Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (3): 477-482.doi: 10.3724/SP.J.1006.2019.84035

• RESEARCH NOTES • Previous Articles    

Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1

Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG(),Bing-Guang XIAO()   

  1. Yunnan Academy of Tobacco Agricultural Sciences / Key Laboratory of Tobacco Biotechnological Breeding / National Tobacco Genetic Engineering Research Center, Kunming 650021, Yunnan, China
  • Received:2018-03-05 Accepted:2018-12-24 Online:2019-03-12 Published:2019-01-05
  • Contact: Dun-Huang FANG,Bing-Guang XIAO E-mail:fdhkm@sina.com;xiaobg@263.net
  • Supported by:
    This study was supported by the Fundamental Research Program of Yunnan Province(2018FB064);China National Tobacco Company(110201601027(JY-01));China National Tobacco Company(110201603008);Yunnan Tobacco Company(2017YN01);Yunnan Tobacco Company(2016YN23)


Tobacco brown spot (TBS) caused by Alternaria alternata is one of the most destructive foliar diseases affecting tobacco (Nicotiana tabacum L.) production and quality in China. Breeding TBS-resistant cultivars is difficult by traditional method because the resistance has proved to be quantitatively inherited. To facilitate marker-assisted selection, we carried out a study of mapping quantitative trait loci (QTLs) for TBS resistance. We developed an F2 population consisting of 362 individuals from a cross between a TBS-susceptive flue-cured tobacco Honghua Dajinyuan (HD) and a TBS-resistant cigar tobacco cultivar Beinhart1000-1, and constructed a genetic map consisting of 670 SSR markers based on this population. Using disease index (DI) as the indicator of TBS resistance, we detected two QTLs located between SSR markers TMs05179 and TMs04022, and TM61049 and TM62212 on linkage group (LG) 20 and LG23, respectively. The resistant alleles of the two QTLs were all from the resistant parent Beinhart1000-1. The two QTLs together could explain 81% of the DI difference between the two parents in total, and 64% of their additive effects. Therefore, the two QTLs will be useful for TBS resistance breeding.

Key words: tobacco brown spot (TBS), simple sequence repeats (SSR), genetic linkage map, quantitative trait locus (QTL)

Fig. 1

Frequency distribution of DI in F2 population"

Fig. 2

QTL mapping of tobacco brown spot (TBS) resistance based on 362 F2 individuals derived from the cross HD × Beinhart-1000 In each linkage group, the positions (cM) and names of markers were shown on the left and right side, respectively. The red markers were mapped in the genetic map constructed by Bindler et al. [30,31]"

Table 1

QTL for tobacco brown spot (TBS) resistance"

Marker interval
LOD 加性效应a
Additive a
Exp b(%)
qTBS20 LG20 62.414 TMs05179-TMs04022 5.82 -15.874 -1.819 18.31
qTBS23 LG23 79.091 TM61049-TM62212 3.51 -10.923 11.145 8.94
[1] Lucas G B . Tobacco Disease, 2nd edn. New York: The Scarecrow Press, 1965. pp 103-110.
[2] Main C E . The tobacco brown spot lesion, a model to study halo formation. Phytopathology, 1969,59:1040-1045.
[3] Deborah R, Harvey W . Biocontrol of tobacco brown-spot disease by bacillus cereus in a controlled environment. Phytopathology, 1991,61:930-932.
[4] Ramm C V, Lucus G B . Epiphytology of tobacco brown spot caused by Alternaria longipes. Phytopathology, 1963,53:450-455.
[5] Stavely J R, Slana L J . Relation of leaf age to the reaction of tobacco to Alternaria alternate. Phytopathology, 1970,61:73-78.
[6] Slavov S, Mayama S, Atamassov A . Toxin production of Alternaria alternata tobacco pathotype. Biotechnol Biotechnol Equip, 2004,18:90-95.
doi: 10.1080/13102818.2004.10817126
[7] Jenning D B, Daub M E, Pharr D M, Williamson J D . Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata. Plant J, 2002,32:41-49.
doi: 10.1046/j.1365-313X.2001.01399.x pmid: 12366799
[8] Yakinova E T, Yordanova Z P, Slavov S , Toteva V M K, Woltering E [J]. Alternaria alternata AT toxin induces programmed cell death in tobacco. J Phytopathol, 2009,157:592-601.
[9] Stavely J R . Inheritance of brown spot resistance in Nicotiana tabacum. Proc Am Phytopathol Soc, 1975,2:228-230.
[10] Dobhal V K, Monga D . Genetic analysis of field resistance to brown spot caused by Alternaria altemata(Fries) Keisaler in Nicotiana rustica L. Tobacco Res, 1991,17:11-15.
[11] 郭永峰, 朱贤朝, 石金开, 孔凡玉, 王年, 王从丽 . 烟草对赤星病田间抗性的遗传研究. 中国烟草科学, 1998,17(3):11-16.
Guo Y F, Zhu X C, Shi J K, Kong F Y, Wang N, Wang C L . Genetic studies on resistance to brown spot disease in tobacco.Chin Tobacco Sci, 17(3):11-16 (in Chinese with English abstract).
[12] 郭永峰, 石金开, 孔凡玉, 王年, 王从丽, 何京美, 朱贤朝 . 烟草赤星病抗性因素遗传的双列分析. 中国烟草科学, 2000,21(4):17-20.
doi: 10.3969/j.issn.1007-5119.2000.04.012
Guo Y F, Shi J K, Kong F Y, Wang N, He J M, Zhu X C . Diallel cross analysis on inheritance of resistance components to tobacco brown spot disease. Chin Tobacco Sci, 2000,21(4):17-20 (in Chinese with English abstract).
doi: 10.3969/j.issn.1007-5119.2000.04.012
[13] Stuber C W, Edwards M D, Wendel J F . Molecular marker- facilitated investigations of quantitative trait loci in maize: II. Factors influencing yield and its component traits. Crop Sci, 1987,27:639-648.
doi: 10.2135/cropsci1987.0011183X002700040006x
[14] Nishi T, Tajima T, Noguchi S, Ajisaka H, Negishi H . Identification of DNA markers of tobacco linked to bacterial wilt resistance. Theor Appl Genet, 2003,106:765-770.
doi: 10.1007/s00122-002-1096-9 pmid: 12596008
[15] Julio E, Denoyes R B , Verrier J L, de Borne F D . Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Mol Breed, 2006,22:144-166.
doi: 10.1007/s11032-006-9019-0
[16] Vontimitta V, Lewis R S . Mapping of quantitative trait loci affecting resistance to Phytophthora nicotianae in tobacco(Nicotiana tabacum L.) line Beihart-1000. Mol Breed, 2010,58:294-300.
[17] Tong Z J, Jiao T L, Wang F Q, Li M Y, Leng X D, Gao Y L, Li Y P, Xiao B G, Wu W R . Mapping of quantitative trait loci conferring resistance to brown spot in flue-cured tobacco ( Nicotiana tabacum L.). Plant Breed, 2012,131:335-339.
doi: 10.1111/j.1439-0523.2011.01940.x
[18] 蒋彩虹, 罗成刚, 任民, 杨爱国, 冯全福, 王元英 . 一个与净叶黄抗赤星病基因紧密连锁的SSR标记. 中国烟草科学, 2012,33(1):9-22.
doi: 10.3969/j.issn.1007-5119.2012.01.004
Jiang C H, Luo C G, Ren M, Yang A G, Feng Q F, Wang Y Y . A SSR marker tightly linked to the resistant gene of Jingyehuang on tobacco brown spot. Chin Tobacco Sci, 2012,33(1):19-22 (in Chinese with English abstract).
doi: 10.3969/j.issn.1007-5119.2012.01.004
[19] 蒋彩虹, 王元英, 任民, 张兴伟, 杨爱国, 程立锐, 冯全福, 罗成刚 . 一个抗赤星病基因的SSR标记连锁群. 分子植物育种, 2013,11:566-569.
doi: 10.3969/mpb.011.000566
Jiang C H, Wang Y Y, Ren M, Zhang X W, Yang A G, Cheng L R, Feng Q F, Luo C G . A linkage group of SSR markers linked to the resistant gene on tobacco brown spot. Mol Plant Breed, 2013,11:566-569 (in Chinese with English abstract).
doi: 10.3969/mpb.011.000566
[20] 高亭亭, 蒋彩虹, 罗成刚, 杨爱国, 程立锐, 代帅帅 . Beinhart1000-1抗赤星病基因的QTL定位. 中国烟草学报, 2014,20(2):104-107.
doi: 10.3969/j.issn.1004-5708.2014.02.018
Gao T T, Jiang C H, Luo C G, Yang A G, Cheng L R, Dai S S . Mapping of quantitative trait loci affecting resistance to brown spot in tobacco line Beinhart1000-1. Acta Tobacco Sin, 2014,20(2):104-107 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-5708.2014.02.018
[21] Del Piano L, Abet M, Sorrentino C, Acanfora F, Cozzolino E , DiMuro A . Genetic variability in Nicotiana tabacum and Nicotiana species as revealed by RAPD procedure. Int Contribu Tobacco Res, 2000,19:1-15.
[22] Ren N, Timko M P . ALFP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 2001,44:559-571.
[23] Rossi L, Bindler G, Pijnenburg H, Isaac P G, Henri I G, Mahe M, Orvain C, Gadani F . Potential of molecular marker analysis for variety identification in processed tobacco. Plant Varieties Seeds, 2001,14:89-101.
[24] Arslan B, Okunus A . Genetic and geographic polymorphism of cultivated tobaccos ( Nicotiana tabacum) in Turkey. Plant Genetics, 2006,42:667-671.
doi: 10.1134/S1022795406060123 pmid: 16871787
[25] Julio E , Verrier J L, de Borne F D . Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor Appl Genet, 2006,112:335-346.
doi: 10.1007/s00122-005-0132-y pmid: 16283232
[26] Moon H S, Nicholson J S, Lewis R S . Use of transferable Nicotiana tabacum L. microsatellite markers for investigating genetic diversity in the genus Nicotiana. Genome, 2008,51:547-559.
[27] Raju K S, Madhav M S, Sharma R K ,Murthy T G K, Mohapatra T . Genetic polymorphism of Indian tobacco types as revealed by amplified fragment length polymorphism. Curr Sci, 2008,94:633-638.
[28] Moon H S, Nicholson J S, Heineman A , Lion K, der Hoeven R V, Hayes A J, Lewis R S . Changes in genetic diversity of U.S. flue-cured tobacco germplasm over seven decades of cultivar development. Crop Sci, 2009,49:498-506.
doi: 10.2135/cropsci2008.05.0253
[29] Moon H S, Nifong J M, Nicholson J S, Heineman A , Lion K, der Hoeven R V, Hayes A J, Lewis R S . Microsatellite-based analysis of tobacco ( Nicotiana tabacum L.) genetic resources. Crop Sci, 2009,49:2149-2157.
doi: 10.2135/cropsci2009.01.0024
[30] Bindler G, der Hoeven V R, Gunduz I, Plieske J, Ganal M, Rossi L, Gadani F, Donini P . A microsatellite marker based linkage map of tobacco. Theor Appl Genet, 2007,114:341-349.
doi: 10.1007/s00122-006-0437-5 pmid: 17115128
[31] Bindler G, Plieske J, Bakaher N, Gunduz I , Ivanov N, der Hoeven R V, Ganal M, Donini P . A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet, 2011,123:219-230.
doi: 10.1007/s00122-011-1578-8 pmid: 21461649
[32] Tong Z J, Yang Z M, Chen X J, Jiao F C, Li X Y, Wu X F, Gao Y L, Xiao B G, Wu W R . Large-scale development of microsatellite markers in Nicotiana tabacum and construction of a genetic map of flue-cured tobacco. Plant Breed, 2012,131:674-680.
doi: 10.1111/j.1439-0523.2012.01984.x
[33] Tong Z J, Xiao B G, Jiao F C, Fang D H, Zeng J M, Wu X F, Chen X J, Yang J K, Li Y P . Large-scale development of SSR markers in tobacco and construction of a linkage map in flue-cured tobacco. Breed Sci, 2016,66:381-390.
doi: 10.1270/jsbbs.15129 pmid: 4902457
[34] 郭永峰, 朱贤朝, 孔凡玉, 石金开, 王年 . 赤星病抗源的抗性比较. 中国烟草科学, 1997,11(4):1-6.
Guo Y F, Zhu X C, Kong F Y, Shi J K, Wang N . Comparing two origins of resistance to brown spot disease in tobacco. Chin Tobacco Sci, 1997,11(4):1-6 (in Chinese with English abstract).
[35] 许绍斌, 陶玉芬, 杨昭庆, 褚嘉 . 简单快速的DNA银染和胶保存方法. 遗传, 2002,24:335-336.
doi: 10.3321/j.issn:0253-9772.2002.03.027
Xu S B, Tao Y F, Yang Z Q, Chu J . A simple and rapid methods used for silver staining and gel preservation. Hereditas, 2002,24:335-336 (in Chinese with English abstract).
doi: 10.3321/j.issn:0253-9772.2002.03.027
[36] Van Ooijen J W . JoinMap® 4.0, Software for the calculation of genetic linkage maps in experimental populations. Wageningen: Kyazma B.V Press, 2006. pp 1-63.
[37] Voorrips R E . MapChart: Software for the graphical presentation of linkage maps and QTLs. J Heredity, 2002,93:77-78.
doi: 10.1093/jhered/93.1.77
[38] Van Ooijen J W . MapQTL® 6.0, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen: Kyazma B V Press, 2009. pp 1-64.
[39] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T . Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
[40] 冯莹, 蒋彩虹, 程立锐, 杨爱国, 郑吉云, 赵清海, 杨修峰, 尹华玲, 冯全福 . 两个烟草赤星病抗源的遗传分析. 中国烟草科学, 2015,36(5):1-7.
doi: 10.13496/j.issn.1007-5119.2015.05.001
Feng Y, Jiang C H, Cheng L R, Yang A G, Zheng J Y, Zhao Q H, Yang X F, Yin H L, Feng Q F . Genetic analysis of resistance to brown spot disease in tobacco cultivars Jingyehuang and Beinhart1000-1. Chin Tobacco Sci, 2015,36(5):1-7 (in Chinese with English abstract).
doi: 10.13496/j.issn.1007-5119.2015.05.001
[1] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[2] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[3] LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506.
[4] WANG Xiao-Lei, LI Wei-Xing, ZENG Bo-Hong, SUN Xiao-Tang, OU-YANG Lin-Juan, CHEN Xiao-Rong, HE Hao-Hua, ZHU Chang-Lan. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2020, 46(10): 1517-1525.
[5] ZHONG Jie,WEN Pei-Zheng,SUN Zhi-Guang,XIAO Shi-Zhuo,HU Jin-Long,ZHANG Le,JIANG Ling,CHENG Xia-Nian,LIU Yu-Qiang,WAN Jian-Min. Identification of QTLs Conferring Small Brown Planthopper Resistance in Rice (Oryza sativa L.) Using MR1523/Suyunuo F2:3 Population [J]. Acta Agron Sin, 2017, 43(11): 1596-1602.
[6] GENG Qing-He,WANG Lan-Fen,WU Jing,WANG Shu-Min. QTL Mapping for Seed Size and Shape in Common Bean [J]. Acta Agron Sin, 2017, 43(08): 1149-1160.
[7] WANG Jian-Hua,ZHANG Yao-Wen,CHENG Xu-Zhen,WANG Li-Xia. Construction of New Genetic Map and Identification of QTLs Related to Agronomic Traits in Mung Bean [J]. Acta Agron Sin, 2017, 43(07): 1096-1102.
[8] BAI Na,LI Yong-Xiang*,JIAO Fu-Chao,CHEN Lin,LI Chun-Hui,ZHANG Deng-Feng,SONG Yan-Chun,WANG Tian-Yu,LI Yu,SHI Yun-Su*. Fine Mapping andGenetic Effect Analysis of qKRN5.04, a Major QTL Associated with Kernel Row Number [J]. Acta Agron Sin, 2017, 43(01): 63-71.
[9] LYU Pin,YU Hai-Feng,YU Zhi-Xian,ZHANG Yong-Hu,ZHANG Yan-Fang,WANG Ting-Ting,HOU Jian-Hua. Construction of High-density Genetic Map and QTL Mapping for Seed Germination Traits in Sunflower under Two Water Conditions [J]. Acta Agron Sin, 2017, 43(01): 19-30.
[10] LIU Xin-Yan,ZHU Kong-Zhi,ZHANG Chang-Quan,HONG Ran,SUN Peng,TANG Su-Zhu,GU Ming-Hong,LIU Qiao-Quan. Mapping of Minor QTLs for Rice Gelatinization Temperature Using Chromosome Segment Substitution Lines from Indica 9311 in the Japonica Background [J]. Acta Agron Sin, 2014, 40(10): 1740-1747.
[11] WANG Mao-Qian,LI Bo,WANG Hua-Zhong. Construction of Molecular Genetic Linkage Map of Sugarbeet [J]. Acta Agron Sin, 2014, 40(02): 222-230.
[12] ZHANG Jian,Aijaz Ahmed SOOMRO,CHAI Lu,CUI Yan-Ru,WANG Xiao-Qian,ZHENG Tian-Qing,XU Jian-Long,LI Zhi-Kang. Mapping of QTL for Ferrous and Zinc Toxicity Tolerance at Seedling Stage Using a Set of Reciprocal Introgression Lines in Rice [J]. Acta Agron Sin, 2013, 39(10): 1754-1765.
[13] WU Jian-Zhong,HUANG Wen-Gong,KANG Qing-Hua,ZHAO Dong-Sheng,YUAN Hong-Mei,YU Ying,LIU Yan,JIANG Wei-Dong,CHENG Li-Li,SONG Xi-Xia,ZHAO Qian,WU Guang-Wen,GUAN Feng-Zhi*. Construction of a Genetic Linkage Map in Flax (Linum usitatissimum L.) [J]. Acta Agron Sin, 2013, 39(06): 1134-1139.
[14] TONG Zhi-Jun,JIAO Fang-Chan,WU Xing-Fu,WANG Feng-Qing,CHEN Xue-Jun,LI Xu-Ying,GAO Yu-Long,ZHANG Yi-Han,XIAO Bing-Guang,WU Wei-Ren. Mapping of Quantitative Trait Loci Underlying Six Agronomic Traits in Flue-Cured Tobacco (Nicotiana tabacum L.) [J]. Acta Agron Sin, 2012, 38(08): 1407-1415.
[15] QU Cun-Min, FU Fu-You, LEI Kun, XIE Jing-Mei, LIU Xiao-Lan, HUANG Jie-Heng, LI Bei, WANG Rui, CHEN Li, TANG Zhang-Lin, LI Jia-Na. Identification of QTLs for Lignin Content of Seed Coat in Brassica napus L. in Different Environments [J]. Acta Agron Sin, 2011, 37(08): 1398-1405.
Full text



No Suggested Reading articles found!