Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (3): 460-468.doi: 10.3724/SP.J.1006.2019.84002


Effects of photoperiods and temperatures on physiological characteristics and chlorophyll synthesis precursors of adzuki bean seedlings

Ning HE1,Xue-Yang WANG1,Liang-Zi CAO1,Da-Wei CAO1,Yu LUO1,Lian-Zi JIANG2,Ying MENG1,Chun-Xu LENG1,Xiao-Dong TANG1,Yi-Dan LI1,Shu-Ming WAN1,Huan LU1,Xu-Zhen CHENG3,*()   

  1. 1 Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
    2 Food Science College, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2018-01-04 Accepted:2018-12-24 Online:2019-03-12 Published:2019-01-05
  • Contact: Xu-Zhen CHENG E-mail:chengxuzhen@caas.cn
  • Supported by:
    This study was supported by the Program of Introducing International Super Agricultural Science and Technology (948 Program)(2015-Z54);the China Agriculture Research System(CARS-08-G8)


The aim of this study was to discuss the mechanism of chilling injury and the blocked site of chlorophyll synthesis in primary leaf, providing theoretical basis for breeding and cultivation of cold-resistant cultivars. Two Japanese adzuki bean varieties with different temperature and light reactions were used to study the effects of short-term (18 d) and long-term (28 d) low temperature shading treatments (10-13°C, 2% shading) on H2O2, SOD, CAT, APX, and Chl of seedlings in the artificial climate chamber, and the effects of the treatment durations of low temperature (1 d, 3 d, 5 d, 7 d, 10°C, 50 μmol m -2 s -1) and dark (25°C, 1 d, 3 d, 5 d, 7 d) under chlorophyll synthesis blocked site (25°C, and under illumiation at 62.5 μmol m -2 s -1for 24 h). The content of H2O2 and activity of SOD had significant difference between cold resistant and susceptible varieties during seedling stage. The content of H2O2 in susceptible variety was 66 folds of the resistant one, and with the greening treatment antioxidant activity and content of chlorophyll were rapidly dropped until totally vanished after 8 h. The main cause of difference in chlorophyll synthesis between the two varieties was the dark treatment but not the low temperature treatment. It was suggested that the transformation from δ-ALA to Proto IX might be blocked in chloroplast stroma, which eventually inhibited chlorophyll synthesis and decreased chlorophyll content. It is suggested that H2O2 content and SOD activity may be more closely related to the cold tolerance of adzuki bean at seedling stage. The transformation of Proto IX is the blocking site in chlorophyll synthesis which causes etiolated seedlings of adzuki bean.

Key words: adzuki bean, light temperature treatment, antioxidant enzymes, chlorophyll synthesis

Table 1

Illumination and temperature of treatments four cultivation modes"

Cultivation mode
Seedling conditions
Illumination and low temperature treatment at seedling stage
Greening treatments
Temp. (°C)
光照Illumination 温度
Temp. (°C)
(μmol m-2 s-1)
time (d)
Temp. (°C)
(μmol m-2 s-1)
Treatment time (h)
I 20-25 Dark 10-13 72% shading 18, 28 20-25 Natural light 3, 8, 28
II 25 Dark 10 50 1, 3, 5, 7 25 62.5 24
III 25 Dark 25 Dark 1, 3, 5, 7 25 62.5 24
IV 25 Dark 25 Dark 7 25 62.5 0, 6, 12, 24

Fig. 1

Greening recovery after low temperature shading treatments A: Low temperature treatment 18 days greening 0 hour; B: Low temperature treatment 18 days greening 3 hours; C: Low temperature treatment 18 days greening 8 hours; D: Low temperature treatment 18 days greening 28 hours; E: Low temperature treatment 28 days greening 0 hour; F: Low temperature treatment 28 days greening 3 hours; G: Low temperature treatment 28 days greening 8 hours; H: Low temperature treatment 28 days greening 28 hours."

Table 2

Antioxidase activity and content of chlorophyll and H2O2 in leaves of seedlings under low temperature and green treatments"

Low temperature treatment (d)
Greening treatment (h)
Chl 含量
Chlorophyll content (μg g-1)
H2O2 content
(mmol kg-1 FW)
SOD activity
(Unit mg-1)
APX 活性
APX activity
(μmol min-1 mg-1)
CAT 活性
CAT activity
(μmol min-1 mg-1)
赤根大纳言 18 0 32.1±2.0 cC 0.640±0.12 eD 0.0116±0.000 gG 0.166±0.03 bcAB 0.209±0.02 dE
Akanedainagon 3 32.5±5.0 cC 1.838±0.31 dD 0.0296±0.002 bB 0.191±0.02 abAB 0.675±0.13 cDE
8 46.8±2.4 bB 1.541±0.33 deD 0.0306±0.002 aA 0.202±0.00 aA 1.867±0.28 aAB
28 115.6±8.2 aA 0.469±0.10 eD 0.0168±0.001 cC 0.106±0.01 deD 0.927±0.02 bcCD
斑小粒系-1 18 0 12.6±2.3 eD 1.354±0.31 deD 0.0141±0.001 eE 0.157±0.01 cBC 0.794±0.13 cCDE
Buchisyouryukei-1 3 14.7±0.8 deD 7.523±1.51 aA 0.0139±0.001 fF 0.153±0.03 cBC 1.947±0.22 aA
8 22.0±2.3 dCD 5.367±0.56 bB 0.0106±0.001 hH 0.117±0.01 dCD 1.318±0.21 bBC
28 23.2±0.3 dCD 3.759±0.12 cC 0.0166±0.001 dD 0.078±0.01 eD 1.035±0.12 bcCD
赤根大纳言 28 0 19.9±00.3 cBC 0.269±0.01 eE 0.0129±0.001 eE 0.079±0.01 dC 0.413±0.05 eD
Akanedainagon 3 32.6±11.3 bA 0.656±0.01 deDE 0.0353±0.006 bcBC 0.126±0.01 bcdBC 0.703±0.04 cdeBCD
8 38.7±12.8 aA 0.322±0.02 eDE 0.0461±0.002 bAB 0.200±0.00 aA 1.188±0.19 bAB
28 38.8±02.4 aA 0.251±0.00 eE 0.0194±0.000 deCDE 0.139±0.01 bcABC 0.812±0.03 cdBCD
斑小粒系-1 28 0 13.7±0.5 dCD 17.780±0.36 aA 0.0623±0.008 aA 0.089±0.02 cdC 0.544±0.14 deCD
Buchisyouryukei-1 3 13.2±3.2 dD 7.106±0.91 bB 0.0156±0.000 eDE 0.092±0.02 cdC 1.593±0.16 aA
8 0 0 0 0 0
28 0 0 0 0 0

Table 3

Content of chlorophyll in initial leaves of Adzuki bean under different low temperature and shading treatments (μg g-1) "

Treatment days
Content of chlorophyll under low temperature treatment
Content of chlorophyll under shading treatment
1 d 645.9±61.7 aA 621.5±50.0 aA 325.7±39.1 aA 419.1±32.4 aA
3 d 612.2±55.8 abA 547.5±49.9 aA 268.0±38.7 bAB 343.7±38.9 bB
5 d 536.6±36.3 bcAB 388.4±39.0 bB 198.9±23.2 cBC 96.7±32.5 cC
7 d 459.3±59.1 cB 299.2±14.0 cB 138.3±7.4 dC 49.1±5.7 cC

Table 4

Contents of main precursors of chlorophyll biosynthesis in etiolated seedling after greening treatments (μg g-1 FW) "

treatment (h)
Proto IX
Mg-Proto IX
赤根大纳言 0 1.2±0.3 eE 88.4±2.5 cdCD 9.3±0.8 cC 5.7±0.7 cC 23.4±3.7 dD
Akanedainagon 6 2.6±0.1 dD 103.9±12.1 cBCD 16.7±1.8 cC 10.0±0.9 cC 68.1±7.1 cC
12 4.1±0.8 bBC 157.4±12.3 bB 31.0±8.9 bB 19.8±6.1 bB 142.3±10.5 bB
24 5.1±0.5 aA 353.8±38.2 aA 70.5±12.8 aA 44.5±8.2 aA 227.7±10.5 aA
斑小粒系-1 0 2.5±0.1 dD 124.5±7.4 bcBC 12.9±2.8 cC 8.2±2.0 cC 30.6±0.1 dD
Buchisyouryukei-1 6 3.4±0.1 cC 78.1±13.0 cdCD 11.1±3.6 cC 6.0±1.9 cC 26.2±5.5 dD
12 3.6±0.1 bcC 54.9±5.8 dD 7.8±0.6 cC 4.5±0.4 cC 18.8±1.2 dD
24 4.8±0.1 aAB 48.0±12.8 dD 6.8±1.3 cC 4.0±1.0 cC 17.4±1.0 dD

Fig. 2

Influence from greening treatment of etiolated primary leaf to chlorophyll synthesis precursors"

[1] 徐宁, 程须珍, 王丽侠, 王素华, 刘长友, 孙蕾, 梅丽 . 用于中国小豆种质资源遗传多样性分析SSR分子标记筛选及应用. 作物学报, 2009,35:219-227.
Xu N, Cheng X Z, Wang L X, Wang S H, Liu C Y, Sun L, Mei L . Screening and application of SSR molecular markers for genetic diversity analysis of Chinese adzuki bean germplasm resources. Acta Agron Sin, 2009,35:219-227 (in Chinese with English abstract).
[2] 村田吉平 . 北海道における作物育種. 札幌: 北海道協同組合通信社, 1998. pp 139-155.
Murata K P. Hokkaido Plant Breeding. Sapporo: Hokkaido Agricultural Cooperatives Publisher, 1998. pp 139-155 (in Japanese).
[3] 新免輝夫 . 現代植物生理学. 东京: 環境応答, 1991. pp 142-158.
Shinme T. Modern Plant Physiology. Tokyo: Institute of Society Press, 1991. pp 142-158(in Japanese).
[4] Northen R T . Home Orchid Growing, 3rd edn. New York: Van Nostrand Reinhold, 1970. pp 19-28.
[5] 横田明穂 . 植物ストレスにおける応答. 東京: 学会出版センター, 2002. pp 209-224.
Yokota M H. Introduction to Plant Molecular Physiology. Tokyo: Institute of Society Press, 2002. pp 209-224(in Japanese).
[6] 李進才 , 趙習コウ, 松井鋳一郎 . 光ストレスおよび遮光栽培におけるCattleyaとCymbidium葉の抗酸化酵素活性および色素含量の変化. 園学雑, 2001,70:372-379.
Li J C, Zhao X K, Matsui I . Effect of light stress and shading cultivation on antioxidant enzyme activity and pigment content of cattleya and cymbidium leaves. Jpn Hortic J, 2001,70:372-379 (in Japanese).
[7] Salin W L . Toxic oxygen species and protective systems of the chloroplast. Physiol Plant, 1988,72:681-689.
doi: 10.1111/ppl.1988.72.issue-3
[8] Shen W K, Nada S, Tachibana S . Oxygen radical generation in chilled leaves of cucumber ( Cucumis sativus L.) cultivars with different tolerances to chilling temperatures. Engei Gakkai Zasshi, 2008,68:780-787.
[9] Erich W, Laties G G . Quantification of hydrogen peroxide in plant extracts by the chemiluminescence reaction with luminal. Hytochemistry, 1982,21:827-831.
doi: 10.1016/0031-9422(82)80073-3
[10] 沈利星 . 雑草科学実験法. 第5項植物の抗酸化活性測定法. 東京: 日本雑草学会発行, 2001. pp 296-298.
Shen L X . Methods of Scientific Experiment of Weeds and Determination of Antioxidant Activity of Plants. Tokyo: The Japanese Weed Society Publishers, 2001. pp 296-298 (in Japanese).
[11] 加藤荣 . 光合成研究法. 东京: 日本共立出版社, 1981. pp 40-41.
Katou E. Research Methods of Photosynthesis. Tokyo: Japan Co-publisher, 1981. pp 40-41(in Japanese).
[12] 何寧, 小嶋道之, 黒澤聪, 加藤清明 . 低温遮光処理アズキ初生葉の過酸化水素含量と抗酸化酵素活性に及ぼす影響. 日本作物学会記事, 2006,75:360-365.
He N, Kojima M Y, Kurosawa A, Kato K . Effects of chilling and shading on hydrogen peroxide content and activity of oxidation-inhibiting enzymes in the primary leaves of adzuki beans. Jpn J Crop Sci, 2006,75:360-365 (in Japanese).
[13] Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Hörtensteiner S, Gidoni D, Gal-On A, Goldschmidt E E, Eyal Y . Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell, 2007,19:1007-1022.
doi: 10.1105/tpc.107.050633
[14] Von Gromoff E D, Alawady A, Meinecke L, Grimm B, Beck C F . Heme, a plastid-derived regulator of nuclear gene expression in chlamydomonas. Plant Cell, 2008,20:552-567.
[15] 王平荣, 张帆涛, 高家旭, 孙小秋, 邓晓建 . 高等植物叶绿素生物合成的研究进展. 西北植物学报, 2009,29:629-636.
doi: 10.3321/j.issn:1000-4025.2009.03.032
Wang P R, Zhang F T, Gao J X, Sun X Q, Deng X J . An overview of chlorophyll biosynthesis in higher plants. Acta Bot Boreali- Occident Sin, 2009,29:629-636 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-4025.2009.03.032
[16] Okuda T Y, Matuda A, Yamanaka S, Sagisaka S . Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol, 1991,97:1265-1267.
doi: 10.1104/pp.97.3.1265 pmid: 16668520
[17] Fridovich I . Biological effects of the superoxide radicals. Arch Biochem Biophys, 1986,247:1-11.
doi: 10.1016/0003-9861(86)90526-6 pmid: 3010872
[18] 重岡成 . 活性酸素代謝の応答機構. 光合成生物の活性酸素代謝の応答機構. 生物工学会誌, 2001,79:303-322.
Shigeoka N R . The response mechanism of photosynthetic biological reactive oxygen metabolism. Jpn J Bioengineer, 2001,79:303-322 (in Japanese).
[19] Azevedo R A, Alas R M, Smith R J, Lea P J . Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant, 1998,104:280-292.
doi: 10.1034/j.1399-3054.1998.1040217.x
[20] Foyer C H, Mullineaux P . Causes of photooxidative stress and amelioration of defense systems in plants. Acta Ophthalmol, 1994,44:276-315.
doi: 10.1111/j.1755-3768.1966.tb08068.x
[21] 宮尾光恵, 水澤直樹 . 強光環境から身を守る植物の防御機構. 化学と生物, 1999,37:396-400.
Miyao H E, Mizusawa N K . The plant defense mechanism obtained from the strong light environment. Jpn Chem Biol, 1999,37:396-400 (in Japanese).
[22] 王宝增 . 叶绿素降解代谢的研究进展. 生物学教学, 2010,35(2):7-9.
doi: 10.3969/j.issn.1004-7549.2010.02.004
Wang B Z . Research progress of chlorophyll degradation metabolism. Biol Teach, 2010,35(2):7-9 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-7549.2010.02.004
[23] Gopal K, Pattanayak G K, Biswal A K, Reddy V S, Tripathy B C . Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochem Biophys Res Commun, 2005,326:466-471.
doi: 10.1016/j.bbrc.2004.11.049 pmid: 15582600
[24] 田中歩, 平島真澄, 田中亮一 . クロロフェル代謝と植物の生育. 化学と生物, 2004,42:2-26.
Tanaka A, Hirasima M S, Tanaka L Y . The development of chlorophyll metabolism and plant. Chem Biol, 2004,42:2-26 (in Japanese with English abstract).
[1] XIANG Hong-Tao, LI Wan, ZHENG Dian-Feng, WANG Shi-Ya, HE Ning, WANG Man-Li, YANG Chun-Jie. Effects of uniconazole and waterlogging stress in seedling stage on the physio logy and yield in adzuki bean [J]. Acta Agronomica Sinica, 2021, 47(3): 494-506.
[2] Li-Li WAN, Zhuan-Rong WANG, Qiang XIN, Fa-Ming DONG, Deng-Feng HONG, Guang-Sheng YANG. Enhanced Accumulation of BnA7HSP70 Molecular Chaperone Binding Protein Improves Tolerance to Drought Stress in Transgenic Brassica napus [J]. Acta Agronomica Sinica, 2018, 44(04): 483-492.
[3] MA Yan-Ming,CHEN Chun-Hai,YANG Kai,LI Yi-Song,ZHAO Bo,LI Jiang,LI Yong-Qiang,WAN Ping. Global Identification and Comparison of MicroRNA in Wild and Cultivated Adzuki Bean [J]. Acta Agron Sin, 2016, 42(09): 1273-1281.
[4] BAI Peng,CHENG Xu-Zhen*,WANG Li-Xia,WANG Su-HuaCHEN Hong-Lin. Genetic Diversity, Population Structure and Linkage Disequilibrium in Adzuki Bean by Using SSR Markers [J]. Acta Agron Sin, 2014, 40(05): 788-797.
[5] DING Xiu-Wen,ZHANG Guo-Liang,DAI Qi-Gen,ZHU Qing. Effects of 1,2,4-trichlorobenzene on Growth and Physiological Characteristics of Rice at Top Tillering Stage [J]. Acta Agron Sin, 2014, 40(03): 487-496.
[6] LIU Chang-You,FAN Bao-Jie,CAO Zhi-Min,SU Qiu-Zhu,WANG Yan,ZHANG Zhi-Xiao,CHENG Xu-Zhen,TIAN Jing. Genetic Diversity Analysis of Wild Adzuki Bean Germplasm and Its Relatives by Using SSR Markers [J]. Acta Agron Sin, 2014, 40(01): 174-180.
[7] YANG Dong-Qing,WANG Zhen-Lin*,YIN Yan-Ping,NI Ying-Li,YANG Wei-Bing,CAI Tie,PENG Dian-Liang,XU Cai-Long,CUI Zheng-Yong,LIU Tie-Ning,XU Hai-Cheng. Effects of Exogenous ABA and 6-BA on Flag leaf Senescence in Different Types of Stay-Green Wheat and Relevant Physiological Mechanisms [J]. Acta Agron Sin, 2013, 39(06): 1096-1104.
[8] LIU Yang,WEN Xiao-Xia,GU Dan-Dan,GUO Qiang,ZENG Ai,LI Chang-Jiang,LIAO Yun-Cheng. Effect of Polyamine on Grain Filling of Winter Wheat and Its Physiological Mechanism [J]. Acta Agron Sin, 2013, 39(04): 712-719.
[9] YIN Bao-Chong, TAO Bu, ZHANG Ru-Chen. Effect of Short-Day Photoperiod on Adzuki Bean (Phase-out angularis) Seedlings at Different Leaf Ages [J]. Acta Agron Sin, 2011, 37(08): 1475-1484.
[10] TONG Xing,ZHAO Bo,JING Wen-Lin,ZENG Chao-Wu,LIU Hong-Xia,WU Bao-Mei,PU Shao-Jing. Identification of Mutants from Adzuki Bean (Vigna angularisi) Jingnong 6 seed Induced by Physical and Chemical Agents [J]. Acta Agron Sin, 2010, 36(4): 565-573.
[11] SONG Hui,FENG Bai-Li*,GAO Xiao-Li,GAO Jin-Feng,WANG Peng-Ke,CHAI Yan,ZHANG Pan-P.
Leaf Senescence and Reactive Oxygen Metabolism in Different Adzuki Bean Cultivars (Lines)
[J]. Acta Agron Sin, 2010, 36(2): 347-353.
[12] WANG Li-Xie,CHENG Xu-Zhen,WANG Su-Hua,LIU Chang-You,LIANG Hui. Transferability of SSR from Adzuki Bean to Mungbean [J]. Acta Agron Sin, 2009, 35(5): 816-820.
[13] ZHANG Guo-Liang,CHEN Wen-Jun,QIU Li-Min,SUN Guo-Rong,DAI Qi-Gen,ZHANG Hong-Cheng. Physiological Response to 1,2,4-Trichlorobenzene Stress of Different Rice Genotypes in seedlings [J]. Acta Agron Sin, 2009, 35(4): 733-740.
[14] XU Ning,CHENG Xu-Zhen,WANG Li-Xia,WANG Su-Hua,LIU Chang-You,SUN Lei,MEI Li. Screening and Application of SSR Molecular Markers for Genetic Diversity Analysis of Chinese Adzuki Bean germplasm Resources [J]. Acta Agron Sin, 2009, 35(2): 219-227.
[15] WANG Li-Xia,CHENG Xu-Zhen,WANG Su-Hua,LIANG Hui,Zhao Dan,XU Ning. Genetic Diversity of Adzuki Bean Germplasm Resources Revealed by SSR Markers [J]. Acta Agron Sin, 2009, 35(10): 1858-1865.
Full text



No Suggested Reading articles found!