Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (3): 381-389.doi: 10.3724/SP.J.1006.2019.84105

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transcriptional regulation of oil biosynthesis in different parts of Wanyou 20 (Brassica napus) seeds

Yu-Ting ZHANG,Shao-Ping LU,Cheng JIN,Liang GUO()   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2018-07-28 Accepted:2018-12-24 Online:2019-03-12 Published:2019-01-03
  • Contact: Liang GUO E-mail:guoliang@mail.hzau.edu.cn
  • Supported by:
    This study was supported by the National Science Foundation for Young Scientists of China(31701458);Fundamental Research Funds for the Central Universities(2662015PY090)

Abstract:

Brassica napus is one of the main oil crops and the seed oil content is generally between 35% and 50%. Oil is mainly stored in the seed embryo. Embryo is composed of cotyledons (including outer and inner cotyledons) and embryonic axis. The oil content and fatty acid composition of different parts of low erucic Brassica napus WY20’s seed were analyzed. There was a significant difference in oil content in different parts of the seed. The oil content in the outer cotyledon was the highest while embryonic axis had the lowest oil content. At the same time, the fatty acid composition also showed significant difference in different parts of the seed. The ratio of C16:0, C18:2, and C20:0 in embryonic axis was significantly higher than that in cotyledon. The ratio of C16:0 in the embryonic axis was about twice more than that of the cotyledons. The ratio of C18:1 and C20:1 in cotyledons was significantly higher than that in embryonic axis. C18:0 had the lowest content in the outer cotyledon and no difference in the inner cotyledons and embryonic axis. C18:3 had the highest content in the outer cotyledons and no difference between inner cotyledons and embryonic axis. Transcriptome analysis was performed for the inner cotyledon, outer cotyledon and embryonic axis of the 34-day-old seed. A total of 7192 differentially expressed genes (DEGs) were identified after pairwise comparison of gene expression of the three parts. There were much fewer DEGs between cotyledons and more DEGs between cotyledon and embryonic axis. These DEGs were enriched in biological processes such as photosynthesis, fatty acid metabolism and chlorophyll metabolism. Gene function annotations revealed that there were 355 genes involved in lipid metabolism, especially in the de novo fatty acid biosynthesis in plastid. This study suggests that transcriptional regulation of key genes involved in oil biosynthesis results in different oil contents and fatty acid compositions in different parts of seed in Brassica napus.

Key words: Brassica napus, different seed parts, oil content, fatty acid composition, transcriptional regulation

Fig. 1

Oil content and fatty acid composition in different parts of WY20 seed A: bright-field image in different parts of WY20 seed under microscope; B: oil content in different parts of seed; C: weight percentage in different parts of seed; D: fatty acid composition in different parts of seed; E: whole seed fatty acid composition."

Fig. 2

Distribution of differentially expressed genes in three parts of seed A: PCA analysis of different samples; B: differentially expressed genes in IC, OC, and EA; C: Venn diagram of differentially expressed genes."

Fig. 3

GO analysis of differentially expressed genes in three different parts of Brassica napus embryo A: GO analysis of differentially expressed genes between IC and OC; B: GO analysis of differentially expressed genes between IC and EA; C: GO analysis of differentially expressed genes between OC and OC."

Table 1

Differentially expressed oil biosynthesis-related genes in different seed tissues of WY20"

基因名
Gene ID
注释描述
Annotation description
蛋白家族缩写
Protein family abbreviations
分组
Group
BnaA03g13590D Fatty acid desaturase 3 FAD3 EA-IC-OC
BnaC03g16520D Fatty acid desaturase 3 FAD3 EA-IC/EA-OC
BnaC04g14820D Fatty acid desaturase 3 FAD3 EA-IC/EA-OC
BnaC04g40760D Fatty acid desaturase 3 FAD3 EA-IC/EA-OC
BnaA04g17150D Fatty acid desaturase 3 FAD3 EA-IC/EA-OC
BnaAnng09250D Fatty acid desaturase 2 FAD2 EA-IC/EA-OC
BnaA02g11570D Hydroxysteroid dehydrogenase 1 OBO EA-IC-OC
BnaA03g23490D Hydroxysteroid dehydrogenase 1 OBO EA-IC-OC
BnaC03g27860D Hydroxysteroid dehydrogenase 1 OBO EA-IC-OC
BnaCnng57830D Hydroxysteroid dehydrogenase 1 OBO EA-IC
BnaA09g02110D Oleosin OBO EA-OC
BnaA03g20420D Stearoyl-acyl-carrier-protein desaturase protein SAD EA-IC/EA-OC
BnaA01g32860D Stearoyl-acyl-carrier-protein desaturase protein SAD EA-IC/EA-OC
BnaC03g24420D Stearoyl-acyl-carrier-protein desaturase protein SAD EA-IC/EA-OC
BnaC09g41580D Stearoyl-acyl-carrier-protein desaturase protein SAD EA-IC/EA-OC
BnaA10g18080D Stearoyl-acyl-carrier-protein desaturase protein SAD EA-IC/EA-OC
BnaA05g03490D Stearoyl-acyl-carrier-protein desaturase SAD EA-OC
BnaC04g03030D Stearoyl-acyl-carrier-protein desaturase SAD EA-OC
BnaC09g19280D 3-ketoacyl-acyl carrier protein synthase I KASI EA-IC/EA-OC
BnaA02g24400D 3-ketoacyl-acyl carrier protein synthase I KASI EA-IC/EA-OC
BnaA06g36060D 3-ketoacyl-acyl carrier protein synthase I KASI EA-IC/EA-OC
BnaC06g35760D 3-ketoacyl-acyl carrier protein synthase II KAS II EA-IC/EA-OC
BnaA07g31890D 3-ketoacyl-acyl carrier protein synthase II KAS II EA-IC/EA-OC
BnaA07g21940D 3-ketoacyl-acyl carrier protein synthase II KAS II EA-IC/EA-OC
BnaC06g22680D 3-ketoacyl-acyl carrier protein synthase II KAS II EA-IC
BnaA04g07120D Acyl-ACP thioesterase FATA EA-IC/EA-OC
BnaCnng41490D Acyl-ACP thioesterase FATA EA-IC/EA-OC
BnaCnng00070D FATA acyl-ACP thioesterase FATA FATA EA-IC/EA-OC
BnaA07g05070D FATA acyl-ACP thioesterase FATA FATA EA-IC/EA-OC
BnaC03g75820D Ketoacyl-ACP Reductase KAR EA-IC/EA-OC
BnaA02g13310D Beta-ketoacyl reductase KAR EA-IC/EA-OC
BnaA07g26670D Beta-ketoacyl reductase KAR EA-IC/EA-OC
BnaC06g28830D Beta-ketoacyl reductase KAR EA-IC/EA-OC
BnaC09g16320D Acyl carrier protein ACP EA-IC/EA-OC
BnaC09g03000D Acyl carrier protein ACP EA-IC/EA-OC
BnaA09g03610D Acyl carrier protein ACP EA-IC/EA-OC
BnaAnng23710D Acyl carrier protein ACP EA-OC
BnaC03g45040D Enoyl-ACP Reductase ENR EA-IC/EA-OC
BnaC07g04330D Enoyl-ACP Reductase ENR EA-IC/EA-OC
BnaA03g38220D Enoyl-ACP Reductase ENR EA-IC/EA-OC
BnaAnng02240D E2 component of pyruvate dehydrogenase complex DHLAT EA-IC/EA-OC
BnaC06g08280D E2 component of pyruvate dehydrogenase complex DHLAT EA-IC/EA-OC
BnaC07g23030D E2 component of pyruvate dehydrogenase complex DHLAT EA-IC
BnaA06g33300D E2 component of pyruvate dehydrogenase complex DHLAT EA-IC
BnaAnng22560D Chloroplasticacetyl coenzyme A carboxylase BCCP EA-IC/EA-OC
BnaC09g42420D Biotin carboxyl carrier protein 2 BCCP EA-IC/EA-OC
BnaA03g02830D Thioesterase superfamily protein HAD EA-IC/EA-OC
BnaA02g00390D Thioesterase superfamily protein HAD EA-IC
BnaA07g20920D Long chain acyl-CoA synthetase 9 LACS9 EA-IC/EA-OC
BnaC06g20910D Long chain acyl-CoA synthetase 9 LACS9 EA-IC
BnaA01g17630D E3 component of pyruvate dehydrogenase complex LPD EA-IC/EA-OC
BnaCnng75250D Acetyl-CoA carboxylase ACCase EA-IC
BnaA05g12180D Acyl-carrier-protein MCMT EA-IC/EA-OC

Fig. 4

Analysis of differentially expressed oil biosynthesis-related genes in lipid metabolism pathway The shadow in venn diagram represents where the differentially expressed genes are located. Number in red indicates the ratio of genes’ average TPM of between IC and EA, number in green indicates the ratio of genes’ average TPM of between OC and EA, number in blue indicates the ratio of genes’ average TPM of between IC and OC.Abbreviation of genes that encode proteins: DHLAT: dihydrolipoamide acetyltransferase; LPD: dihydrolipoamide dehydrogenase; BCCP: biotin carboxyl carrier protein; ACCase: acetyl-CoA carboxylase; MCMT: malonyl-CoA: ACP malonyltransferase; KASI: 3-ketoacyl-acyl carrier protein synthase I; KASII: 3-ketoacyl-acyl carrier protein synthase II; KASIII: 3-ketoacyl-acyl carrier protein synthase III; KAR: ketoacyl-ACP reductase; HAD: hydroxyacyl-ACP dehydrase; ENR: enoyl-ACP reductase; ACP: acyl carrier protein; SAD: stearoyl-acyl carrier protein desaturase; FATA: acyl-ACP thioesterase A; FATB: acyl-ACP thioesterase B; LACS: long-chain acyl-CoA synthetase; FAD2: FA desaturase 2; FAD3: FA desaturase 3; CPT: CDP-choline: diacylglycerol cholinephosphotransferase; PDCT: phosphatidylcholine:diacylglycerol cholinephosphotransferase; GPAT: glycerol-3-phosphate acyltransferase; PDAT: phospholipid:diacylglycerol acyltransferase; LPAAT: lysophosphatidic acid acyltransferase; PAP: phosphatidic acid phosphatase; DGAT: diacylglycerol acyltransferase; OBO: oil body oleosin; LTP: lipid transfer protein; ER: endoplasmic reticulum."

[1] 沈金雄, 傅廷栋 . 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011,13(1):1-8
doi: 10.3969/j.issn.1008-0864.2011.01.01
Shen J X, Fu T D . Rapeseed production improvement and edible oil supply in China. J Agric Sci Technol, 2011,13(1):1-8 (in Chinese with English abstract)
doi: 10.3969/j.issn.1008-0864.2011.01.01
[2] 沈琼 . 中国油菜产业竞争优势与劣势分析. 农业产品加工, 2008, ( 8):57-59
doi: 10.3969/j.issn.1671-9646-B.2008.08.016
Shen Q . Analysis on competitive advantages and disadvantages of Chinese rapeseed industry. Acad Period Farm Products Proc, 2008, ( 8):57-59 (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-9646-B.2008.08.016
[3] 李殿荣, 田建华, 陈文杰, 张文学, 李永红, 王灏 . 甘蓝型油菜特高含油量育种技术与资源创新. 西北农业学报, 2011,20(12):83-87
doi: 10.7606/j.issn.1004-1389.2011.12.016
Li D R, Tian J H, Chen W J, Zhang W X, Li Y H, Wang H . Breeding technologies and germplasm innovation on extra- high-oil content in Brassica napus. Acta Agric Boreali-occident Sin, 2011,20(12):83-87 (in Chinese with English abstract)
doi: 10.7606/j.issn.1004-1389.2011.12.016
[4] 张永霞, 赵锋, 张红玲 . 中国油菜产业发展现状、问题及对策分析. 世界农业, 2015, ( 4):96-99
doi: 10.13856/j.cn11-1097/s.2015.04.022
Zhang Y X, Zhao F, Zhang H L . Analysis on the development status, problems and countermeasures of Chinese rapeseed industry. World Agric, 2015, (4):96-99 (in Chinese with English abstract)
doi: 10.13856/j.cn11-1097/s.2015.04.022
[5] 王汉中, 殷艳 . 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014,36:414-421
doi: 10.7505/j.issn.1007-9084.2014.03.020
Wang H Z, Yin Y . Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014,36:414-421 (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2014.03.020
[6] 熊秋芳, 张效明, 文静, 李兴华, 傅廷栋, 沈金雄 . 菜籽油与不同食用植物油营养品质的比较——兼论油菜品质的遗传改良. 中国粮油学报, 2014,29:122-128
doi: 10.3969/j.issn.1003-0174.2014.06.023
Xiong Q F, Zhang X M, Wen J, Li X H, Fu T D, Shen J X . Comparison of nutritive quality between rapeseed oil and different edible vegetable oil—on the genetic improvement of rapeseed quality. J Chin Cereals Oils Assoc, 2014,29:122-128 (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-0174.2014.06.023
[7] 熊源 . 植物油的种类与营养价值. 中国粮食经济, 2014, (6):72
doi: 10.3969/j.issn.1007-4821.2014.06.023
Xiong Y . Types and nutritional value of vegetable oil. Chin Food Economy, 2014, ( 6):72 (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-4821.2014.06.023
[8] Saha S, Enugutti B, Rajakumari S . Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic. diacylglycerol acyltransferase. Plant Physiol, 2006,141:1533-1543
doi: 10.1104/pp.106.084079 pmid: 1533943
[9] Thelen J J, Ohlrogge J B . Metabolic engineering of fatty acid biosynthesis in Plants. Metab Eng, 2002,4:12-21
doi: 10.1006/mben.2001.0204 pmid: 11800570
[10] Dahlqvist A, Stahl U, Lenman M . Phospholipid: diacylglycerol acyltransferase: An enzyme that catalyzes the Acyl-CoA-Independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA, 2000,97:6487-6492
doi: 10.1073/pnas.120067297
[11] 周奕华, 陈正华 . 植物种子中脂肪酸代谢途径的遗传调控与基因工程. 植物学通报, 1998,15(5):16-23
Zhou Y H, Chen Z H . Genetic manipulation and gene engineering of fatty acid metabolism in plant seeds. Chin Bull Bot, 1998,15(5):16-23 (in Chinese with English abstract)
[12] 周丹, 赵江哲, 柏杨, 张群, 井文, 章文华 . 植物油脂合成代谢及调控的研究进展. 南京农业大学学报, 2012,35(5):81-90
doi: 10.7685/j.issn.1000-2030.2012.05.009
Zhou D, Zhao J Z, Bai Y, Zhang Q, Jing W, Zhang W H . Research advance in triacylglycerol synthesis, metabolism and regulation in plants. 2012,35(5):81-90 (in Chinese with English abstract)
doi: 10.7685/j.issn.1000-2030.2012.05.009
[13] Bates P D, Stymne S, Ohlrogge J B . Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol, 2013,16:358-364
doi: 10.1016/j.pbi.2013.02.015 pmid: 23529069
[14] Horn P J, Korte A R, Neogi P B, Love E, Fuchs J, Strupat K, Borisjuk L, Shulaev V, Lee Y J, Chapman K D . Spatial mapping of lipids at cellular resolution in embryos of cotton. Plant Cell, 2012,24:622-636
doi: 10.1105/tpc.111.094581 pmid: 22337917
[15] Horn P J, Silva J E, Anderson D, Fuchs J, Borisjuk L, Nazarenus T J, Shulaev V, Cahoon E B, Chapman K D . Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles. Plant J, 2013,76:138-150
doi: 10.1111/tpj.12278 pmid: 23808562
[16] Sturtevant D, Dueñas M E, Lee Y J, Chapman K D . Three- dimensional visualization of membrane phospholipid distributions in Arabidopsis thaliana seeds: a spatial perspective of molecular heterogeneity. Biochim Biophys Acta, 2017,1862:268-281
doi: 10.1016/j.bbalip.2016.11.012 pmid: 27919665
[17] Woodfield H K, Sturtevant D, Borisjuk L, Munz E, Guschina I A, Chapman K, Harwood J L . Spatial and temporal mapping of key lipid species in Brassica napus seeds. Plant Physiol, 1998,173:1998-2009
doi: 10.1104/pp.16.01705 pmid: 28188274
[18] Sturtevant D, Lee Y J, Chapman K D . Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Curr Opin Biotech, 2015,37:53-60
doi: 10.1016/j.copbio.2015.10.004 pmid: 26613199
[19] Lu X, Chen D, Shu D . The differential transcription network between embryo and endosperm in the early developing maize seed. Plant Physiol, 2013,162:440-455
doi: 10.1104/pp.113.214874 pmid: 23478895
[20] He R, Salvato F, Park J J . A systems-wide comparison of red rice ( Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement. BMC Plant Biol, 2014,14:46-66.
[21] Schuster S C . Next-generation sequencing transforms today’s biology. Nat Methods, 2008,5:16-18
doi: 10.1038/nmeth1156 pmid: 18165802
[22] Metzker M L . Sequencing technologies: the next generation. Nat Rev Genet, 2010,11:31-46
doi: 10.1038/nrg2626 pmid: 19997069
[23] Louisa F L . RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2008,9:568-574
doi: 10.1038/nrg2423
[24] Troncoso-Ponce M A, Kilaru A, Cao X, Durrett T P, Fan J, Jensen J K, Thrower N A, Pauly M, Wilkerson C, Ohlrogge J B . Comparative deep transcriptional profiling of four developing oil seeds. Plant J, 2011,68:1014-1027
doi: 10.1111/j.1365-313X.2011.04751.x pmid: 21851431
[25] Dussert S, Morcillo F . Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. Plant Physiol, 2013,162:1337-1358
doi: 10.1104/pp.113.220525
[26] Lu S P, Sturtevant D, Aziz M, Jin C, Li Q, Chapman K D, Guo L . Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds. Plant J, 2018,94:915-932
doi: 10.1111/tpj.13959 pmid: 29752761
[27] Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L . Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc, 2012,7:562-578
doi: 10.1038/nprot.2012.016 pmid: 3334321
[28] Anders S, Pyl P T, Huber W . HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics, 2015,31:166-169
doi: 10.1093/bioinformatics/btu638 pmid: 25260700
[29] Wang L, Feng Z, Wang X, Wang X, Zhang X . DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010,26:136-138
doi: 10.1093/bioinformatics/btp612
[30] Love M I, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014,15:550-575
doi: 10.1186/s13059-014-0550-8 pmid: 25516281
[31] Baud S, Lepiniec L . Physiological and developmental regulation of seed oil production. Prog Lipid Res, 2010,49:235-249
doi: 10.1016/j.plipres.2010.01.001 pmid: 20102727
[32] Borisjuk L, Neuberger T, Schwender J, Heinzel N, Sunderhaus S, Fuchs J, Hay J O, Tschiersch H, Braun H P, Denolf P, Lambert B, Jakob P M, Rolletschek H . Seed architecture shapes embryo metabolism in oilseed rape. Plant Cell, 2013,25:113-128
doi: 10.1105/tpc.113.111740 pmid: 23709628
[33] Napier J A, Haslam R P, Beaudoin F . Understanding and manipulating plant lipid composition: Metabolic engineering leads the way. Curr Opin Plant Biol, 2014,19:68-75
doi: 10.1016/j.pbi.2014.04.001 pmid: 4070482
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[3] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[4] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[5] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[6] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[7] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[8] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[9] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[10] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[11] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[12] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[13] WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274.
[14] LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu. Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R [J]. Acta Agronomica Sinica, 2021, 47(2): 210-223.
[15] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!