Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (04): 483-492.doi: 10.3724/SP.J.1006.2018.00483
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
Li-Li WAN1,*(), Zhuan-Rong WANG2, Qiang XIN2, Fa-Ming DONG2, Deng-Feng HONG2, Guang-Sheng YANG2
[1] | Hartl F U, Bracher A, Hayer-Hartl M.Molecular chaperones in protein folding and proteostasis.Nature, 2011, 475: 324-332 |
[2] | Wang W, Vinocur B, Shoseyov O, Altman A.Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response.Trends Plant Sci, 2004, 9: 244-252 |
[3] | Carvalho H H, Brustolini O J, Pimenta M R.The molecular chaperone binding protein BiP prevents leaf dehydration-induced cellular homeostasis disruption.PLoS One, 2014, 9: e86661 |
[4] | Liu J X, Howell S H.Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytol, 2016, 211: 418-428 |
[5] | Valente M A, Faria J A, Soares-Ramos J R. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco.J Exp Bot, 2009, 60: 533-546 |
[6] | Liu J X, Howell S H.Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants.Plant Cell, 2010, 22: 2930-2942 |
[7] | Carvalho H H, Silva P A, Mendes G C.The endoplasmic reticulum binding protein BiP displays dual function in modulating cell death events.Plant Physiol, 2014, 164: 654-670 |
[8] | Srivastava R, Deng Y, Howell S H.Stress sensing in plants by an ER stress sensor/transducer, bZIP28.Front Plant Sci, 2014, 5: 59 |
[9] | Shen J, Chen X, Hendershot L, Prywes R.ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals.Dev Cell, 2002, 3: 99-111 |
[10] | Ma Y, Hendershot L M.ER chaperone functions during normal and stress conditions.J Chem Neuroanat, 2004, 28: 51-65 |
[11] | Srivastava R, Chen Y, Deng Y, Brandizzi F, Howell S H.Elements proximal to and within the transmembrane domain mediate the organelle-to-organelle movement of bZIP28 under ER stress conditions.Plant J, 2012, 70: 1033-1042 |
[12] | Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding H P, Ron D.Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1.Science, 2000, 287: 664-666 |
[13] | Martinez I M, Chrispeels M J.Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes.Plant Cell, 2003, 15: 561-576 |
[14] | Costa M D, Reis P A, Valente M A.A new branch of endoplasmic reticulum stress signaling and the osmotic signal converge on plant-specific asparagine-rich proteins to promote cell death.J Biol Chem, 2008, 283: 20209-20219 |
[15] | Liu J X, Howell S H. bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis. Plant Cell, 2010, 22: 782-796 |
[16] | Gomer C J, Ferrario A, Rucker N, Wong S, Lee A S.Glucose regulated protein induction and cellular resistance to oxidative stress mediated by porphyrin photosensitization.Cancer Res, 1991, 51: 6574-6579 |
[17] | Alvim F C, Carolino S M, Cascardo J C.Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress.Plant Physiol, 2001, 126: 1042-1054 |
[18] | Cascardo J C, Almeida R S, Buzeli R A.The phosphorylation state and expression of soybean BiP isoforms are differentially regulated following abiotic stresses.J Biol Chem, 2000, 275: 14494-14500 |
[19] | Cascardo J C, Buzeli R A, Almeida R S, Otoni W C, Fontes E P.Differential expression of the soybean BiP gene family.Plant Sci, 2001, 160: 273-281 |
[20] | Anderson J V, Li Q B, Haskell D W, Guy C L.Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation.Plant Physiol, 1994, 104: 1359-1370 |
[21] | Park C J, Bart R, Chern M.Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice.PLoS One, 2010, 5: e9262 |
[22] | 宋仲戬, 张登峰, 李永祥. 石云素, 宋燕春, 王天宇, 黎裕. 玉米分子伴侣基因ZmBiP2在逆境下的功能分析. 作物学报, 2015, 41: 708-716 |
Song Z J, Zhang D F, Li Y X, Shi Y S, Song Y C, Wang T Y, Li Y.Cloning of maize molecular chaperone gene ZmBiP2 and its functional analysis under abiotic stress.Acta Agron Sin, 2015, 41: 708-716 | |
[23] | 赵真真, 韩莹琰, 范双喜, 刘超杰, 郝敬虹, 李婷, 李雅博. 叶用莴苣热激蛋白LsHsp70-3701基因的克隆及高温胁迫下的表达分析. 核农学报, 2016, 30: 1083-1090 |
Zhao Z Z, Han Y Y, Fan S X, Liu C J, Hao J H, Li T, Li Y B.The cloning and expression analysis of Heat-shock protein LsHsp70-3701 of Leaf lettuce.J Nucl Agric Sci, 2016, 30: 1083-1090 (in Chinese with English abstract) | |
[24] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method.Methods, 2001, 25: 402-408 |
[25] | Hanfrey C, Fife M, Buchanan-Wollaston V.Leaf senescence inBrassica napus: expression of genes encoding pathogenesis- related proteins. Plant Mol Biol, 1996, 30: 597-609 |
[26] | Buchanan-Wollaston V.Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus: identification of a gene encoding a senescence-specific metallothionein- like protein. Plant Physiol, 1994, 105: 839-846 |
[27] | Srivastava R, Deng Y, Shah S, Rao A G, Howell S H.BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis.Plant Cell, 2013, 25: 1416-1429 |
[28] | Iwata Y, Fedoroff N V, Koizumi N.Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response.Plant Cell, 2008, 20: 3107-3121 |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[3] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[4] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[5] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[6] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[7] | LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798. |
[8] | TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990. |
[9] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[10] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[11] | TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426. |
[12] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[13] | LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu. Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R [J]. Acta Agronomica Sinica, 2021, 47(2): 210-223. |
[14] | WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274. |
[15] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
|