Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (3): 469-476.doi: 10.3724/SP.J.1006.2019.84082

• RESEARCH NOTES • Previous Articles     Next Articles

Expression and promoter activity of GhTFL1a and GhTFL1c in Upland cotton

Xiao-Hong ZHANG1,Gen-Hai HU1,Han-Tao WANG2,Cong-Cong WANG2,Heng-Ling WEI2,Yuan-Zhi FU1,Shu-Xun YU2,*()   

  1. 1 College of Life Science and Technology, Henan Institute of Science and Technology / Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang 453003, Henan, China
    2 Institute of Cotton Research, Chinese Academy of Agricultural Sciences / State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
  • Received:2018-06-20 Accepted:2018-12-24 Online:2019-03-12 Published:2019-01-04
  • Contact: Shu-Xun YU E-mail:ysx195311@163.com
  • Supported by:
    This study was supported by the Key Scientific Research Projects of Colleges and Universities in Henan(18A210002);the State Key Laboratory of Cotton Biology Open Fund(CB2018A08)


In this study, we cloned the phosphatidylethanolamine-binding protein GhTFL1a and GhTFL1c genes from Upland cotton, and analyzed their expression and promoter activity. The results of promoter structure prediction revealed that GhTFL1a promoter contains abscisic acid (ABA) responsiveness elements, drought-induced MYB binding sites and shoot-specific expression and light responsiveness elements, and the promoter region of GhTFL1c contains ethylene-responsive element, drought-induced MYB binding sites and salicylic acid (SA) responsiveness elements. Thus, we constructed the fusion vector pBI121-GhTFL1a-GUS and pBI121-GhTFL1c-GUS, respectively. Transient transformation of tobacco showed that both promoters had the activity to drive the expression of target gene GUS. Quantitative Real-time PCR result indicated that the expression profile of GhTFL1a and GhTFL1c was opposite during different photoperiod treatments of cultivated and semi-wild cotton. Meanwhile, the expression of GhTFL1a was induced by ABA, SA, and salt (NaCl), while GhTFL1c expression was induced by SA, gibberellin (GA) and ABA. Taken together, the results suggest that GhTFL1a and GhTFL1c might be involved in the regulation of response to abiotic stresses (SA and ABA), which could provide a solid foundation for further function identification.

Key words: upland cotton, GhTFL1a, GhTFL1c, expression analysis, promoter activity

Table 1

Primers used in this study"

Primer name
Primer sequence (5′-3′)
GhTFL1a-up ATGTCAAGGGTCCCTGAG 基因克隆 Gene cloning
GhTFL1c-down TTAGCGTCTCCTTGCAGCAGT 基因克隆 Gene cloning
pGhTFL1a-up AAGGAATATAGAGCACAACA 启动子克隆 Promoter cloning
pGhTFL1a-down GATGAACAAGACGATGTGTAT 启动子克隆 Promoter cloning
pGhTFL1c-up AGTTTAGATTCTTGTGCGAT 启动子克隆 Promoter cloning
pGhTFL1c-down TCTTGATGACAGTGAATGAA 启动子克隆 Promoter cloning

Fig. 1

Phylogenetic and conserved domain analysis of GhTFL1a and GhTFL1c A: phylogentic analysis of GhTFL1a/c and their homologous genes in Arabidopsis; B: alignment of amino acid sequences of GhTFL1a/c and their homologous genes in Arabidopsis. * indicates the same amino acid, the ID of AtBFT, AtTFL1, and AtATC is NM_125597, U77674, and NM_128315, respectively, the ID of GhTFL1a and GhTFL1c is Gh_A11G0088 and Gh_D04G0971, respectively."

Fig. 2

Expression patterns of GhTFL1a and GhTFL1c genes during photoperiod treatment A and B indicate the expression of GhTFL1a and GhTFL1c in cotton cultivar “CCRI 36”; C and D indicate the expression of GhTFL1a and GhTFL1c in semi-wild cotton. Error bars indicate the standard deviation (±SD)."

Fig. 3

Expression patterns of GhTFL1a and GhTFL1c genes in cultivated cotton and semi-wild race cotton The abscissa shows period, which from left to right is expanded cotyledon, first, second, third, forth, and fifth leaves in long day, and third, forth and fifth leaves in short day."

Table 2

cis-acting elements in promoter of GhTFL1a and GhTFL1c"

Sequence (5′-3′)
GhTFL1a CE3 GACGCGTGTC ABA和VP1响应元件 ABA and VP1 responsiveness element
MBS TAACTG 干旱诱导的MYB结合位点 MYB binding site involved in drought inducibility
Nodule-site2 CTTAAATTATTTATTT 节结特异因子结合位点 Nodolue specific factor binding site
as-2-box GATAatGATG 顶芽特异表达响应元件 Shoot specific expression element
as-2-box GATAatGATG 顶芽特异表达响应元件 Shoot specific expression element
Circadian CAANNNNATC 昼夜节律控制元件 Circadian rhythms element
GhTFL1c ERE ATTTCAAA 乙烯响应元件 Ethylene responsiveness element
ERE ATTTCAAA 乙烯响应元件 Ethylene responsiveness element
MBS CAACTG 干旱诱导的MYB结合位点 MYB binding site involved in drought inducibility
circadian CAANNNNATC 昼夜节律控制元件 Circadian rhythms element
TCA-element TCAGAAGAGG 水杨酸响应元件 Salicylic acid responsiveness element
TCA-element CAGAAAAGGA 水杨酸响应元件 Salicylic acid responsiveness element

Fig. 4

GhTFL1a expression profiles in the first 24 hours after the roots were treated A: salicylic acid; B: gibberellins; C: abscisic acid; D: NaCl. Error bars on the columns indicate the standard deviation (±SD)."

Fig. 5

GhTFL1c expression profiles in the first 24 hours after the roots were treated A: salicylic acid; B: gibberellins; C: abscisic acid; D: NaCl; Error bars indicate the standard deviation (±SD)."

Fig. 6

Transient expression of GhTFL1a and GhTFL1c promoter in tobacco A: positive control pBI121; B: pGhTFL1a∷GUS; C: pGhTFL1c∷GUS; D: negative control."

[1] 董承光, 王娟, 周小凤, 马晓梅, 李生秀, 王旭文, 肖光顺, 李保成 . 新疆早熟陆地棉早熟性状的遗传分析. 西北农业学报, 2014,23(12):96-101.
doi: 10.7606/j.issn.1004-1389.2014.12.015
Dong C G, Wang J, Zhou X F, Ma X M, Li S X, Wang X W, Xiao G S, Li B C . Inheritance of earliness traits in xinjiang early-maturity upland cotton ( G. hirsutum L.). Acta Agric Boreali-occident Sin, 2014,13(12):96-101 (in Chinese with English abstract).
doi: 10.7606/j.issn.1004-1389.2014.12.015
[2] 喻树迅, 王寒涛, 魏恒玲, 宿俊吉 . 棉花早熟性研究进展及其应用. 棉花学报, 2017,29:1-10.
doi: 10.11963/1002-7807.ysxysx.20170825
Yu S X, Wang H T, Wei H L, Su J J . Research progress and application of early maturity in upland cotton. Cotton Sci, 2017,29:1-10 (in Chinese with English abstract).
doi: 10.11963/1002-7807.ysxysx.20170825
[3] Chautard H, Jacquet M, Schoentgen F, Bureaud N, Benedetti H . Tfs1p, a member of the PEBP family, inhibits the Ira2p but not the Ira1p Ras GTPase-activating protein in Saccharomyces cerevisiae . Eukary Cell, 2004,3:459-470.
doi: 10.1128/EC.3.2.459-470.2004 pmid: 15075275
[4] Hengst U, Albrecht H, Hess D, Monard D . The phosphatidylethanolamine-binding protein is the prototype of a novel family of serine protease inhibitors . J Biol Chem, 2001,276:535-540.
doi: 10.1074/jbc.M002524200 pmid: 11034991
[5] Banfield M J, Barker J J, Perry A C, Brady R L . Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction . Structure, 1998,6:1245-1254.
doi: 10.1016/S0969-2126(98)00125-7 pmid: 9782050
[6] Ryu J Y, Park C M, Seo P J . The floral repressor BROTHER OF FT AND TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis. Mol Cells, 2011,32:295-303.
doi: 10.1007/s10059-011-0112-9 pmid: 3887636
[7] Hanzawa Y, Money T, Bradley D . A single amino acid converts a repressor to an activator of flowering . Proc Natl Acad Sci USA, 2005,102:7748-7753.
doi: 10.1073/pnas.0500932102 pmid: 15894619
[8] Conti L, Bradley D . TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell, 2007,19:767-778.
doi: 10.1105/tpc.106.049767 pmid: 17369370
[9] Hanano S, Goto K . Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell, 2011,23:3172-3184.
doi: 10.1105/tpc.111.088641
[10] Serrano-Mislata A, Fernandez-Nohales P, Domenech M J, Hanzawa Y, Bradley D, Madueno F . Separate elements of the TERMINAL FLOWER 1 cis-regulatory region integrate pathways to control flowering time and shoot meristem identity. Development, 2016,143:3315-3327.
[11] Liu X, Zhang J, Abuahmad A, Franks R G, Xie D Y, Xiang Q Y . Analysis of two TFL1 homologs of dogwood species ( Cornus L.) indicates functional conservation in control of transition to flowering. Planta, 2016,243:1129-1141.
doi: 10.1007/s00425-016-2466-x pmid: 26825444
[12] Rantanen M, Kurokura T, Jiang P, Mouhu K, Hytonen T . Strawberry homologue of terminal flower1 integrates photoperiod and temperature signals to inhibit flowering . Plant J, 2015,82:163-173.
doi: 10.1111/tpj.12809 pmid: 25720985
[13] Si Z F, Liu H, Zhu J K, Chen J D, Wang Q, Fang L, Gao F K, Tian Y, Chen Y L, Chang L J, Liu B L, Han Z G, Zhou B L, Hu Y, Huang X Z, Zhang T Z . Mutation of SELF-PRUNING homologs in cotton promotes short-branching plant architecture . J Exp Bot, 2018,69:2543-2553.
doi: 10.1093/jxb/ery093 pmid: 29547987
[14] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X . Genome sequence of cultivated upland cotton ( Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015,33:524-530.
doi: 10.1038/nbt.3208 pmid: 25893780
[15] Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M , Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537.
doi: 10.1038/nbt.3207 pmid: 25893781
[16] Sparkes I A, Runions J, Kearns A, Hawes C . Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants . Nat Protoc, 2006,1:2019-2025.
doi: 10.1038/nprot.2006.286 pmid: 17487191
[17] Hori K, Matsubara K, Yano M . Genetic control of flowering time in rice: integration of Mendelian genetics and genomics . Theor Appl Genet, 2016,129:2241-2252.
doi: 10.1007/s00122-016-2773-4
[18] 东锐, 院海英, 顾超, 郑银英, 黄先忠, 崔百明 . 棉花GhFTL1基因的克隆及初步功能分析. 棉花学报, 2011,23:515-521.
doi: 10.3969/j.issn.1002-7807.2011.06.005
Dong R, Yuan H Y, Gu C, Zheng Y Y, Huang X Z, Cui B M . Cloning and primary analysis of the function of GhFTL1 gene in cotton(Gossypium hirsutum L.). Cotton Sci, 2011,23:515-521 (in Chinese with English abstract).
doi: 10.3969/j.issn.1002-7807.2011.06.005
[19] 吴嫚, 范术丽, 宋美珍, 庞朝友, 喻树迅 . 棉花GhCO基因的克隆与表达分析. 棉花学报, 2010,22:387-392.
doi: 10.3969/j.issn.1002-7807.2010.05.001
Wu M, Fan S L, Song M Z, Pang C Y, Yu S X . Cloning and expression analysis of GhCO gene in Gossypium hirsutum L. Cotton Sci, 2010,22:387-392 (in Chinese with English abstract).
doi: 10.3969/j.issn.1002-7807.2010.05.001
[20] 张文香, 庞朝友, 范术丽, 宋美珍, 魏恒玲, 喻树迅 . 棉花SVP-like基因GhMADS29的克隆与表达分析. 安徽农业科学, 2015,43(15):28-31.
Zhang W X, Pang C Y, Fan S L, Song M Z, Wei H L, Yu S X . Molecular cloning and expression analysis of SVP-like gene GhMADS29 from Gossypium hirsutum L. J Anhui Agric Sci, 2015,43(15):28-31 (in Chinese with English abstract).
[21] Jeong S, Clark S E . Photoperiod regulates flower meristem development in Arabidopsis thaliana. Genetics, 2005,169:907-915.
doi: 10.1534/genetics.104.033357
[22] Mengin V, Pyl E T, Alexandre M T, Sulpice R, Krohn N, Encke B, Stitt M . Photosynthate partitioning to starch in Arabidopsis thaliana is insensitive to light intensity but sensitive to photoperiod due to a restriction on growth in the light in short photoperiods. Plant Cell Environ, 2017,40:2608-2627.
doi: 10.1111/pce.13000 pmid: 28628949
[23] Zhang X H, Wang C C, Pang C Y, Wei H L, Wang H T, Song M Z, Fan S L, Yu S S . Characterization and functional analysis of PEBP family genes in upland cotton ( Gossypium hirsutum L.). PLoS One, 2016,11:e0161080.
doi: 10.1371/journal.pone.0161080 pmid: 725
[24] Ryu J Y, Lee H J, Seo P J, Jung J H, Ahn J H, Park C M . The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity. Mol Plant, 2014,7:377-387.
doi: 10.1093/mp/sst114 pmid: 23935007
[1] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[2] Mao-Ni CHAO,Hai-Yan HU,Run-Hao WANG,Yu CHEN,Li-Na FU,Qing-Qing LIU,Qing-Lian WANG. Cloning and functional analysis of promoter of potassium transporter gene GhHAK5 in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2020, 46(01): 40-51.
[3] Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data [J]. Acta Agronomica Sinica, 2019, 45(2): 196-203.
[4] Cong HUANG,Xiao-Fang LI,Ding-Guo LI,Zhong-Xu LIN. QTL Mapping for Yield, Growth Period and Plant Height Traits Using MAGIC Population in Upland Cotton [J]. Acta Agronomica Sinica, 2018, 44(9): 1320-1333.
[5] Chao LI,Zhi-Kun LI,Qi-Shen GU,Jun YANG,Hui-Feng KE,Li-Qiang WU,Guo-Ning WANG,Yan ZHANG,Jin-Hua WU,Gui-Yin ZHANG,Yuan-Yuan YAN,Zhi-Ying MA,Xing-Fen WANG. Molecular Evaluation for Chromosome Segment Substitution Lines of Gossypium barbadense and QTL Mapping for Fiber Quality and Yield [J]. Acta Agronomica Sinica, 2018, 44(8): 1114-1126.
[6] Guo-Zhong ZHU,Fang ZHANG,Jie FU,Le-Chen LI,Er-Li NIU,Wang-Zhen GUO. Genome-wide Screening and Evaluation of SNP Core Loci for Identification of Upland Cotton Varieties [J]. Acta Agronomica Sinica, 2018, 44(11): 1631-1639.
[7] Mao-Ni CHAO, Qing-Yu WEN, Zhi-Yong ZHANG, Gen-Hai HU, Jin-Bao ZHANG, Guo WANG, Qing-Lian WANG. Sequence Characteristics and Expression Analysis of Potassium Transporter Gene GhHAK5 in Upland Cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2018, 44(02): 236-244.
[8] SHEN Chao,LI Ding-Guo,NIE Yi-Chun,LIN Zhong-Xu. QTL Mapping for Yield and Fiber Quality Traits Using Gossypium mustelinum Chromosome Segment Introgression Lines [J]. Acta Agron Sin, 2017, 43(12): 1733-1745.
[9] LYU You-Jun,YANG Wei-Jun,ZHAO Lan-Jie,YAO Jin-Bo,CHEN Wei,LI Yan,ZHANG Yong-Shan. Genome-wide Identification and Expression Analysis of SRO Genes Family in Gossypium hirsutum L. [J]. Acta Agron Sin, 2017, 43(10): 1468-1479.
[10] YANG Yan-Long,XIAO-Fei,XU Shou-Zhen,WANG Yu-Xuan,ZUOWen-Qing,LIANG Fu-Bin,ZHANG Wang-Feng. Development of Cotton Canopy Structure Characteristics of Cotton Varieties Grown in Different Decades in Northern Xinjiang [J]. Acta Agron Sin, 2017, 43(10): 1518-1526.
[11] CHEN Xu-Sheng,DI Jia-Chun,ZHOU Xiang-Yang,ZHAO Liang. Hormone Expression and Tp Gene Chromosomal Localization of Tall Plant Mutant from Upland Cotton [J]. Acta Agron Sin, 2017, 43(06): 935-939.
[12] PENG Zhen,HE Shou-Pu,GONG Wen-Fang,PAN Zhao-E,JIA Yin-Hua,LU Yan-Li,DU Xiong-Ming. Transcriptome Analysis of Transcription Factors Expression PatterninUpland Cotton Seedlings under NaCl Stress [J]. Acta Agron Sin, 2017, 43(03): 354-370.
[13] HAN Ze-Gang,ZHAO Zeng-Qiang,HE Lan-Lan,CHAI Meng-Liang,LI Hui-Hui,ZHANG Wei. Expression Changes of Transcription Factors in Susceptible and Resistant Upland Cotton Cultivars (Gossypium hirsutum L.) in Response to Fusarium wilt [J]. Acta Agron Sin, 2015, 41(02): 228-239.
[14] PENG Zhen,HE Shou-Pu,SUN Jun-Ling,XU Fei-Fei,JIA Yin-Hua,PAN Zhao-E,WANG Li-RuDU Xiong-Ming. An Efficient Approach to Identify Salt Tolerance of Upland Cotton at Seedling Stage [J]. Acta Agron Sin, 2014, 40(03): 476-486.
[15] AI Xian-Tao,LIANG Ya-Jun,SHA Hong,WANG Jun-Duo,ZHENG Ju-Yun,Tu-Er-Xun-Jiang,DUO Li-Kun,LI Xue-Yuan,HUA Jin-Ping. Genetic Diversity Analysis on Local Upland Cotton Cultivars in Xinjiang Based on SSR Markers [J]. Acta Agron Sin, 2014, 40(02): 369-379.
Full text



No Suggested Reading articles found!