Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (03): 487-496.doi: 10.3724/SP.J.1006.2014.00487


Effects of 1,2,4-trichlorobenzene on Growth and Physiological Characteristics of Rice at Top Tillering Stage

DING Xiu-Wen1,2,4,ZHANG Guo-Liang2,3,*,DAI Qi-Gen1,*,ZHU Qing2   

  1. 1 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; 2 College of Life Science and Chemistry Engineering / Jiangsu Province Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huai’an 223003, China; 3 Institute of Soil Science / State Key Laboratory of Soil and Sustainable Agriculture, Chinese Academy of Sciences, Nanjing 210008, China; 4 Daoshu Agricultural Service Center of Danyang City, Jiangsu Province, Danyang 212300, China
  • Received:2013-05-27 Revised:2013-08-20 Online:2014-03-12 Published:2013-11-14
  • Contact: 张国良, E-mail: hgzgl@sina.com, Tel: 0517-83559216; 戴其根, E-mail: qgdai2000@126.com, Tel: 0514-87979220


A soil culture experiment was conducted to study the effects of 1,2,4-trichlorobenzene (TCB) on morphological and physiological indexes of rice at top tillering stage, using rice cultivars of Ningjing 1 (TCB sensitive genotype) and Yangfujing 8 (TCB tolerant genotype), with four treatments of TCB concentrations including 0 (CK), 20, 40 and 60 mg kg-1. The results indicated that the maximum root length, plant height, tillers per hill, shoot and root dry weight of Ningjing 1 were all decreased significantly (P<0.05) under different concentrations of TCB. Low TCB stress (20 mg kg-1) significantly increased Yangfujing 8’s maximum root length, shoot and root dry weight , root activity (P<0.01), while medium and high TCB stresses (40 and 60 mg kg-1) decreased maximum root length, plant height, tillers per hill, shoot and root dry weight significantly(P<0.05). Ningjing 1’s root activity, chlorophyll content, soluble protein content in leaves and roots were relatively low under different concentrations of TCB, at the same time, its activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in leaves and roots decreased, while O2? producing velocity and malnodialdehyde (MDA) content increased significantly (P<0.05). Low TCB stress (20 mg kg-1) significantly increased Yangfujing 8’s soluble protein content and activities of SOD, POD, CAT in leaves and roots, and significantly (P<0.05) decreased its O2? producing velocity and MDA content. Under medium TCB stress (40 mg kg-1), the activities of SOD, POD, CAT in leaves and roots were enhanced, however, its O2? producing velocity and MDA content increased significantly. High TCB stress (60 mg kg-1) decreased its root activity, chlorophyll content, the activities of SOD, POD, CAT in leaves and roots, and increased O2? producing velocity and MDA content significantly (P<0.05). In a word, compared with sensitive genotype, well growth vigor, high protein content in leaves and roots, better ability of antioxidant system in scavenging reactive oxygen speciesand lower membrane lipid peroxidation under low concentration TCB stress (20 mg kg-1) are regarded as the main features of TCB tolerant genotype in rice.

Key words: Rice, Top tillering stage, 1,2,4-trichlorobenzene, Toxicity, Growth and development, Antioxidant enzymes

[1]Miguel A S, Faure M, Ravanel P, Raveton M. Biological responses of maize (Zea mays) plants exposed to chlorobenzenes. Case study of monochloro-1,4-dichloro- and 1,2,4-trichloro-benzenes. Ecotoxicology, 2012, 21: 315–324

[2]周文敏, 傅德黔, 孙宗光. 中国水中优先控制污染物黑名单的确定.环境科学研究, 1991, 4(6): 9–12

Zhou W M, Fu D Q, Sun Z G. Determination of black list of China’s priority pollutants in water. Res Environ Sci, 1991, 4(6): 9–12(in Chinese with English abstract)

[3]Oliver B G, Niimi A J. Bioconcentration of chlorobenzenes from water by rainbow trout: Correlations with partition coefficients and environmental residues. Environ Sci Technol, 1983, 17: 287–291

[4]魏泰莉, 贾晓珊, 杜青平, 赖子尼, 庞世勋, 谢文平, 杨婉玲. 珠江口水、沉积物及水生动物中氯苯类有机物的含量及分布.环境科学学报, 2007, 27: 1717–1726

Wei T L, Jia X S, Du Q P , Lai Z N, Pang S X, Xie W P, Yang W L. Chlorobenzenes in the waters, sediments and aquatic animals from the Pearl River Estuary. Acta Scientiae Circumstantiae, 2007, 27: 1717–1726 (in Chinese with English abstract)

[5]杜青平, 贾晓珊, 袁保红. 1,2,4-三氯苯对水稻种子萌发及幼苗生长的毒性机理. 应用生态学报, 2006, 17: 2185–2188

Du Q P, Jia X S, Yuan B H. Toxic effects of 1,2,4-trichlorobenzene on rice seed germination and seedling growth. Chin J Appl Ecol, 2006, 17: 2185–2188 (in Chinese with English abstract)

[6]宋洋, 王芳, 蒋新. 微生物降解1,2,4-三氯苯研究进展. 土壤, 2011, 43: 343–349

Song Y, Wang F, Jiang X. Microbial degradation of 1,2,4-trichlorobenzene: a review. Soils, 2011, 43: 343–349 (in Chinese with English abstract)

[7]周霞, 余刚, 黄俊, 张祖麟, 胡洪营. 北京东南郊化工区土壤和植物中氯苯类有机物的残留及分布特征. 环境科学, 2007, 28: 249–254

Zhou X, Yu G , Huang J, Zhang Z L, Hu H Y. Residues and distribution characters of chlorobenzenes in soil and plants from Beijing Southeast Chemical Industry Zone. Environ Sci, 2007, 28: 249–254 (in Chinese with English abstract)

[8]崔健, 都基众, 杨泽, 马宏伟, 李霄. 沈阳市城郊土壤有机污染特征. 生态学杂志, 2011, 30: 2472–2477

Cui J, Du J Z, Yang Z, Ma H W, Li X. Characteristics of soil organic pollution in Shenyang suburbs of Liaoning Province. Chin J Ecol, 2011, 30: 2472–2477 (in Chinese with English abstract)

[9]蔡全英, 莫测辉, 吴启堂, 李桂荣. 微生物方法降低城市污泥的重金属含量研究进展.环境化学, 2002, 21(2): 139–143

Cai Q Y, Mo C H, Wu Q T, Li G R. Preliminary study on the content of chlorobenzenes in selected municipal sludge of China. Environ Chem, 2002, 21(2): 139–143 (in Chinese with English abstract)

[10]刘玉萍. 松花江水体氯苯类污染物的污染研究.环境科学与管理, 2006, 31(5): 91–92

Liu Y P. Study of Chlorobenzene’s pollution in the Songhua River. Environ Sci Managt, 2006, 31(5): 91–92 (in Chinese with English abstract)

[11]朱明吉, 郭志顺. 三峡库区重庆段有机污染研究. 三峡环境与生态, 2009, 2(2): 5–11

Zhu M J, Guo Z S. Research on organic pollution in Chongqing section of the Three Gorges Reservoir. Environ Ecol Three Gorges, 2009, 2(2): 5–11 (in Chinese with English abstract)

[12]石建省, 王昭, 张兆吉, 费宇红, 李亚松, 张凤娥, 陈京生, 钱永. 华北平原地下水有机污染特征初步分析. 生态环境学报, 2011, 20: 1695–1699

Shi J S, Wang Z, Zhang Z J, Fei Y H, Li Y S, Zhang F E, Chen J S, Qian Y. Preliminary analysis on the organic contamination of groundwater in the North China Plain. Ecol Environ Sci, 2011, 20: 1695–1699 (in Chinese with English abstract)

[13]Lee C L, Song H J, Fan M D. Concentrations of chlorobenzenes, hexachlorobutadiene and heavy metals in surficial sediments of Kaohsiung coast, Taiwan. Chemosphere, 2000, 41: 889–899

[14]Zhang J Y, Zhao W, Pan J, Qiu L M, Zhu Y M. Tissue-dependent distribution and accumulation of chlorobenzenes by vegetables in urban area. Environ Int, 2005, 31: 855–860

[15]Jaime D, Manuel R, Mario D. 1,2,4-trichlorobenzene flow characteristics in saturated homogeneous and stratified porous media. Water Air Soil Poll, 2006, 177: 3–17

[16]PACS-L: Discharge Standard of Water Pollutants. Beijing: Beijing Municipal Environmental Protection Bureau/Beijing Municipal Administration of Quality and Technology Supervision, 2005 (2013-05-26). http://www.bjepb.gov.cn/portal0/tab189/info5815.htm

[17]PACS-L: Standard for Drinking Water Quality. Beijing: Ministry of Public Health of the People’s Republic of China/Standardization Administration of the People’s Republic of China, 2007 (2013-05-26). http://www.moh.gov.cn/zwgkzt/pgw/201212/33644.shtml

[18]杨继富. 污水灌溉农业问题与对策. 水资源保护, 2000, (2): 4–8

Yang J F. The problem on agricultural sewage irrigation and countermeasures. Water Resour Prot, 2000, (2): 4–8 (in Chinese with English abstract)

[19]Macleod M, Mackay D. An assessment of the environmental fate and exposure of benzene and the ehlorobenzenes in Canada. Chemosphere, 1999, 38: 1777–1796 

[20]刘宛, 孙铁珩, 李培军, 周启星, 梁文举, 台培东, 许华夏, 张海荣.1,2,4-三氯苯胁迫对萌发大豆种子中活性氧的影响.应用生态学报, 2002, 13: 1655–1658

Liu W, Sun T H, Li P J, Zhou Q X, Liang W J, Tai P D, Xu H X, Zhang H R. Effects of 1,2,4-trichlorobenzene stress on active oxygen in germinated soybean seeds. Chin J Appl Ecol, 2002, 13: 1655–1658 (in Chinese with English abstract)

[21]刘宛, 孙铁珩, 李培军, 周启星, 台培东, 张春桂, 许华夏, 张海荣. 1,2,4-三氯苯胁迫对大豆下胚轴膜脂过氧化的影响. 农业环境保护, 2002, 21: 413–416

Liu W, Sun T H, Li P J, Zhou Q X, Tai P D, Zhang C G, Xu H X,Zhang H R. Effects of 1,2,4-trichlorobenzene stress on membrane lipid peroxidation in soybean hypocotyls. J Agro-Environ Prot, 2002, 21: 413–416 (in Chinese with English abstract)

[22]张国良, 陈文军, 王显, 金添, 戴其根, 孙国荣, 许轲, 霍中洋, 张洪程. 小麦苗期对1,2,4-三氯苯胁迫的生理响应.生态学报, 2008, 28: 4388–4395

Zhang G L, Chen W J, Wang X, Jin T, Dai Q G, Sun G R, Xu C, Huo Z Y, Zhang H C. Physiological reaction of wheat seedling to 1,2,4-trichlorobenzene stress. Acta Ecol Sin, 2008, 28: 4388–4395 (in Chinese with English abstract)

[23]丁艳, 葛才林, 王泽港, 杜庆才. 小麦幼苗对镉和1,2,4-三氯苯污染的响应.中国农业大学学报, 2011, 16: 48–52

Ding Y, Ge C L, Wang Z G, Du Q C. Response of Cd and 1,2,4-Trichlorobenzene pollutants on growth of wheat seedlings. J China Agric Univ, 2011, 16: 48–52 (in Chinese with English abstract)

[24]王泽港, 葛才林, 万定珍, 郦志文, 罗时石, 杨建昌.1,2,4-三氯苯和萘对水稻幼苗生长的影响. 农业环境科学学报, 2006, 25: 1402–1407

Wang Z G, Ge C L, Wan D Z, Li Z W, Luo S S, Yang J C. Effects of 1,2,4-trichlorobenzene and naphthalene on growth of rice seedling. J Agro-Environ Sci, 2006, 25: 1402–1407 (in Chinese with English abstract)

[25]张国良, 陈文军, 仇利民, 孙国荣, 戴其根, 张洪程. 不同基因型水稻苗期对1,2,4-三氯苯胁迫的生理响应. 作物学报, 2009, 35: 733–740

Zhang G L, Chen W J, Qiu L M, Sun G R, Dai Q G, Zhang H C. Physiological response to 1,2,4-trichlorobenzene stress of different rice genotypes in seedlings. Acta Agron Sin, 2009, 35: 733–740 (in Chinese with English abstract)

[26]王泽港, 骆剑峰, 高红明, 万定珍, 葛才林, 罗时石, 杨建昌. 1,2,4-三氯苯和萘对水稻抽穗期叶片光合特性的影响.中国农业科学, 2005, 38: 1113–1119

Wang Z G, LuoJ F, Gao H M, Wan D Z, Ge C L, Luo S S, Yang J C. Effects of 1,2,4-trichlorobenzene and naphthalene stress on photosynthetic characteristics of rice at heading period. Sci Agric Sin, 2005, 38: 1113–1119 (in Chinese with English abstract)

[27]陈文军, 张国良, 孙国荣, 戴其根, 张洪程, 陶金飞, 孙洁, 严林锋. 水稻耐1,2,4-三氯苯胁迫基因型的苗期筛选. 农业环境科学学报, 2008, 27: 1003–1008

Chen W J, Zhang G L, Sun G R, Dai Q G, Zhang H C, Tao J F, Sun J, Yan L F. Screening of tolerant rice genotypes to 1,2,4-trichlorobenzene stress at seedling stage. J Agro-Environ Sci, 2008, 27: 1003–1008 (in Chinese with English abstract)

[28]张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2009. pp 30–31, 100, 125–126

Zhang Z L. The Guidance of Plant Physiological Experiment. Beijing: Higher Education Press, 2009. pp 30–31, 100, 125–126 (in Chinese)

[29]邹琦. 植物生理学实验指导.北京:中国农业出版社, 2000. pp 173–174

Zou Q. The Guidance of Plant Physiological Experiment. Beijing: China Agriculture Press, 2000. pp 173–174 (in Chinese)

[30]高俊凤. 植物生理学实验指导. 北京:高等教育出版社, 2006. pp 215–216

Gao J F. The Guidance of Plant Physiological Experiment. Beijing: Higher Education Press, 2006. pp 215–216 (in Chinese)

[31]郝建军. 植物生理学实验技术. 北京:化学工业出版社, 2007. pp 159–160

Hao J J. Experimental technique of Plant Physiological. Beijing: Chemical Industry Press, 2007. pp 159–160 (in Chinese)

[32]李忠光, 龚明. 植物中超氧阴离子自由基测定方法的改进. 云南植物研究, 2005, 27: 211–216

Li Z G, Gong M. Improvement of measurement method for superoxide anion radical in plant. Acta Bot Yunnanica, 2005, 27: 211–216 (in Chinese with English abstract)

[33]Wang M J, Jones K C. Behavior and fate of chlorobenzenes (CBs) introduced into soil-plant systems by sewage sludge application: a review. Chemosphere, 1994, 28: 1325–1360

[34]He Y W, Sun T H, Ou Z Q, Yediler A and Kettrup A. Fate of 1,2,4-trichlorobenzene (1,2,4-TCB) in soil-rice paddy system. Chemosphere, 1996, 32: 1381–1389

[35]于开源, 苏玉红, 刘涛, 梁永超. 三氯乙烯和三氯苯在水-玉米-空气系统中的传输过程研究. 农业环境科学学报, 2010, 29: 1702–1705

Yu K Y, Su Y H, Liu T, Liang Y C. Transport processes of trichloroethylene and trichlorobenzene across the water-corn-air interface. J Agro-Environ Sci, 2010, 29: 1702–1705 (in Chinese with English abstract)

[36]Ge C L, Wan D Z, Wang Z G, Ding Y, Wang Y L, Shang Q, Ma F, Luo S S. Response of rice roots to 1,2,4-trichlorobenzene stress. Acta Agron Sin, 2007, 33: 1991–2000

[37]金阳. 1,2,4-三氯苯对水稻伤害机理及水稻耐性机制的研究. 扬州大学硕士学位论文, 2003. pp 20–25

Jin Y. Study on the Mechanisms of l,2,4-Triehlorobenzene Damaging Rice. MS. Dissertation of Yangzhou University, 2003 (in Chinese with English abstract)

[38]张波. 小麦对氧乐果和1,2,4-三氯苯响应的生物学机理. 石河子大学硕士学位论文, 2010. pp 18–22

Zhang B. Physiological Responses of Wheat Seedlings to Omethoate and 1,2,4-trichlorobenzene Stress. MS Theses of Shihezi University, 2010 (in Chinese with English abstract)

[39]Ge C L, Wan D Z, Wang Z G, Ding Y, Wang Y L, Shang Q, Ma F, Luo S S. A proteomic analysis of rice seedings responding to 1,2,4-trichlorobenzene stress. J Environ Sci, 2008, 10: 309–319

[40]许振华, 谢传晓. 植物microRNA与逆境响应研究进展. 遗传, 2010, 32: 1018–1030

Xu Z H, Xie C X. Advances in plant microRNA and stresses response. Hereditas (Beijing), 2010, 32: 1018–1030 (in Chinese with English abstract)

[41]何耀武, 孙铁琦, 区自清. 1,2,4一三氯苯在土壤中的降解. 应用生态学报, 1996, 7: 429–434

He Y W, Sun T H, Ou Z Q. Degradation of 1,2,4-trichlorobenzene (1,2,4-TCB) in soil. Chin J Appl Ecol, 1996, 7: 429–434 (in Chinese with English abstract)

[42]李勇, 黄占斌, 王文萍, 黄震, 颜丙磊, 曹杨, 王诗宇. 重金属铅镉对玉米生长及土壤微生物的影响. 农业环境科学学报, 2009, 28: 2241–2245

Li Y, Huang Z B, Wang W P, Huang Z, Yan B L, Cao Y, Wang S Y. Effects of heavy metals lead and cadmium on Zea mays L. growth and the soil microorganism. J Agro-Environ Sci, 2009, 28: 2241–2245 (in Chinese with English abstract)

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Full text



No Suggested Reading articles found!