Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (12): 1733-1745.doi: 10.3724/SP.J.1006.2017.01733


QTL Mapping for Yield and Fiber Quality Traits Using Gossypium mustelinum Chromosome Segment Introgression Lines

SHEN Chao1, LI Ding-Guo2, NIE Yi-Chun1,LIN Zhong-Xu1,*   

  1. 1 National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; 2 College of Agronomy, Yangtze University, Jingzhou 434025, China
  • Received:2017-04-17 Revised:2017-09-10 Online:2017-12-12 Published:2017-09-28
  • Supported by:

    The study was supported by the National Major Project for Developing New GM Crops (2016ZX08009001).


The genetic basis of upland cotton is narrow, which hinders the progress of genetic improvement of cotton. To effectively broaden the genetic basis of upland cotton, we developed BC5S5 chromosome segment substitution lines (CSSLs) population consisting of 71 CSSLs, which was derived from the Gossypium mustelinum, the wild cotton (AD4) as the donor, and B0011, one parent of national authorized cotton variety Huazamian H318 with good comprehensive characters of upland cotton line (AD1) as the receptor. A comprehensive analysis was conducted via the SLAF-seq genotyping and phenotyping under multiple environments. This population showed a wide range of variation in yield components and fiber quality, and a total of 48 QTLs were detected including 19 for yield components and 29 for fiber quality. Among the QTLs for nine traits, 32 and 16 were on the At and Dt sub-genomes, respectively. Further analyzing revealed that 30 QTLs showed positive additive effects, and 18 QTLs showed negative additive effects. The results of this study lay a foundation for the genetic improvement of upland cotton using the elite alleles of important agronomic traits from G. mustelinum.

Key words: Upland cotton, G. mustelinum, CSILs, Yield, Fiber quality, QTL, Additive Effect

[1]Grover C E, Gallagher J P, Jareczek J J, Page J T, Udall J A, Gore M A, Wendel J F. Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol Phylogenet Evol, 2015, 92: 45–52 [2]Fang D D, Jenkins J N, Deng D D, McCarty J C, Li P, Wu J. Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genomics, 2014, 15: 397 [3]Zhang J F, Wu M, Yu J W, Li X L, Pei W F. Breeding Potential of introgression lines developed from interspecific crossing between upland cotton (Gossypium hirsutum) and Gossypium barbadense: heterosis, combining ability and genetic effects. PLoS One. 2016, 11: e0143646 [4]王云鹏, 王省芬, 李志坤, 杨鑫雷, 张艳, 吴立强, 吴金华, 张桂寅, 马峙英. 陆地棉背景的Pima棉染色体片段置换系创制. 植物遗传资源学报, 2016, 17: 114–119 Wang Y P, Wang X F, Li Z K, Yang X L, Zhang Y, Wu L Q, Wu J H, Zhang G Y, Ma Z Y. Development of pima cotton chromosome segment substitution lines with Gossypium hirsutum background. J Plant Genet Resour, 2016, 17: 114–119 (in Chinese with English abstract) [5]Jiang C X, Wright R J, El-Zik K, Paterson A H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA, 1998, 95: 4419–4424 [6]Li X, Wang W, Wang Z, Li K, Lim Y P, Piao Z. Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa. Front Plant Sci, 2015, 6: 432 [7]Wang P, Zhu Y J, Song X L, Cao Z B, Ding Y Z, Liu B L, Zhu X F, Wang S, Guo W Z, Zhang T Z. Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor Appl Genet, 2012, 124: 1415–1428 [8]Yamamoto T, Yonemaru J, Yano M. Towards the understanding of complex traits in rice: substantially orsuperficially? DNA Res, 2009, 16: 141–154 [9]Eshed Y, Zamir D. An introgression line population of lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162 [10]王立秋, 赵永锋, 薛亚东, 张祖新, 郑用琏, 陈景堂. 玉米衔接式片段导入系群体的构建和评价. 作物学报, 2007, 33: 663–668 Wang L Q, Zhao Y F, Xue Y D, Zhang Z X, Zheng Y L, Chen J T. Development and evaluation of two link-up single segment introgression lines (SSILs) in Zea mays. Acta Agron Sin, 2007, 33: 663–668 (in Chinese with English abstract) [11]高晓清, 谢学文, 许美容, 王磊, 石英尧, 高用明, 朱苓华, 周永力, 黎志康. 水稻抗纹枯病导入系的构建及抗病位点的初步定位. 作物学报, 2011, 37: 1559–1568 Gao X Q, Xie X W, Xu M R, Wang L, Shi Y Y, Gao Y M, Zhu L H, Zhou Y L, Li Z K. Development of introgression lines and identification of QTLs for resistance to sheath blight. Acta Agron Sin, 2011, 37: 1559–1568 (in Chinese with English abstract) [12]Bian J M, He H H, Shi H, Zhu G Q, Li C J, Zhu C G, Peng X S, Yu Q Y, Fu J R, He X F, Chen X R, Hu L F, Ou-Yang L J. Quantitative trait loci mapping for flag leaf traits in rice using a chromosome segment substitution line population. Plant Breed, 2014, 133: 203–209 [13]He Q Y, Yang H Y, Xiang S H, Wang W B, Xing G N, Zhao T J, Gai J Y. QTL mapping for the number of branches and pods using wild chromosome segment substitution lines in soybean [Glycine max (L.) Merr.]. Plant Genet Resour, 2014, 12: S172–S177 [14]Korff M V, Wang H, Léon J, Pillen, K. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet, 2004, 109: 1736–1745 [15]Howell P M, Lydiate D J, Marshall D F. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome, 1996, 39: 348–358 [16]Wang P, Ding Y Z, Lu Q X. Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum. Sci Bull, 2008, 53: 1512–1517 [17]朱亚娟, 王鹏, 郭旺珍, 张天真. 利用海岛棉染色体片段导入系定位衣分和籽指QTL. 作物学报, 2010, 36: 1318–1323 Zhu Y J, Wang P, Guo W Z, Zhang T Z. Mapping QTLs for lint percentage and seed index using Gossypium barbadense chromosome segment introgression lines. Acta Agron Sin, 2010, 36: 1318–1323 (in Chinese with English abstract) [18]王鹏, 张天真. 利用棉花海陆种间染色体片段导入系剖析光合色素含量的遗传基础. 作物学报, 2012, 38: 947–953 Wang P, Zhang T Z. Genetic dissection of photosynthetic pigment content in cotton interspecific chromosome segment introgression lines. Acta Agron Sin, 2012, 38: 947–953 (in Chinese with English abstract) [19]付央, 苑冬冬, 胡文静, 蔡彩平, 郭旺珍. 陆地棉背景下海岛棉第18染色体片段置换系的培育及相关农艺性状QTL定位. 作物学报, 2013, 39: 21–28 Fu Y, Yuan D D, Hu W J, Cai C P, Guo W Z. Development of Gossypium barbadense chromosome 18 segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum and mapping of QTLs related to agronomic traits. Acta Agron Sin, 2013, 39: 21–28 (in Chinese with English abstract) [20]黎波涛, 石玉真, 龚举武, 李俊文, 刘爱英, 王涛, 商海红, 巩万奎, 陈婷婷, 葛群, 张金凤, 王永波, 胡玉枢, 袁有禄. 多环境下陆地棉染色体片段代换系及F1皮棉产量与纤维品质的表型分析. 棉花学报, 2016, 28: 75–80 Li B T, Shi Y Z, Gong J W, Li J W, Liu A Y, Wang T, Shang H H, Gong W K, Chen T T, Ge Q, Zhang J F, Wang Y B, Hu Y S, Yuan Y L. Phenotypic analysis of lint yield and fiber quality traits of cotton chromosome segment substitution lines and F1 hybrids in multiple environments. Cotton Sci, 2016, 28: 75–80 (in Chinese with English abstract) [21]Si Z F, Chen H, Zhu X F, Cao Z B, Zhang T Z. Genetic dissection of lint yield and fiber quality traits of G. hirsutum in G. barbadense background. Mol Breed, 2017, 37: 9 [22]肖松华, 刘剑光, 赵君, 吴巧娟, 俞敬忠, 喻德跃. 棉花远缘杂交创制抗黄萎病新种质. 棉花学报, 2015, 27: 524–533 Xiao S H, Liu J G, Zhao J, Wu Q J, Yu J Z, Yu D Y. Creation of a new resistant germplasm to Verticillium wilt by distant hybridization in Upland cotton. Cotton Sci, 2015, 27, 524–533 (in Chinese with English abstract) [23]汪保华, 王为, 庄智敏, 朱新宇. 3个黄褐棉近等基因系的选择及评价. 中国农学通报, 2011, 27: 45–49 Wang B H, Wang W, Zhuang Z M, Zhu X Y. Selection and evaluation of three Gossypium mustelinum near-isogenic lines. Chin Agric Sci Bull, 2011, 27: 45–49 (in Chinese with English abstract) [24]刘宏伟, 李南南, 苗玉焕, 柳仕明, 聂以春, 朱龙付, 张献龙. 利用FBP:iaaM改良华杂棉H318产量与纤维品质研究. 石河子大学学报(自然科学版), 2016, 34: 134–140 Liu H W, Li N N, Miao Y H, Liu S M, Nie Y C, Zhu L F, Zhang X L. Study on yield and fiber quality improvement of “Huazamian H318” with FBP:iaaM. J Shihezi Univ (Nat Sci), 2016, 34: 134–140 (in Chinese with English abstract) [25]Kashif I M. 陆地棉×黄褐棉种间全基因组SSR高密度遗传图谱的构建. 中国农业科学院博士学位论文, 河南安阳, 2014 Kashif I M. Genome-Wide SSR High Density Genetic Map Construction from an Interspecific Cross of G. hirsutum × G. mustelinum. PhD Dissertation of Chinese Academy of Agricultural Sciences, Anyang, China, 2014 (in Chinese with English abstract) [26]Sun X W, Liu D Y, Zhang X F, Li W B, Liu H, Hong W G, Jiang C B, Guan N, Ma, C X, Zeng H P, Xu, C H, Song, J, Huang L, Wang C M, Shi J J, Wang R, Zheng X H, Lu C Y, Wang X W, Zheng H K. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 2013, 8: e58700 [27]Shen C, Jin X, Zhu D, Lin Z X. Uncovering SNP and Indel variations of tetraploid cottons by SLAF-seq. BMC Genomics, 2017, 18: 247 [28]Wang H T, Huang C, Guo H L, Li X M, Zhao W X, Dai B S, Yan Z H, Lin Z X. QTL mapping for fiber and yield traits in upland cotton under multiple environments. PLoS One, 2015, 10: e0130742 [29]Merk H L,Yarnes S C, Van Deynze A, Tong N K, Menda N, Mueller L A, Mutschler M A, Loewen S A, Myers J R, Francis D M. Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm. J Amer Soc Hort Sci, 2012, 137: 427–437 [30]Wang B H, Liu L M, Zhang D, Zhuang Z M, Guo H, Qiao X, Wei L J, Rong J K, May O L, Paterson A H, Chee P W. A genetic map between Gossypium hirsutum and the Brazilian Endemic G. mustelinum and its application to QTL mapping. G3: Genes Genom Genet, 2016, 6: 1673–1685 [31]Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q X, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y Y, Hui Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015, 33: 531–537 [32]Wang J K, Wan X Y, Crossa J, Crouch J, Weng J F, Zhai H Q, Wan J M. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006, 88: 93–104 [33]Wang J K, Wan X Y, Li H H, Pfeiffer W H, Crouch J, Wan J M. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach. Theor Appl Genet, 2007, 115: 87–100 [34]McCouch S R, Cho Y G, Yano P E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11–13 [35]Wang S, Chen J D, Zhang W P, Hu Y, Chang L J, Fang L, Wang Q, Lv F, Wu H T, Si Z F, Chen S Q, Cai C P, Zhu X F, Zhou B L, Guo W Z, Zhang T Z. Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol, 2015, 16: 108 [36]王鹏. 陆地棉TM-1背景的海岛棉染色体片段导入系的培育鉴定和纤维强度QTL精细定位. 南京农业大学博士学位论文, 江苏南京, 2009 Wang P. Development and Evaluation of G. barbadense Chromosome Segment Substitution Lines Cotton in Genetic Standard Line, TM-1 of G. hirsutum and Fine Mapping QTL for Fiber. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2009 (in Chinese with English abstract) [37]Rong J K, Feltus, F A, Waghmare V N, Pierce G J, Chee P W, Draye X, Saranga Y, Wright R J, Wilkins T A, May O L, Smith C W, Gannaway J R, Wendel J F, Paterson A H. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics, 2007, 176: 2577–2588 [38]Paterson A H, Saranga Y, Menz M, Jiang C X, Wright R J. QTL analysis of genotype × environment interaction affecting cotton fiber quality. Theor Appl Genet, 2003, 6: 384–396 [39]Zhang S W, Feng L C, Xing L T, Yang B, Gao X, Zhu X F, Zhang T Z, Zhou B L. New QTLs for lint percentage and boll weight mined in introgression lines from two feral landraces into Gossypium hirsutum acc TM-1. Plant Breed, 2016, 135: 90–101 [40]Cao Z B, Zhu X F, Chen H, Zhang T Z. Fine mapping of clustered quantitative trait loci for fiber quality on chromosome 7 using a Gossypium barbadense introgressed line. Mol Breed, 2015, 35: 1–13

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[4] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[5] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[6] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[7] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[8] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[9] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[10] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[11] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[12] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[13] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[14] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[15] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
Full text



No Suggested Reading articles found!