Quantitatively analyzing the effects of different tillage rotations and organic fertilization practices on soil carbon, nitrogen and their enzyme activities is of great importance to improve soil fertility and promote maize yield. This study was intended to explore changes of soil organic carbon, total nitrogen, urease and sucrase activities under different tillage rotations and organic manure patterns in wheat-maize cropping system of North China Plain. Six treatments were compared, which were straw returning with rotary tillage-subsoiling (PRS), straw returning with subsoiling-no tillage (PSN), straw returning with conventional tillage-no tillage (PCN), cow manure with rotary tillage-subsoiling (FRS), cow manure with subsoiling-no tillage (FSN), and cow manure with conventional tillage-no tillage (FCN). The tillage mode, organic manure and their interactions had significant effects on soil fertility. The RS and SN patterns had higher contents of soil organic carbon and total nitrogen, and higher enzyme activities of urease and sucrase in 0-10 cm and 10-20 cm soil layers compared with the CN pattern. In rotation tillage mode of RS, straw returning significantly increased the soil organic carbon contents in 10-20 cm, 20-30 cm, and 30-40 cm soil layers, and increased the total nitrogen content and sucrase activity in 10-20 cm soil layer. In rotation tillage mode of SN, the soil organic carbon, total nitrogen content, and sucrase activity in 0-10 cm and 10-20 cm soil layers, and urease enzyme activity in each soil layer, were significantly increased by applying cow manure compared with straw returning. Compared with PCN, PRS and FSN could significantly increase the soil fertility. The soil organic carbon, total nitrogen, urease and sucrase activities in FSN treatment were the highest in 0-10 cm and 10-20 cm soil layers in all treatments. The tillage mode, organic manure and their interactions had significant effects on maize yield. Compare with CN pattern, maize yield of the RS and SN patterns were averagely increased by 1.89%-10.49% and 5.44%-11.99%, respectively. In rotation tillage mode of RS, the yield under straw returning was significantly increased by 2.91%-3.11% compared with that under using cow manure; while in rotation tillage mode of SN, the yield under straw returning was 5.02%-9.07% lower than that under applying cow manure. The average yields of two years were in the order of FSN>PRS>FRS>PSN>FCN>PCN. This study demonstrates that cow manure with subsoiling-no tillage can increase the soil organic carbon, total nitrogen, and urease and sucrase activities, and increase the crop yield as a result. Thus, cow manure with subsoiling-no tillage management practice is a better mode for increasing soil fertility and crop productivity, which should be expected to be adopted in the North China Plain.