Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (01): 19-30.doi: 10.3724/SP.J.1006.2017.00019


Construction of High-density Genetic Map and QTL Mapping for Seed Germination Traits in Sunflower under Two Water Conditions

LYU Pin1,YU Hai-Feng2,YU Zhi-Xian1,ZHANG Yong-Hu2,ZHANG Yan-Fang2,WANG Ting-Ting1,HOU Jian-Hua1,*   

  1. 1 Inner Mongolia Agricultural University, Huhhot 010010, China; 2 Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot 010031, China
  • Received:2016-03-09 Revised:2016-09-18 Online:2017-01-12 Published:2016-09-28
  • Contact: 侯建华, E-mail: houjh68@163.com E-mail:18847123096@163.com
  • Supported by:

    The study was supported by the National Natural Science Foundation of China (31160288, 31540043).


Seed germination and emergence of sunflower are seriously affected by water stress. In this study, SSR, SRAP, and AFLP markers were applied to construct a genetic linkage map by using the F6 population derived from a cross of K55 (drought sensitive) ´ K58 (drought resistant). For mapping quantitative trait loci (QTLs) for nine traits of seed germination in sunflower,the parents and 187 F6 family lines were used to investigate seed germination traits under normal condition (CK) and 18% polyethylene glycol (PEG-6000) (drought stress). A genetic map consisting of 17 linkage groups was constructed with 1105 loci (368 SSR, 369 SRAP, 333 AFLP) which covers 3846.0 cM and the length of each linkage group varies from 147.6 to 295.5 cM, the number of markers in each linkage group varies from 10 to 165 with an average distance of 3.481 cM. As a result, a total of 33 QTLs were detected. We identified fourteen additive QTLs for germination index (GI), germination rate (GR), embryo length (EL), radicle length (RL), embryo fresh weight (EFW), radicle fresh weight (RFW) under18% PEG condition with explained phenotypic variance ranging from 6.1% to 14.0%. Nineteen additive QTLs were identified for germination energy(GE), radicle length (RL), embryo fresh weight (EFW), radicle fresh weight (RFW), embryo dry weight (EDW), radicle dry weight (RDW) under normal condition with explained phenotypic variance ranging from 6.1% to 25.8%. Each ofQefw5-2, Qefw5-1, Qefw5-4, Qrfw10, Qrfw5, and Qrl9could explain phenotypic variance over 10%. Nine QTLs affecting trait differences between stress treatment and control were identified, which are considered to directly contribute to drought tolerance. These QTLs identified could provide important reference to molecular breeding for drought-resistance during seed germination in sunflower.

Key words: Sunflower, Genetic linkage map, Drought tolerance, Seed germination traits, QTL

[1] 刘天鹏, 董孔军, 何继红, 任瑞玉, 张磊, 杨天育. 糜子育成品种芽期抗旱性鉴定与评价研究. 植物遗传资源学报, 2014, 15: 746–752
Liu T P, Dong K J, He J H, Ren R Y, Zhang L, Yang T Y. Identification and evaluation on the drought resistance of broomcorn millet bred cultivars at germinating stage. J Plant Genet Resour, 2014, 15:746–752 (in Chinese with English abstract)
[2] Al-Chaarani G R, Gentzbittel L, Wedzony M, Sarrafi A. Identification of QTLs for germination and seedling development in sunflower (Helianthus annuus L.). Plant Sci, 2005, 6: 1–7
 [3] Davar R, Majd A, Darvishzadeh R, Sarrafi A. Mapping quantitative trait loci for seedling vigour and development in sunflower (Helianthus annuus L.) using recombinant inbred line population. Plant Omics J, 2001, 4: 418–427
[4] 袁倩倩, 李卓坤, 田纪春, 韩淑晓. 不同水分胁迫下小麦胚芽鞘和胚根长度的QTL分析. 作物学报, 2011, 37: 294–301
Yuan Q Q, Li Z K, Tian J C, Han S X. QTL Mapping for coleoptile length and radicle length in wheat under different simulated moisture stresses. Acta Agron Sin, 2011, 37: 294–301
[5] Rex Bernardo. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci, 2008, 48: 1649–1664
[6] Rieseberg L H, Choi H, Chan R. Genomic map of a diploid hybrid species. Heredity,1993, 70: 285–293
[7] Tang S, Yu J K, Slabaugh M B, Shintani D K, Knapp S J. Simple sequence repeat map of the sunflower genome. Theor Appl Genet, 2002, 105: 1124–1136
[8] Bowers J E, Bachlava E, Brunick R L, Rieseberg L H, Knapp S J, Burke J M. Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses. Genom Genet, 2012:71–729
[9] Talukder Z I, Gong L, Hulke B S, Pegadaraju V, Song Q J, Schultz Q, Qi L. A high-density SNP map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12. PLoS One, 2014, 7: 1–14
[10] 黄先群, Genzbitelle L, Fabre F, Saraffi A. SSR分子标记丰富向日葵(Helianthus annuus L.)遗传图谱的研究. 西南农业学报, 2012, 25: 1031–1038
Hang X Q, Genzbitelle L, Fabre F, Saraffi A. Indication of genetic linkage map for sunflower by SSR markers. Southwest China J Agric Sci, 2012, 25: 1031–1038 (in Chinese with English abstract)
[11] 张永虎, 于海峰, 侯建华, 李素萍, 吕品, 于志贤. 利用向日葵重组自交系构建遗传图谱. 遗传, 2014, 36: 1036–1042
Zhang Y H, Yu H F, Hou J H, Li S P, Lü P, Yu Z X. Construction of a genetic map of sunflower using a population of recombinant inbred lines (RILs), Hereditas, 2014, 36: 1036–1042 (in Chinese with English abstract)
[12] Abdi N, Darvishzadeh R, Jafari1 M, Pirzad A, Haddadi P. Genetic analysis and QTL mapping of agro-morphological traits in sunflower (Helianthus annuus L.) under two contrasting water treatment conditions. Plant Omics J, 2012, 5: 149–158
[13] Haddadi P, Yazdi-samadi B, Naghavi M R, Kalantari A, Maury P, Sarrafi A. QTL analysis of agronomic traits in recombinant inbred lines of sunflower under partial irrigation. Plant Biotechnol Rep, 2011, 5: 135–146
[14] Adiredjo A L, Navaud O, Munos S, Langlade N B, Lamaze T, Grieu P. Genetic control of water use efficiency and leaf carbon isotope discrimination in sunflower (Helianthus annuu L.) subjected to two drought scenarios. PLoS One, 2014, 10.1371/journal.pone.0101218
[15] 陈雪, 于海峰, 侯建华, 安玉麟. 向日葵芽期、苗期抗旱性鉴定方法研究. 中国油料作物报, 2009, 31: 344–348
Chen X, Yu H F, Hou J H, An Y L. Drought resistance of sunflower in bud and seedling emergences stage. Chin J Oil Crop Sci, 2009, 31: 344–348 (in Chinese with English abstract)
[16] Paniego N, Echaide M, Muñoz M, Fernandez L, Torales S, Faccio P, Fuxan I, Carrera M, Zandomeni R, Suarez E Y, Hopp H E. Microsatellite isolation and characterization in sunflower (Helianthus annuus L.). Genome, 2002, 45: 34–43
[17] Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455–461
[18] 房冬梅, 吕品, 侯建华. 油葵SSR-PCR反应体系的优化及引物筛选. 中国农学通报, 2015, 31: 205–209
Fang D M, Lü P, Hou J H. Optimization of SSR-PCR reaction system and primer screening in oil sunflower. Chin Agric Sci Bull, 2001, 103: 455–461 (in Chinese with English abstract)
[19] 于志贤, 侯建华. 油葵SRAP-PCR反应体系的建立与优化. 中国农学通报, 2013, 29: 296–301
Yu Z X, Hou J H. Establishment and optimization of SRAP-PCR reaction system in sunflower. Chin Agric Sci Bull, 2013, 29: 296–301 (in Chinese with English abstract)
[20] 昝逢刚, 吴才文, 陈学宽, 赵培方, 赵俊, 刘家勇. 118份甘蔗种质资源遗传多样性的AFLP分析. 作物学报, 2014, 40: 1877–1883
Zan F G, Wu C W, Chen X K, Zhao P F, Zhao J, Liu J Y. Genetic diversity of 118 sugarcane germplasm using AFLP markers. Acta Agron Sin, 2014, 40: 1877–1883 (in Chinese with English abstract)
[21] 李媛媛, 沈金雄, 王同华, 傅廷栋, 马朝芝. 利用SRAP、SSR和AFLP标记构建甘蓝型油菜遗传连锁图谱. 中国农业科学, 2007, 40: 1118–1126
Li Y Y, Shen J X, Wang T H, Fu T D, Ma C Z. Construction of a linkage map using SRAP, SSR and AFLP markers in Brassica napus L. Sci Agric Sin, 2007, 40: 1118–1126 (in Chinese with English abstract)
[22] 吴传书, 王丽侠, 王素华, 陈红霖, 吴健新, 程须珍, 杨晓明. 绿豆高密度分子遗传图谱的构建. 中国农业科学, 2014, 47: 2088–2098
Wu C S, Wang L X, Wang S H, Chen H L, Wu J X, Cheng X Z, Yang X M. Construction of a genetic linkage map in mungbean. Sci Agric Sin, 2014, 47: 2088–2098 (in Chinese with English abstract)
[23] 王茂芊, 李博, 王华忠. 甜菜遗传连锁图谱初步构建. 作物学报, 2014, 40: 222−230
Wang M Q, Li B, Wang H Z. Construction of molecular genetic linkage map of sugarbeet. Acta Agron Sin, 2014, 40: 222−230
[24] 赵秀琴, 朱苓华, 徐建龙. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位. 作物学报, 2007, 33: 1536–1542
Zhao X Q, Zhu L H, Xu J L, Li Z K. QTL Mapping of yield under irrigation and rainfed field conditions for advanced backcrossing introgression lines in rice. Acta Agron Sin, 2007, 33: 1536–1542 (in Chinese with English abstract)
[25] 彭勃, 王阳, 李永祥, 刘成, 刘志斋, 王迪, 谭巍巍, 张岩, 孙宝成, 石云素, 宋燕春, 王天宇, 黎裕. 不同水分环境下玉米产量构成因子及籽粒相关性状的QTL分析. 作物学报, 2010, 36: 1832–1842
Peng B, Wang Y, Li Y X, Liu C, Liu Z Z, Wang D, Tan W W, Zhang Y, Sun B C, Shi Y S, Song Y C, Wang T Y, Li Y. QTL Analysis for yield components and kernel-related traits in maize under different water regimes. Acta Agron Sin, 2010, 36: 1832–1842 (in Chinese with English abstract)
[26] 谭巍巍, 李永祥, 王阳, 刘成, 刘志斋, 彭勃, 王迪, 张岩, 孙宝成, 石云素, 宋燕春, 杨德光, 王天宇, 黎裕. 在干旱和正常水分条件下玉米穗部性状QTL分析. 作物学报, 2011, 37: 235–248
Tan W W, Li Y X, Wang Y, Liu C, Liu Z Z, Peng B, Wang D, Zhang Y, Sun B C, Shi Y S, Song Y C, Yang D G, Wang T Y, Li Y. QTL Mapping of ear traits of maize under different water regimes. Acta Agron Sin, 2008, 34: 1199–1205 (in Chinese with English abstract)
[27] 吴亚辉, 陶星星, 肖武名, 郭涛, 刘永柱, 王慧, 陈志强. 水稻穗部性状的QTL分析. 作物学报, 2014, 40: 214–221
Wu Y H, Tao X X, Xiao W M, Guo T, Liu Y Z, Wang H, Chen Z Q. Dissection of QTLs for panicle traits in rice (Oryza sativa). Acta Agron Sin, 2014, 40: 214–221 (in Chinese with English abstract)

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[5] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[6] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[7] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[8] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[9] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
[10] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[11] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[12] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[13] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[14] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[15] LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347.
Full text



No Suggested Reading articles found!