H, Zhao Y, Li D H, Zhao Q, Zhu X D, Zhu X F, Li W J, Fan D L, Gao Y, Lu Y Q, Zhang X M, Tang X M, Zhou C C, Zhu C R, Liu L F, Zhong R C, Tian Q L, Wen Z R, Weng Q J, Han B, Huang X H, Zhang X R . Genetic discovery for oil production and quality in sesame. New Biotech, 2016,33:8609
doi: 10.1038/ncomms9609 pmid: 4634326
[39] 吕海霞, 张艳欣, 王林海, 张晓燕, 张秀荣 . 芝麻DNA高效提取及PAGE快速银染方法. 中国农学通报, 2010,26(15):75-77
Lyu H X, Zhang Y X, Wang L H, Zhang X Y, Zhang X R . Methods for efficient extraction of sesame genomic DNA and rapid sliver staining of PAGE. Chin Agric Sci Bull, 2010,26(15):75-77 (in Chinese with English abstract)
[40] Zhang Y X, Zhang X R, Hua W, Wang L H, Che Z . Analysis of genetic diversity among indigenous landraces from sesame (Sesamum indicum L.) core collection in China as revealed by SRAP and SSR markers. Genes & Genomics, 2010,32:207-215
doi: 10.1007/s13258-009-0888-6
[41] 张艳欣, 张秀荣, 车卓, 王林海 . 应用SRAP标记分析白芝麻核心种质遗传多样性. 中国油料作物学报, 2010,32:46-52
Zhang Y X, Zhang X R, Che Z, Wang L H . Genetic diversity analysis of core collection of white coat sesame seed (Sesamum indicum L.) in China SRAP markers. Chin J Oil Crop Sci, 2010,32:46-52 (in Chinese with English abstract)
[42] Anderson J A, Churchill G A, Autrique J E, Tanksleyl S D, Sorrwlls M E . Optimizing parental selection for genetic linkage maps. Genome, 1993,36:181-186
[43] Wang L H, Li D H, Zhang Y X, Gao Y, Yu J Y, Wei X, Zhang X R . Tolerant and susceptible sesame genotypes reveal waterlogging stress response patterns. PLoS One, 2016,11:e0149912
doi: 10.1371/journal.pone.0149912 pmid: 26934874
[44] 朱晓凤, 黎冬华, 王林海, 张艳欣, 高媛, 魏鑫, 张秀荣 . 矮秆与高秆芝麻株高建成中内源激素含量变化比较分析. 中国油料作物学报, 2015,37:83-89
doi: 10.7505/j.issn.1007-9084.2015.01.013
Zhu X F, Li D H, Wang L H, Zhang Y X, Gao Y, Wei X, Zhang X R . Phytohormone change during plant height development between dwarfs and high genotypes of sesame. Chin J Oil Crop Sci, 2015,37:83-89 (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2015.01.013
[45] 赵久然, 王凤格, 郭景伦, 陈刚, 廖琴, 孙世贤, 陈如明, 刘龙洲 . 中国玉米新品种DNA指纹库建立系列研究: II. 适于玉米自交系和杂交种指纹图谱绘制的SSR核心引物的确定. 玉米科学, 2003,11(2):3-5
doi: 10.3969/j.issn.1005-0906.2003.02.001
Zhao J R, Wang F G, Guo J L, Chen G, Liao Q, Sun S X, Chen R M, Liu L Z . Series of research on establishing DNA fingerprinting pool of Chinese new maize cultivars: II. Confirmation of a set of SSR core primer pairs. J Maize Sci, 2003,11(2):3-5 (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-0906.2003.02.001
[46] 刘新龙, 马丽, 陈学宽, 应雄美, 蔡青, 刘家勇 . 云南甘蔗自育品种DNA指纹身份证构建. 作物学报, 2010,36:202-210
Liu X L, M L, Chen X K, Ying X M, Cai Q, Liu J Y . Establishment of DNA fingerprint ID in sugarcane cultivars in Yunnan, China. Acta Agron Sin, 2010,36:202-210 (in Chinese with English abstract)
[47] 程本义, 夏俊辉, 龚俊义, 杨仕华 . SSR荧光标记毛细管电泳检测法在水稻DNA指纹鉴定中的应用. 中国水稻科学, 2011,25:672-676
doi: 10.3969/j.issn.1001-7216.2011.06.016
Cheng B Y, Xia J H, Gong J Y, Yang S H . Application of capillary electrophoresis detection with fluorescent SSR markers in rice DNA fingerprint identification. Chin J Rice Sci, 2011,25:672-676 (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7216.2011.06.016
[48] 易红梅, 王凤格, 赵久然, 王璐, 郭景伦, 原亚萍 . 玉米品种SSR标记毛细管电泳荧光检测法与变性PAGE银染检测法的比较研究. 华北农学报, 2006,21(5):64-67
doi: 10.3321/j.issn:1000-7091.2006.05.016
Yi H M, Wang F G, Zhao J R, Wang L, Guo J L, Yuan Y P . Comparison of two maize SSR detection methods: capillary electrophoresis with fluorescence detection method and denaturing PAGE silver-staining detection method. Acta Agric Boreali-Sin, 2006,21(5):64-67 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-7091.2006.05.016
[1] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[2] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[3] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[4] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[5] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[6] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[7] WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642.
[8] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[9] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[10] LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506.
[11] YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188.
[12] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[13] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
[14] XUE Yan-Tao,LU Ping,SHI Meng-Sha,SUN Hao-Yue,LIU Min-Xuan,WANG Rui-Yun. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu [J]. Acta Agronomica Sinica, 2019, 45(10): 1511-1521.
[15] Jia-Yu YAO,Li-Wu ZHANG,Jie ZHAO,Yi XU,Jian-Min QI,Lie-Mei ZHANG. Evaluation and characteristic analysis of SSRs from the whole genome of jute (Corchorus capsularis) [J]. Acta Agronomica Sinica, 2019, 45(1): 10-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!