Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (01): 9-18.doi: 10.3724/SP.J.1006.2017.00009

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Influence of Stem Solidness on Stem Strength and Stem Solidness Associated QTLs in Bread Wheat

PAN Ting1,**,HU Wen-Jing2,**,LI Dong-Sheng2,CHENG Xiao-Ming2,WU Rong-Lin2,CHENG Shun-He1,2,*   

  1. 1State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Agriculture Sciences of the Lixiahe District / Branch of National Wheat Improvement Center, Yangzhou 225007, China
  • Received:2016-03-10 Revised:2016-09-18 Online:2017-01-12 Published:2016-10-09
  • Contact: 程顺和, E-mail:13905273926@126.com**同等贡献(Contributed equally to this work) E-mail:862430412@qq.com
  • Supported by:

    This study was supported by the China Agriculture Research System(CARS-03-03B, CARS-3-2-11) and theIndependent Innovation Fundfor Agricultural Science and Technology in Jiangsu Province [CX(13)2022].

Abstract:

Improving stem strength is an important way to increase lodging resistance of wheat. Solid stem traits, including thickness-diameter ratio of culm, stem diameter, culm wall thickness and pith diameter, are the main targets for improvement of stem strength in wheat. In the present study, an F2 population and F2:3 families derived from the cross N18×WYSG wereused to study the influence of stem solidness on stem strength and to identify QTLs for solidnessrelated traits. The thickness-diameter ratio of culm, stem diameter, culm wall thickness and pith diameter were significantly correlated with stem strength. By using composite interval mapping (CIM), a total of 23 QTLs for the five traitswere detected on chromosomes 1B, 3B, 4A, 4B and 5A. Phenotypic variations explained by individual QTL ranged from 3.5% to 44.0%. Pleiotropic QTLs were found on chromosomes 3B (gwm547gwm247),4A (wmc718wmc468) and 5A (gwm156gwm443), all contributing very high phenotypic variations. The reliability of the marker gwm247was confirmed using 24 F7 lines derived from the N13 (hollow stem) × WYSG (solid stem) cross. The markers linked to major QTLs could be valuable in wheat breeding for lodging resistance with marker assisted selection technology.

Key words: Wheat, Stem strength, Stem solidness, Quantitative trait loci

[1] Peake A S, Huth N I, Carberry P S, Raine S R, Smith R J. Quantifying potential yield and lodging-related yield gaps for irrigated spring wheat in sub-tropical Australia. Field Crops Res, 2014, 158: 1–14
[2] Berry P M, Spink J. Predicting yield losses caused by lodging in wheat. Field Crops Res, 2012, 137: 19–26
[3] 许琦, 杨娜, 柴永峰, 杨淑巧, 赵智勇, 裴蕾, 郭文治, 刘跃鹏. 中国小麦主要矮秆基因的分布及其对株高的影响. 西北农业学报 2014, 23(5): 59–64
Xu Q, Yang N, Chai Y F, Yang S Q, Zhao Z Y, Pei L, Guo W Z, Liu Y P. Distribution and impact on plant height of major wheat darfing genes in China. Acta Agric Boreali-Occids Sin, 2014, 23(5): 59–64 (in Chinese with English abstract)
[4] 崔淑佳, 潘晓萍, 高居荣, 王洪刚, 李兴锋. 不同小麦品种(系)株高及节间长度研究. 山东农业科学, 2014, 46(10): 19–22
Cui S J, Pan X P, Gao J R, Wang H G, Li X F. Analysis of plant height and internode length of different wheat varieties (lines). Shandong Agric Sci, 2014, 46(10): 19–22 (in Chinese with English abstract)
[5] 肖世和, 张秀英, 闫长生, 张文祥, 海林, 郭会君. 小麦茎秆强度的鉴定方法研究. 中国农业科学, 2002, 35: 7–11
Xiao S H, Zhang X Y, Yan C S, Zhang W X, Hai L, Guo H J. Determination of resistance to lodging by stem strength in wheat. Sci Agric Sin, 2002, 35: 7–11 (in Chinese with English abstract)
[6] Sirajul I M, Peng S B, Visperas R M, Nelzo E, Sultan U B M, Julfiquar A W. Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crops Res, 2007, 101: 240–248
[7] Zhu L, Shi G X, Li Z S, Kuang T Y, Li B, Wei Q K, Bai K Z, Hu Y X, Lin J X. Anatomical and chemical features of high-yield wheat cultivar with reference to its parents. Acta Bot Sin, 2004, 46: 565–572
[8] 韦爽, 万燕, 晏林, 向达兵, 赵钢, 黄凯丰, 谭茂玲, 宋月, 张莹. 不同苦荞品种茎秆强度和植株性状的差异及其相关性. 作物杂志, 2015, (2): 59–63
Wei S, Wan Y, Yan L, Xiang D B, Zhao G, Huang K F, Tan M L, Song Y, Zhang Y. Difference and correlation of different tartary buckwheat cultivars in stem strength and plant characters. Crops, 2015, (2): 59–63 (in Chinese with English abstract)
[9] Zhang J, Li G H, Song Y P, Liu Z H, Yang C D, Tang S, Zheng C Y, Wang S H, Ding Y F. Lodging resistance characteristics of high-yielding rice populations. Field Crops Res, 2014, 161: 64–74
[10] Bourmaud A, Gibaud M, Lefeuvre A, Morvan C, Baley C. Influence of the morphology characters of the stem on the lodging resistance of Marylin flax. Ind Crop Prod, 2015, 66: 27–37
[11] Zuber U, Winzeler H, Messmer M M, Keller M, Keller B. Morphological traits associated with lodging resistance of spring wheat (Triticum aestivum L.). J Agron Crop Sci, 2001, 182: 17–24
[12] 汪灿, 阮仁武, 袁晓辉, 胡丹, 杨浩, 林婷婷, 何沛龙, 李燕, 易泽林. 荞麦茎秆解剖结构和木质素代谢及其与抗倒性的关系. 作物学报, 2014, 40: 1846–1856
Wang C, Ruan R W, Yuan X H, Hu D, Yang H, Lin T T, He P L, Li Y, Yi Z L. Relationship of anatomical structure and lignin metabolism with lodging resistance of culm in buckwheat. Acta Agron Sin, 2014, 40: 1846–1856 (in Chinese with English abstract)
[13] 桑云, 赵亮, 张坤普, 田纪春, 叶宝兴. 小麦DH群体穗下节间直径、茎壁厚及茎壁面积的QTL定位. 作物学报, 2010, 36: 61–67
Sang Y, Zhao L, Zhang K P, Tian J C, Ye B X. Mapping QTLs for uppermost internode diameter and thickness and area of culm wall with doubled-haploid population in wheat. Acta Agron Sin, 2010, 36: 61–67 (in Chinese with English abstract)
[14] Hai L, Guo H J, Xiao S H, Jiang G L, Zhang X Y, Yan C S, Xin Z Y, Jia J Z. Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica, 2005, 141: 1–9
[15] Inoue M, Gao Z S,Cai H W. QTL analysis of lodging resistance and related traits in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet, 2004, 109: 1576–1585
[16] Milach S C K, Rines H W, Phillips R L. Plant height components and gibberellic acid response of oat dwarf lines. Crop Sci, 2002, 42: 1147
[17] 董琦, 王爱萍, 梁素明. 小麦基部茎节形态结构特征与抗倒性的研究. 山西农业大学学报, 2003, (3): 188–191
Dong Q, Wang A P, Liang S M. Study on the architectural characteristics of wheat stalks. J Shanxi Agric Univ, 2003, (3): 188–191 (in Chinese with English abstract)
[18] 陈华华, 李俊, 万洪深, 王玲玲, 彭正松, 杨武云. 实心小麦86-741茎秆的解剖分析及壁厚特性的SSR标记. 作物学报, 2008, 34: 1381–1385
Chen H H, Li J, Wan H S, Wang L L, Peng Z S, Yang W Y. Microsatellite markers for culm wall thickness and anatomical features of solid stem Wheat 86-741. Acta Agron Sin, 2008, 34: 1381–1385 (in Chinese with English abstract)
[19] Kong E Y, Liu D C, Guo X L, Yang W L, Sun J Z, Li X, Zhan K H, Cui D Q, Lin J X, Zhang A M. Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop J, 2013, 1: 43–49
[20] Platt A W, Farstad C W. The reaction of wheat varieties to wheat stem sawfly attack. Sci Agric, 1946, 26: 231–247
[21] Platt A W, Farstad C W, Callenbach J A. The reaction of rescue wheat to sawfly damage. Sci Agric, 1948, 28: 154–161
[22] McNeal F H, Watson C A, Berg M A, Wallace L E. Relationship of stem solidness to yield and lignin content in wheat selections. Agron J, 1965, 57: 20–21
[23] Wallace L E,McNeal F H. Stem sawflies of economic importance in grain crops in the United States. Tech Bull, 1966, 1350: 50
[24] Adrianna S, Karl D G,William B. Impact of solid and hollow varieties of winter and spring wheat on severity of wheat stem sawfly (Hymenoptera: Cephidae) infestations and yield and quality of grain. J Economic Entomol, 2015, 108: 2316–2323
[25] Mcneal F H,Berg M A. Stem solidness and its relationship to grain yield in 17 spring wheat crosses. Euphytica, 1979, 28: 89–91
[26] 郭会君. 小麦茎秆强度及其相关性状的QTL分析.中国农业科学院硕士学位论文, 北京, 2002
QTL Analysis for Stem Strength and Its Correlated Traits in Wheat. MS Thesis of The Chinese Academy of Agricultural Sciences. Beijing, China, 2002
[27] Verma V, Worland A J, Sayers E J, Fish L, Caligari P D S, Snape J W. Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breed, 2005, 124: 234–241
[28] 廖晓虹, 蒲宗君, 杨武云. 小麦遗传材料86-741与黑麦的可杂交性研究. 云南农业大学报, 1999, 14(1): 37–39
Liao X H, Pu Z J, Yang W Y. Crossability of common wheat line 86-741 with Rye. J Yunnan Agric Univ, 1999, 14(1): 37–39 (in Chinese with English abstract)
[29] Wei H T, Li J, Yang W Y, Peng Z S,Yang L. The genetic comparison of “Chuanmai 42” and “Chuanmai 43” revealed by microsatellite marker. Southwest China J Agric Sci, 2006, 19: 177–181
[30] Wang J, Zhu J M, Lin Q Q, Li X J, Teng N J, Li Z S, Li B, Zhang A M, Lin J X. Effects of stem structure and cell wall components on bending strength in wheat. Chin Sci Bull, 2006, 51: 815–823
[31] Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 999–1009
[32] 姚金保, 马鸿翔, 姚国才, 杨学明, 周淼平, 张平平, 张鹏. 小麦抗倒性研究进展. 植物遗传资源学报, 2013, 14: 208–213
Yao J B, Ma H X, Yao G C, Yang X M, Zhou M P, Zhan P P, Zhang P. Research progress on lodging resistance in wheat (Triticum aestivum L.). J Plant Genet Resour, 2002, 14: 208–213 (in Chinese with English abstract)
[33] 冯素伟, 李淦, 胡铁柱, 姜小苓, 李小军, 董娜, 茹振钢. 不同小麦品种茎秆抗倒的研究. 麦类作物学报, 2012, 32: 1055–1059
Feng S W, Li G, Hu T Z, Jiang X L, Li X J, Dong N, Ru Z G. Study on the stem lodging resistance of different wheat varieties. J Triticeae Crops, 2012, 32 : 1055–1059 (in Chinese with English abstract)
[34] 朱新开, 王祥菊, 郭凯泉, 郭文善, 封超年, 彭永欣. 小麦倒伏的茎秆特征及对产量与品质的影响. 麦类作物学报, 2006, 26: 87–92
Zhu X K, Wang X J, Guo K Q, Guo W S, Feng C N, Peng Y X. Stem characteristics of wheat with stem lodging and effects of lodging on grain yield and quality. J Triticeae Crops, 2006, 26: 87–92 (in Chinese with English abstract)
[35] Tripathi S C, Sayre K D, Kaul J N, Narang R S. Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crops Res, 2003, 84: 271–290
[36] 李寒冰, 白克智, 匡廷云, 胡玉熹, 贾旭, 林金星. 粗杆高产小麦茎结构特性分析. 植物学报, 2000, 42: 1258–1262
Li H B, Bai, K Z, Kuang T Y, Hu Y X, Jia X, Lin J X. Structural characteristics of thicker-culms in the high-yield wheat cultivars. Acta Bot Sin, 2000, 42: 1258–1262 (in Chinese with English abstract)
[37] 郭维俊, 王芬娥, 黄高宝, 张锋伟, 魏时来. 小麦茎秆力学性能与化学组分试验. 农业机械学报, 2009, 40: 110–114
Guo W J, Wang F E, Huang G B, Zhang F W, Wei S L. Experiment on mechanical properties and chemical compositions of wheat stems. Trans CSAM, 2009, 40: 110–114 (in Chinese with English abstract)
[38] Larson, McDonald M D. Cytogenetics of solid stem in common wheat: II. Stem solidness of monosomic lines of the variety S-615. Can J Bot, 1959, 37: 365–378
[39] Larson. Cytogenetics of solid stem in common wheat: I. Monosomic F2 analysis of the variety S-615. Can J Bot, 1959, 37: 135–156
[40] Cook J P, Wichman D M, Martin J M, Bruckner P L, Talbert L E. Identification of microsatellite markers associatedwith a stem solidness locus in wheat. Crop Sci, 2004, 44: 1937–1402

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[8] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[9] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[10] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[11] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[12] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[13] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[14] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[15] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!