Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (10): 1503-1510.doi: 10.3724/SP.J.1006.2019.91011


Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357

CHEN Fang1,QIAO Lin-Yi2,3,LI Rui2,LIU Cheng4,LI Xin2,3,GUO Hui-Juan2,ZHANG Shu-Wei2,CHANG Li-Fang2,LI Dong-Fang5,YAN Xiao-Tao2,REN Yong-Kang2,ZHANG Xiao-Jun2,3,*(),CHANG Zhi-Jian2,3,*()   

  1. 1College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
    2Institute of Crop Science, Shanxi Academy of Agricultural Sciences / Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Taiyuan 030006, Shanxi, China
    3Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of Ministry of Agriculture, Taiyuan 030006, Shanxi, China
    4Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    5Sixth Agricultural Division Agricultural Science Research Institute of Xinjiang Production and Construction Crops, Wujiaqu 831300, Xinjiang, China
  • Received:2019-01-18 Accepted:2019-05-12 Online:2019-10-12 Published:2019-09-10
  • Contact: Xiao-Jun ZHANG,Zhi-Jian CHANG E-mail:zxjemail@163.com;wrczj@126.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0100600);Shanxi Academy of Agricultural Sciences(YGG17123);Shanxi Academy of Agricultural Sciences(YCX2018D2YS01);the National Natural Science Foundation of Shandong Province(ZR2017MC004);the Key Research and Development Program of Shanxi Province(201703D211007);the Key Research and Development Program of Shanxi Province(201803D221018-5);the Key Research and Development Program of Shanxi Province(201803D421020);the Key Scientific and Technological Innovation Platform(201605D151002)


Powdery mildew is a serious disease affecting yield and quality of wheat. Wheat-Thinopyrum imtermedium introgression line CH1357 is highly resistant to Blumeria graminis f. sp. tritici (Bgt) at the adult plant stage and immune or highly resistant to 27 Bgt isolates at the seedling stage. Two mapping populations (F1, BC1, and F2:3) derived from Taichang 29/CH1357 and Mianyang 11/CH1357 were used to map the powdery mildew resistance gene by the bulked segregant analysis. The powdery mildew resistance in CH1357 was controlled by a single dominant gene, temporarily named PmCH1357. This gene was located on the short arm of chromosome 5D and linked to SSR markers Xcfd81 and Xbwm8, with genetic distances of 2.0 cM and 11.3 cM in the Taichang 29/CH1357 population and 1.5 cM and 8.9 cM in the Mianyang 11/CH1357 population, respectively. PmCH1357 differs from other Pm genes reported on chromosome 5DS in resistance spectrum, which may be a new source of resistance.

Key words: resistance to powdery mildew, SSR markers, linkage map, gene mapping, Pm2

Table 1

Seedling infection types of CH1357, Taichang 29 (TC29), and Mianyang 11 (MY11) to 32 Bgt isolates"

白粉菌株Bgt 材料Material 白粉菌株Bgt 材料Material 白粉菌株Bgt 材料Material
CH1357 TC29 MY11 CH1357 TC29 MY11 CH1357 TC29 MY11
B09 0 4 4 B33 0 4 4 B50 3 4 4
B13 0 4 4 B37 0 4 4 B51 2 4 4
B14 4 4 4 B38 1 4 4 B52 0 4 3
B15 0 4 4 B39 0 4 4 B55 0 4 4
B17 0 4 4 B40 0 4 4 B56 0 4 4
B21 0 4 4 B41 0 4 4 B57 0 4 4
B22 0 4 4 B42 0 4 4 E09 0 4 4
B23 0 4 3 B44 0 4 4 E18 4 4 4
B25 0 4 4 B46 0 4 3 E21 0 4 4
B28 0 4 4 B48 0 4 4 E23-1 0 4 4
B30 0 4 4 B49 0 4 4 - - - -

Table 2

Powdery mildew reactions and segregation ratios in different generations from cross of Taichang 29/CH1357 and Mianyang 11/CH1357 following inoculation with Bgt isolate E09 at the seedling stage"

对白粉菌株E09的侵染类型 Infection types to Bgt isolates E09 理论比率
Theoretical ratio
χ2 value
0 0; 1 2 3 4
CH1357 (P1) 12 8
台长29 Taichang 29 (P2) 5 15
绵阳11 Mianyang 11 (P3) 5 14
P2/P1 (F1) 13 7
P1/P2 (F1) 15 5
P2/P1//P2 (BC1) 14 10 4 2 12 17 1:1 0.017 0.896
P3/P1 (F1) 14 5
P1/P3 (F1) 16 4
P3/P1//P3 (BC1) 12 14 2 1 12 15 1:1 0.071 0.789

Table 3

Resistant pathotype to Bgt E09 of two F2:3 populations"

F2: 3家系表现型
Phenotype of F2:3 lines
杂交组合 Hybrid cross
CH1357/Taichang 29 CH1357/Mianyang 11
实际值 Actual value 期望值 Expected value 实际值 Actual value 期望值 Expected value
纯合抗病株 Resistant plants 120 120.75 108 102.75
抗性分离株 Heterozygous plants 231 241.50 208 205.50
纯合感病株 Susceptible plants 132 120.75 95 102.75
合计 Total 483 411
χ2 (1:2:1) 1.509 0.883
PP-value 0.470 0.643

Fig. 1

Amplification result of SSR markers Xcfd81 and Xgwm190 in F2 population from wheat variety CH1357 M: marker; Pr: resistant parent CH1357; Ps: susceptible parent Taichang 29; Br: resistant bulk; Bs: susceptible bulk; 1-6: homozygous resistant plants; 7-12: homozygous susceptible plants."

Fig. 2

Genetic mapping of PmCH1357 with populations Taichang 29/CH1357 (a) and Mianyang 11/CH1357 (b) and comparison with other genes in Pm2 loci"

Fig. 3

Comparison of linkage markers in CH1357 with some documented stocks with known powdery mildew resistance genes on chromosome arm 5DS M: marker; 1: Taichang 29; 2:CH1357; 3: UIka (Pm2a); 4: KM2939 (Pm2b); 5: Niaomai (Pm2c)."

Table 4

Comparison of responses of CH1357 and lines with known powdery mildew resistance genes on chromosome arm 5DS to 12 Bgt pathotypes"

Pm gene
白粉菌株 Blumeria graminis tritici isolate
B13 B14 B38 B40 B41 B50 B51 B56 E09 E18 E21 E23-1
CH1357 PmCH1357 0 4 1 0 0 3 2 0 0 4 0 0
UIka/8*Cc Pm2a 0 4 3 3 1 4 3 0; 0; 4 0; 0;
KM2939 Pm2b 0 4 1 0 0; 4 0 0; 0; 1 3 0;
鸟麦Niaomai Pm2c 0 0 2 0 0 4 0 0 0; 0 0; 0;
[1] Johnson J W, Baenziger P S, Yamazaki W T, Smith R T . Effects of powdery mildew on yield and quality of isogenic lines of ‘Chancellor’ wheat. Crop Sci, 1979,19:349-352.
[2] Bennett A G A . Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol, 1984,33:279-300.
[3] Line R F, Chen X M . Successes in breeding for and managing durable resistance to wheat rusts. Plant Dis, 1995,79:1254-1255.
[4] Zhang D Y, Zhu K Y, Dong L L, Liang Y, Li G Q, Fang T L, Guo G H, Wu Q H, Xie J Z, Chen Y X, Lu P, Li M M, Zhang H Z, Wang Z Z, Zhang Y, Sun Q X, Liu Z Y . Wheat powdery mildew resistance gene Pm64 derived from wild emmer( Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. Crop J, 2019. doi: 10.1016/j.cj.2019. 03.003.
[5] 杨作民, 唐伯让, 沈克全, 夏先春 . 小麦抗病育种的战略问题: 小麦对锈病和白粉病第二线抗源的建立和利用. 作物学报, 1994,20:385-394.
Yang Z M, Tang B R, Shen K Q, Xia X C . Strategic issues in wheat disease resistance breeding: Establishment and utilization of second-line resistance sources of wheat rust and powdery mildew. Acta Agron Sin, 1994,20:385-394 (in Chinese with English abstract).
[6] Huang X Q, Hsam S L K, Zeller F J . Identification of powdery mildew resistance genes in common wheat ( Triticum aestivum L.). IX. cultivars, land races and breeding lines grown in China. Plant Breed, 1997,116:233-238.
[7] 周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军 . 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004,30:531-535.
Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J . Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin, 2004,30:531-535 (in Chinese with English abstract).
[8] Zeller F J, Hsam S L . Chromosomal location of a gene suppressing powdery mildew resistance genes Pm8 and Pm17 in common wheat( Triticum aestivum L. em. Thell.). Theor Appl Genet, 1996,93:38-40.
[9] 盛宝钦 . 用反应型记载小麦苗期白粉病. 植物保护, 1988,14(1):49.
Sheng B Q . Using infection type records the wheat powdery mildew at seedling stage. Plant Prot, 1988,14(1):49 (in Chinese with English abstract).
[10] Murray M G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980,8:4321-4325.
[11] 陈昆松, 李方, 徐昌杰, 张上隆, 傅承新 . 改良CTAB法用于多年生植物组织基因组DNA的大量提取. 遗传, 2004,26:529-531.
Chen K S, Li F, Xu C J, Zhang S L, Fu C X . An efficient macro-method of genomic DNA isolation from Actinidia chinensis leaves. Hereditas ( Beijing), 2004,26:529-531 (in Chinese with English abstract).
[12] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A . MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987,1:174-181.
[13] Lu Y Q, Wu X Y, Yao M M, Zhang J P, Liu W H, Yang X M, Li X Q, Du J, Gao A N, Li L H . Genetic mapping of a putative Agropyron cristatum-derived powdery mildew resistance gene by a combination of bulked segregant analysis and single nucleotide polymorphism array. Mol Breed, 2015,35:96.
[14] 付必胜, 刘颖, 张巧凤, 吴小有, 高海东, 蔡士宾, 戴廷波, 吴纪中 . 与小麦抗白粉病基因Pm48紧密连锁分子标记的开发. 作物学报, 2017,43:307-312.
Fu B S, Liu Y, Zhang Q F, Wu X Y, Gao H D, Cai S B, Dai T B, Wu J Z . Development of markers closely linked with wheat powdery mildew resistance gene Pm48. Acta Agron Sin, 2017,43:307-312 (in Chinese with English abstract).
[15] McIntosh R A, Baker E P . Cytogenetical studies in wheat: IV. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica, 1970,19:71-77.
[16] Ma P T, Xu H X, Xu Y F, Li L H, Qie Y M, Luo Q L, Zhang X T, Li X Q, Zhou Y L, An D G . Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding line KM2939. Theor Appl Genet, 2015,128:613-622.
[17] Xu H X, Yi Y J, Ma P T, Qie Y M, Fu X Y, Xu Y F, Zhang X T, An D G . Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai. Theor Appl Genet, 2015,128:2077-2084.
[18] Sun Y L, Zou J W, Sun H G, Song W, Wang X M, Li H J . PmLX66 and PmW14: new alleles of Pm2 for resistance to powdery mildew in the Chinese winter wheat cultivars Liangxing 66 and Wennong 14. Plant Dis, 2015,99:1118-1124.
[19] Sun H G, Song W, Sun Y L, Chen X M, Liu J J, Zou J W, Wang X M, Zhou Y F, Lin X H, Li H J . Resistance of ‘Zhongmai 155’ wheat to powdery mildew: effectiveness and detection of the resistance gene. Crop Sci, 2015,55:1017-1025.
[20] Ma P T, Zhang H X, Xu H X, Xu Y F, Cao Y W, Zhang X T, An D G . The gene PmYB confers broad-spectrum powdery mildew resistance in the multi-allelic Pm2 chromosome region of the Chinese wheat cultivar YingBo 700. Mol Breed, 2015,35:124.
[21] Jin Y, Xu H X, Ma P T, Fu X Y, Song L P, Xu Y F, Zhang X T, An D G . Characterization of a new Pm2 allele associated with broad-spectrum powdery mildew resistance in wheat line Subtil. Sci Rep, 2018,8:475.
[22] Gao H D, Zhu F F, Jiang Y J, Wu J Z, Yan W, Zhang Q F, Jacobi A, Cai S B . Genetic analysis and molecular mapping of a new powdery mildew resistant gene Pm46 in common wheat. Theor Appl Genet, 2012,125:967-973.
[23] Ma P T, Xu H X, Li L H, Zhang H X, Han G H, Xu Y F, Fu X Y, Zhang X T, An D G . Characterization of a new Pm2 allele conferring powdery mildew resistance in the wheat germplasm line FG-1. Front Plant Sci, 2016,7:546.
[24] 李根桥, 房体麟, 朱婕, 高亮亮, 李闪, 解超杰, 杨作民, 孙其信, 刘志勇 . 普通小麦品种Brock抗白粉病基因分子标记定位. 作物学报, 2009,35:1613-1619.
Li G Q, Fang T L, Zhu J, Gao L L, Li S, Xie C J, Yang Z M, Sun Q X, Liu Z Y . Molecular identification of a powdery mildew resistance gene from common wheat cultivar Brock. Acta Agron Sin, 2009,35:1613-1619 (in Chinese with English abstract).
[25] Ch S, Hsam S L, Hartl L, Zeller F J, Mohler V . Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat( Triticum aestivum L. em Thell.). Theor Appl Genet, 2003,106:1420-1424.
[26] Sourdille P, Robe P, Tixier M H, Doussinault G, Pavoine M T, Bernard M . Location of Pm3g, a powdery mildew resistance allele in wheat, by using a monosomic analysis and by identifying associated molecular markers. Euphytica, 1999,110:193-198.
[27] Schmolke M, Mohler V, Hartl L, Zeller F J, Hsam S L K . A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn( Triticum monococcum). Mol Breed, 2012,29:449-456.
[28] Huang X Q, Wang L X, Xu M X, Röder M . Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat( Triticum aestivum L.). Theor Appl Genet, 2003,106:858-865.
[29] Xue F, Wang C Y, Li C, Duan X Y, Zhou Y L, Zhao N J, Wang Y J, Ji W Q . Molecular mapping of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with Pm24. Theor Appl Genet, 2012,125:1425-1432.
[30] Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger S G, Wicker T, Doležel J, Keller B, Wulff BB . Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol, 2016,17:221.
[1] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[4] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[5] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[6] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[7] JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293.
[8] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[9] HUANG Yan, HE Huan-Huan, XIE Zhi-Yao, LI Dan-Ying, ZHAO Chao-Yue, WU Xin, HUANG Fu-Deng, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a dwarf and wide-leaf mutant osdwl1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 50-60.
[10] JIANG Hong-Rui, YE Ya-Feng, HE Dan, REN Yan, YANG Yang, XIE Jian, CHENG Wei-Min, TAO Liang-Zhi, ZHOU Li-Bin, WU Yue-Jin, LIU Bin-Mei. Identification and gene localization of a novel rice brittle culm mutant bc17 [J]. Acta Agronomica Sinica, 2021, 47(1): 71-79.
[11] SHI Hui-Min, JIANG Cheng-Gong, WANG Hong-Wu, MA Qing, LI Kun, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, HUANG Chang-Ling. Phenotype identification and gene mapping of defective kernel 48 mutant (dek48) in maize [J]. Acta Agronomica Sinica, 2020, 46(9): 1359-1367.
[12] TIAN Shi-Ke, QIN Xin-Er, ZHANG Wen-Liang, DONG Xue, DAI Ming-Qiu, YUE Bing. Genetic analysis and characterization of male sterile mutant mi-ms-3 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1991-1996.
[13] LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506.
[14] XIE Yuan-Hua,LI Feng-Fei,MA Xiao-Hui,TAN Jia,XIA Sai-Sai,SANG Xian-Chun,YANG Zheng-Lin,LING Ying-Hua. Phenotype characterization and gene mapping of the semi-outcurved leaf mutant sol1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 204-213.
[15] MO Yi,SUN Zhi-Zhong,DING Jia,YU Dong,SUN Xue-Wu,SHENG Xia-Bing,TAN Yan-Ning,YUAN Gui-Long,YUAN Ding-Yang,DUAN Mei-Juan. Genetic analysis and fine mapping of white stripe leaf mutant wsl1 in rice [J]. Acta Agronomica Sinica, 2019, 45(7): 1050-1058.
Full text



No Suggested Reading articles found!