Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (10): 1507-1516.doi: 10.3724/SP.J.1006.2020.04015

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Differential proteomics analysis of fertility transformation of the winter rape thermo-sensitive sterile line PK3-12S (Brassica rapa L.)

MI Wen-Bo(), FANG Yuan, LIU Zi-Gang*(), XU Chun-Mei, LIU Gao-Yang, ZOU Ya, XU Ming-Xia, ZHENG Guo-Qiang, CAO Xiao-Dong, FANG Xin-Ling   

  1. Gansu Provincial Key Laboratory of Arid Land Crop Sciences / Key Laboratory of Crop Genetics Improvement and Germplasm Enhancement of Gansu Province / Gansu Research Center of Rapeseed Engineering and Technology / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2020-01-17 Accepted:2020-04-15 Online:2020-10-12 Published:2020-05-14
  • Contact: Zi-Gang LIU E-mail:1291402843@qq.com;lzgworking@163.com
  • Supported by:
    National Natural Science Foundation of China(31660404);National Key Basic Research Development Program(2018YFD0100502-2);Gansu University Scientific Research Achievement Transformation and Cultivation Project(2018D-13);National Modern Agricultural Industry Technology System Construction Project(CARS-13);Gansu Science and Technology Major Special Project(17ZD2NA016-4)

Abstract:

To reveal the fertility switching mechanism of temperature-sensitive sterility line PK3-12S (Brassica rapa L.), the differentially expressed proteins were isolated and identified using anthers of PK3-12S in sterile/fertile conditions by 2-DE and LC-MS/MS mass spectrometry. The expression level variations of differentially expressed genes were examined by RT-PCR in PK3-12 flower buds during sterility/fertile development. The result showed that the sterile anther size of PK3-12 was small with a little abortive pollen in the anther room under high temperature. The trait of fertility transformation was controlled by a pair of recessive alleles. There were 31 differentially expressed proteins with more than two times of the expression level, including six protein spots with increasing expression, 11 protein spots with reduced expression, 12 protein spots with complete inhibition, and two protein spots with induced expressed. Fifteen differentially expressed proteins involved in the cellular processes such as signal transduction pathways, glyoxylate and dicarboxylate metabolism, glycolysis gluconeogenesis, biosynthesis of secondary metabolites, biontheses of amino acids, chorismate biosynthesis, and carbon metabolism pathways were identified by mass spectrometry. The BrrbcL gene, encoding a Rubisco subunit-binding accessory protein, had an open reading frame (ORF) in length of 1095 bp encoded 364 amino acids. Compared with fertile anthers, the expression level of BrrbcL gene, annexin gene (ANN) and BetVI allergen family gene (BetVI) was significantly down-regulated during sterile anthers development, which indicated that these genes maybe participate in the fertility transformation of the thermo-sensitive sterile line PK3-12S.

Key words: winter turnip rape (Brassica rapa L.), thermo-sensitive sterile line, proteomics, gene expression

Table 1

Primers of some differentially expressed genes"

基因
Gene
引物序列
Primer sequence (5°-3°)
产物长度
Product length (bp)
Rbcl F: CAGTCCCAGCTACGACCTTCT 134
R: CCTGTCTCCATCGGTTTGTTT
Ann F: CCGGAACAGACGAAGGAGCT 169
R: TCACCGAGAAGTGCGACGAG
CTIMC F: CAGCCCAAGCTCAGGAAGTA 166
R: CCACCGACCAAGAAACCATC
Bet VI F: CCCCACTGGTGAAAGTATCGG 138
R: CCTTGGGAGTAACGGTGATGG

Fig. 1

Comparison of fertile (A) and sterile (B) flower morphology of thermo-sensitive sterile line PK3-12S in winter turnip rape"

Table 2

Fertility performance of PK3-12S combinations"

组合
Combination
可育株数/株
Number of fertile plants/ plant
不育株数/株
Number of sterile plants/ plant
分离比
Separation ratio
卡方测验
Chi-square test
F1 F2 BC1 F1 F2 BC1 F2 BC1 F2 BC1
PK3-12S×QX6-3 26
31
42
65
86
47
34
63
39
0
0
0
21
31
14
36
56
32
3.10:1 0.94:1 3:1 1:1
PK3-12S×QX21-2 2.77:1 1.13:1 3:1 1:1
PK3-12S×LX2-3 3.36:1 1.22:1 3:1 1:1

Fig. 2

Two-dimensional protein electrophoresis profiles between period (left) and sterile period (right) of ecological male sterile line PK3-12 fertile flower in Winter Turnip Rape"

Table 3

Summary of differentially expressed protein of fertile period and sterile period in PK3-12"

编号
No.
登录号
Accession No.
蛋白名称
Protein name
调节
Regulated
物种来源
Plant species
蛋白分子量
Protein MW
多肽片
段数
Pep. count
蛋白得分
Protein score CI (%)
1 A0A078JSU1 3-磷酸草莽酸-1-乙烯基乙酰羧化转移酶
3-phosphoshikimate-1-carboxyvinyltransferase
+ Brassica napus 55720.4 18 100
2 M1F2H2 1,5-二磷酸核酮糖羧化/加氧酶
Chloroplast ribulose-1,5-bisphosphate
- Brassica oleracea 47858.1 10 99.999
3 A0A0D3E3Z1 琥珀酰辅酶A连接酶β亚基
Succinyl-CoA ligase subunit beta
- Brassica oleracea 45214.0 17 100
4 M4CHC2 磷酸甘油酸激酶
Phosphoglycerate kinase
- Brassica rapa subsp. 42368.6 16 100
9 M4F009 膜联蛋白
Annexin
- Brassica rapa subsp. pekinensis 37045.8 15 99.618
11 A0A078GNP3 硫氧还蛋白还原酶
Thioredoxin reductase
- Brassica napus 72670.1 12 99.821
12 M4CN89 铁蛋白
Ferritin
- Brassica rapa subsp. pekinensis 30584.2 10 100
16 U5IBV8 谷胱甘肽巯基转移酶
Glutathion-S-transferase taub (fragment)
+ Brassica oleracea 17916.5 9 100
17 M4DE25 磷酸丙糖异构酶
Triosephosphate isomerase
- Brassica rapa subsp. 27221.1 13 100
18 E5KXU6 超氧化物歧化酶
Superoxide dismutase (fragment)
- Brassica campestris 22151.1 3 100
19 Q944W6 肿瘤翻译调控因子同源蛋白
Translationally-controlled tumor protein homolog
- Brassica oleracea 19027.6 8 96.594
20 O82795 热应答蛋白
Heat stress-induced protein
+ Brassica oleracea 23474.3 6 100
26 A8IXG5 BetVI过敏原家族蛋白
BetVI allergen family protein
+ Brassica campestris 17149.9 12 100
27 M4E5U4 抑制蛋白
Profilin
- Brassica rapa subsp. pekinensis 14518.1 5 100
30 A1YN07 Kunitz型半胱氨酸蛋白酶抑制因子
Kunitz-type cysteine protease inhibitor
+ Brassica campestris 24744.6 6 100

Fig. 3

GO function analysis of differentially expression proteins"

Fig. 4

KEGG pathway analysis of differentially expressed proteins"

Fig. 5

Relative expression levels of the genes encoded differentially expressed proteins during flower development of PK3-12S rbcL: ribulose-1,5-bisphosphate carboxylase; ANN: annexin; CTIMC: triosephosphate isomerase; BetVI: BetVI allergen family protein."

[1] 殷艳, 王汉中. 我国油菜生产现状及发展趋势. 农业展望, 2011,7(1):43-45.
Yin Y, Wang H Z. Present situation and development trend of rape production in China. Agric Outlook, 2011,7(1):43-45 (in Chinese).
[2] 刘成, 黄杰, 冷博峰, 冯中朝, 李俊鹏. 我国油菜产业现状, 发展困境及建议. 中国农业大学学报, 2017,22(12):203-210.
Liu C, Huang J, Leng B F, Feng Z C, Li J P. Current situation, development difficulties and suggestions of Chinese rape industry. J China Agric Univ, 2017,22(12):203-210 (in Chinese with English abstract).
[3] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019,41:485-489.
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019,41:485-489 (in Chinese with English abstract).
[4] Zeng X C, Xu Y Z, Jiang J J, Zhang F Q, Ma L, Wu D W, Wang Y P, Sun W C. Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. BMC Plant Biol, 2018,18:52.
doi: 10.1186/s12870-018-1242-4 pmid: 29587648
[5] 王学芳, 孙万仓, 李孝泽, 武军艳, 马维国, 康艳丽, 曾潮武, 蒲媛媛, 叶剑, 刘红霞, 曾军, 张亚红. 河西走廊种植冬油菜的环境效应. 作物学报, 2008,34:2210-2217.
doi: 10.3724/SP.J.1006.2008.02210
Wang X F, Sun W C, Li X Z, Wu J Y, Ma W G, Kang Y L, Zeng C W, Pu Y Y, Ye J, Liu H X, Zeng J, Zhang Y H. The environment effect of planting winter rape in Hexi Corridor. Acta Agron Sin, 2008,34:2210-2217 (in Chinese with English abstract).
[6] Liu Z G, Sun W C, Zhao Y N, Li X C, Fang Y, Wu J Y, Zeng X C, Yang N N, Wang Y, He L. Effects of low nocturnal temperature on photosynthetic characteristics and chloroplast ultrastructure of winter rapeseed. Russ J Plant Physiol, 2016,63:451-460.
doi: 10.1134/S1021443716040099
[7] Chen X, Hu J, Zhang H, Ding Y. DNA methylation changes in photoperiod-thermo-sensitive male sterile rice PA64S under two different conditions. Gene, 2014,537:143-148.
doi: 10.1016/j.gene.2013.12.015
[8] Zhang J W, Liu Z Q, Liu X Q, Dong J G, Pang H X, Yu C Y. Proteomic alteration of a thermo-sensitive male sterility SP2S in rapeseed (Brassica napus) in response to mild temperature stress. Plant Breed, 2016,135:191-199.
doi: 10.1111/pbr.2016.135.issue-2
[9] Ji J L, Yang L M, Fang Z Y, Zhuang M, Zhang Y Y, Lyu H H, Liu Y M, Li Z S. Complementary transcriptome and proteome profiling in cabbage buds of a recessive male sterile mutant provides new insights into male reproductive development. J Proteomics, 2018,179:80-91.
doi: 10.1016/j.jprot.2018.03.003 pmid: 29522879
[10] Liu H Z, Zhang G S, Wang J S, Li J J, Song Y L, Qiao L, Niu N, Wang J W, Ma S C, Li L L. Chemical hybridizing agent SQ-1-induced male sterility in Triticum aestivum L.: a comparative analysis of the anther proteome. BMC Plant Biol, 2018,18:7.
doi: 10.1186/s12870-017-1225-x pmid: 29304738
[11] Xiao X J, Yang Y Z, Yang Y J, Lin J Z, Tang D Y, Liu X M. Comparative analysis of young panicle proteome in thermo- sensitive genic male-sterile rice Zhu-1S under sterile and fertile conditions. Biotechnol Lett, 2009,31:157-161.
doi: 10.1007/s10529-008-9838-7 pmid: 18923912
[12] Song L R, Liu Z Q, Tong J H, Xiao L T, Ma H, Zhang H Q. Comparative proteomics analysis reveals the mechanism of fertility alternation of thermo-sensitive genic male sterile rice lines under low temperature inducement. Proteomics, 2015,15:1884-1905.
doi: 10.1002/pmic.201400103 pmid: 25641954
[13] Yu C Y, Xu X F, Ge J, Guo X F, Dong J G, Dong Z S. Premature breakdown of tapetum associated with reverse thermo-sensitive genic male-sterile line Huiyou 50S in rapeseed (Brassica napus). Acta Physiol Plant, 2016,38:54.
doi: 10.1007/s11738-015-2039-9
[14] Zeng X H, Li W P, Wu Y H, Liu F, Luo J L, Cao Y L, Zhu L, Li Y J, Li J, You Q B, Wu G. Fine mapping of a dominant thermo-sensitive genic male sterility gene (BntsMs) in rapeseed (Brassica napus) with AFLP- and Brassica rapa-derived PCR markers. Theor Appl Genet, 2014,127:1733-1740.
doi: 10.1007/s00122-014-2335-6
[15] Liu X Q, Yu C Y, Dong J G, Xu A X, Hu S W. De novo transcriptome reconstruction of a thermo-sensitive male sterility mutant in rapeseed (Brassica napus; Brassicaceae). Appl Plant Sci, 2017,5:1700077. doi: 10.3732/apps.1700077.
doi: 10.3732/apps.1700077
[16] 徐献锋, 胡玉梅, 于澄宇, 葛娟, 郭英芬, 董军刚, 胡胜武. 甘蓝型油菜反型温敏核不育Huiyou 50S的生理特征及遗传分析. 华北农学报, 2014,29(3):147-152.
doi: 10.7668/hbnxb.2014.03.027
Xu X F, Hu Y M, Yu C Y, Ge J, Guo Y F, Dong J G, Hu S W. Physiological characterization and genetic analysis of reverse thermo-sensitive genic male-sterile line Huiyou 50S in Brassica napus. Acta Agric Boreali-Sin, 2014,29(3):147-152 (in Chinese with English abstract).
[17] Majeran W, Zybailov B, Ytterberg A J, Dunsmore J, Sun Q, van Wijk K J. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics, 2008,7:1609-1638.
doi: 10.1074/mcp.M800016-MCP200 pmid: 18453340
[18] Bradford M M. A rapid method for the quantification of microgram quantities of protein utilizing the principle of protein. Dye binding. Anal Biochem, 1976,72:248-254.
doi: 10.1006/abio.1976.9999 pmid: 942051
[19] Katayama H, Nagasu T, Oda Y. Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectr, 2001,15:1416-1421.
doi: 10.1002/(ISSN)1097-0231
[20] Majeran W, Zybailov B, Ytterberg A J, Dunsmore J, Sun Q, van Wijk K J. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics, 2008,7:1609-1638.
doi: 10.1074/mcp.M800016-MCP200 pmid: 18453340
[21] Guo L L, Sui Z H, Zhang S, Ren Y Y, Liu Y. Comparison of potential diatom “barcode” genes (18S and ITS rDNA, COI, rbcL) and their effectiveness in discriminating and determining species taxonomy in bacillariophyta. Int J Syst Evol Microbiol, 2015,65:1369-1380.
doi: 10.1099/ijs.0.000076 pmid: 25604341
[22] Cuong P V, Cuong H V. Heterosis for photosynthesis and dry matter accumulation in F1 hybrid rice (Oryza sativa L.) produced from thermo-sensitive male sterile line under drought stress at heading stage. J Fac Agric Kyushu Univ, 2014,59:221-228.
[23] Huber S C, Wilson R F, Burton J W. Studies on genetic male-sterile soybeans: II. Effect of nodulation on photosynthesis and carbon partitioning in leaves. Plant Physiol, 1983,73:713-717.
doi: 10.1104/pp.73.3.713 pmid: 16663288
[24] Van Cuong P, Thi Thu Hang D, Thi Hang T, Araki T, Yoshimura A, Mochizuki T. Photosynthesis and panicle growth responses to drought stress in F1 hybrid rice (Oryza sativa L.) from a cross between thermo-sensitive genic male sterile (TGMS) line 103S and upland rice IR17525. J Fac Agric Kyushu Univ, 2014,59:271-277.
[25] Rosa Téllez S, Anoman A D, Flores Tornero M, Toujani W, Alseekh S, Fernie A R, Nebauer S G, Muñoz Bertomeu J, Segura J, Ros R. Phosphoglycerate kinases are co-regulated to adjust metabolism and to optimize growth. Plant Physiol, 2018,176:1182-1198.
doi: 10.1104/pp.17.01227 pmid: 28951489
[26] Ito H, Iwabuchi M, Ogawa K. The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol, 2003,144:655-660.
[27] Chen M J, Thelen J J. The plastid isoform of triose phosphate isomerase is required for the post germinative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell, 2010,22:77-90.
doi: 10.1105/tpc.109.071837 pmid: 20097871
[28] Hu C Q, Sturtevant J M, Thermodynamic study of yeast phosphoglycerate kinase. Biochemistry, 1987,26:178-182.
doi: 10.1021/bi00375a025 pmid: 3548815
[29] Lin Y, Miyagi A, Scheuring S. The annexin V transmembrane channel. Biophys J, 2018,114:491.
[30] Dai S J, Chen T T, Chong K, Xue Y B, Liu S Q, Wang T. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics, 2007,6:207-230.
doi: 10.1074/mcp.M600146-MCP200 pmid: 17132620
[31] Monastyrskaya K. Functional association between regulatory RNAs and the annexins. Int J Mol Sci, 2018,19:591.
doi: 10.3390/ijms19020591
[32] Halac I N D, Harte C. Genetics and development of morphological and physiological characters of male sterility in Oenothera. Protoplasma, 1995,187:22-30.
doi: 10.1007/BF01280229
[33] Dai X J, Kang G P, Wang Z X, Luan J, Wang Z, Liang M Z, Chen L B. Cytoplasmic effects on the agronomic and physiological traits of dual-purpose genic male sterile substitution lines of rice. Crop Sci, 2017,57:3016-3026.
doi: 10.2135/cropsci2017.03.0153
[34] 李莉, 王书平, 张改生, 王亮明, 宋瑜龙, 张龙雨, 牛娜, 马守才. 小麦生理型和遗传型雄性不育系及其保持系小花完整叶绿体蛋白质组分比较研究. 作物学报, 2011,37:1134-1143.
doi: 10.3724/SP.J.1006.2011.01134
Li L, Wang S P, Zhang G S, Wang L M, Song Y L, Zhang L Y, Niu N, Ma S C. Comparison of chloroplast proteomes extracted from florets of physiological and genic male sterile lines and their maintainer line in wheat. Acta Agron Sin, 2011,37:1134-1143 (in Chinese with English abstract).
[35] Mayer M P, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci, 2005,62:678-684
[36] Usman M G, Rafii M Y, Martini M Y. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. Biotechnol Genet Eng Rev, 2017,33:26-39.
doi: 10.1080/02648725.2017.1340546 pmid: 28649918
[1] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[2] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[3] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[4] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[5] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[6] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[7] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[8] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[9] HUANG Su-Hua, LIN Xi-Yue, LEI Zheng-Ping, DING Zai-Song, ZHAO Ming. Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability [J]. Acta Agronomica Sinica, 2021, 47(11): 2278-2289.
[10] MA Jin-Jiao,LAN Jin-Ping,ZHANG Tong,CHEN Yue,GUO Ya-Lu,LIU Yu-Qing,YAN Gao-Wei,WEI Jian,DOU Shi-Juan,YANG Ming,LI Li-Yun,LIU Guo-Zhen. Overexpression of OsMPK17 protein enhances drought tolerance of rice [J]. Acta Agronomica Sinica, 2020, 46(01): 20-30.
[11] JIN Shu-Rong,WANG Yan-Mei,CHANG Yue,WANG Yue-Hua,LI Jia-Na,NI Yu. Activity and gene family expression of β-amylase in Brassica napus differing in harvest index [J]. Acta Agronomica Sinica, 2019, 45(8): 1279-1285.
[12] Tao FENG,Chun-Yun GUAN. Cloning and characterization of phytochrome interacting factor 4 (BnaPIF4) gene from Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(2): 204-213.
[13] Jing ZHAO,Xu-Tong LI,Xue-Zhong LIANG,Zhi-Cheng WANG,Jing CUI,Bin CHEN,Li-Qiang WU,Xing-Fen WANG,Gui-Yin ZHANG,Zhi-Ying MA,Yan ZHANG. Genome-wide identification of Laccase gene family in update G. hirsutum L. genome and expression analysis under V. dahliae stress [J]. Acta Agronomica Sinica, 2019, 45(12): 1784-1795.
[14] Qi-Qi SONG,SINGH Pratiksha,Kumar SINGH Rajesh,Xiu-Peng SONG,Hai-Bi LI,You-Ye NONG,Li-Tao YANG,Yang-Rui LI. Proteomic analysis of sugarcane-Sporisorium scitamineum interaction based on iTRAQ technique [J]. Acta Agronomica Sinica, 2019, 45(1): 55-69.
[15] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!