Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (12): 1784-1795.doi: 10.3724/SP.J.1006.2019.94053


Genome-wide identification of Laccase gene family in update G. hirsutum L. genome and expression analysis under V. dahliae stress

Jing ZHAO,Xu-Tong LI,Xue-Zhong LIANG,Zhi-Cheng WANG,Jing CUI,Bin CHEN,Li-Qiang WU,Xing-Fen WANG,Gui-Yin ZHANG,Zhi-Ying MA,Yan ZHANG()   

  1. Hebei Agricultural University / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Co-Innovation Center for Cotton Industry of Hebei Province, Baoding 071001, Hebei, China
  • Received:2019-04-02 Accepted:2019-06-22 Online:2019-12-12 Published:2019-07-13
  • Contact: Yan ZHANG E-mail:zhangyan7235@126.com
  • Supported by:
    This study was supported by the Natural Science Foundation of Hebei Province(C2017204011);Key Scientific and Technological Research Projects of University in Hebei Province(ZD2014019);Talents Support Program of Hebei Province.


Verticillium dahliae stress causes a disease in vascular bundle that decreases cotton yield and fiber quality. During cotton defense against pathogen infection, disease resistance genes play important roles. Laccase is a multifunctional oxidase that plays an important role in lignin synthesis and plant resistance. High-quality cotton reference genome is necessary to improve the accuracy of gene family analysis. In this study, the laccase (GhirLAC) family genes in the update genome of G. hirsutum L. cv. TM-1 were identified by bioinformatics, and its physical and chemical properties, gene structure, chromosome location and expression pattern under V. dahliae stress were analyzed. There were 83 members of GhirLAC family in the genome of G. hirsutum L., which distributed on 24 chromosomes. All GhirLAC proteins predicted were located in extracellular and had the same conserved motif. Phylogenetic analysis showed that the members of the GhirLAC genes family were divided into seven subgroups. According to the analysis results of cotton transcription under V. dahliae stress, it was clear that the expression pattern of GhirLAC genes could be divided into three groups, of which, group 1 and group 2 GhirLAC genes displayed down-regulation and up-regulation expression patterns, respectively, suggesting that these genes should play important roles in cotton Verticillium wilt resistance. Furthermore, we identified three candidate genes expression patterns induced by V. dahliae, including GhirLAC02 (GhLAC4), GhirLAC38 (GhLAC11), and GhirLAC20 (GhLAC12), the qPCR results were consistent with the expression trend based on transcriptome data. This study lays a foundation for further analysis of disease resistance function and molecular mechanism of GhirLAC gene in cotton.

Key words: G. hirsutum L., laccase, gene family, Verticillium wilt, gene expression

Table 1

Information of LAC gene family in G. hirsutum L."

Gene name
Gene ID
Chromosome location
Gene size (bp)
Protein (aa)
Subcellular localization
GhLAC01 Ghir_A01G021510 A01:116737831-116742782 4952 573 胞外Extracellular
GhLAC02 Ghir_A01G021950 A01:117127088-117132069 4982 558 胞外Extracellular
GhLAC03 Ghir_A02G006480 A02:10086940-10089681 2742 580 胞外Extracellular
GhLAC04 Ghir_A03G005270 A03:9138986-9141467 2482 420 胞外Extracellular
GhLAC05 Ghir_A03G005280 A03:9197235-9204292 7058 568 胞外Extracellular
GhLAC06 Ghir_A03G005300 A03:9235739-9242786 7048 571 胞外Extracellular
GhLAC07 Ghir_A03G005800 A03:10413905-10417019 3115 434 胞外Extracellular
GhLAC08 Ghir_A03G007710 A03:17682089-17684169 2081 560 胞外Extracellular
GhLAC09 Ghir_A04G009430 A04:71412678-71434702 22025 531 胞外Extracellular
GhLAC10 Ghir_A04G009440 A04:71412678-71415616 2939 485 胞外Extracellular
GhLAC11 Ghir_A04G009460 A04:71525265-71528510 3246 570 胞外Extracellular
GhLAC12 Ghir_A04G009470 A04:71627753-71631136 3384 576 胞外Extracellular
GhLAC13 Ghir_A05G009230 A05:8476727-8479903 3177 556 胞外Extracellular
Gene name
Gene ID
Chromosome location
Gene size (bp)
Protein (aa)
Subcellular localization
GhLAC14 Ghir_A05G010150 A05:9143475-9146068 2594 579 胞外Extracellular
GhLAC15 Ghir_A05G010190 A05:9194020-9196191 2172 574 胞外Extracellular
GhLAC16 Ghir_A05G025290 A05:25890847-25893461 2615 537 胞外Extracellular
GhLAC17 Ghir_A05G025340 A05:25981068-25989683 8616 566 胞外Extracellular
GhLAC18 Ghir_A05G025350 A05:26015294-26017921 2628 563 胞外Extracellular
GhLAC19 Ghir_A05G031190 A05:41692291-41698066 5776 555 胞外Extracellular
GhLAC20 Ghir_A05G031330 A05:42716069-42718551 2483 551 胞外Extracellular
GhLAC21 Ghir_A06G012170 A06:67269136-67271306 2171 558 胞外Extracellular
GhLAC22 Ghir_A06G017280 A06:116079600-116081862 2263 522 胞外Extracellular
GhLAC23 Ghir_A06G017300 A06:116223123-116225599 2477 518 胞外Extracellular
GhLAC24 Ghir_A06G017320 A06:116280847-116285027 4181 562 胞外Extracellular
GhLAC25 Ghir_A08G021230 A08:116971139-116973684 2546 576 胞外Extracellular
GhLAC26 Ghir_A09G016340 A09:72475738-72478310 2573 583 胞外Extracellular
GhLAC27 Ghir_A10G009410 A10:18971904-18974558 2655 562 胞外Extracellular
GhLAC28 Ghir_A10G023410 A10:112560879-112563710 2832 554 胞外Extracellular
GhLAC29 Ghir_A10G024200 A10:114093313-114095981 2669 569 胞外Extracellular
GhLAC30 Ghir_A11G010610 A11:9769950-9772299 2350 570 胞外Extracellular
GhLAC31 Ghir_A11G035330 A11:122965170-122967669 2500 580 胞外Extracellular
GhLAC32 Ghir_A11G035350 A11:122971778-122974013 2236 583 胞外Extracellular
GhLAC33 Ghir_A11G035490 A11:123045551-123048240 2690 556 胞外Extracellular
GhLAC34 Ghir_A12G012190 A12:80351644-80353970 2327 572 胞外Extracellular
GhLAC35 Ghir_A13G001780 A13:2014792-2017130 2339 462 胞外Extracellular
GhLAC36 Ghir_A13G002160 A13:2565151-2567561 2411 553 胞外Extracellular
GhLAC37 Ghir_A13G002170 A13:2580835-2585183 4349 447 胞外Extracellular
GhLAC38 Ghir_A13G002350 A13:2736016-2738294 2279 563 胞外Extracellular
GhLAC39 Ghir_A13G003100 A13:3705196-3707259 2064 537 胞外Extracellular
GhLAC40 Ghir_A13G023990 A13:107564582-107569198 4617 577 胞外Extracellular
GhLAC41 Ghir_D01G023050 D01:62359392-62363270 3879 569 胞外Extracellular
GhLAC42 Ghir_D01G023480 D01:62708521-62717375 8855 558 胞外Extracellular
GhLAC43 Ghir_D02G006860 D02:9508400-9511507 3108 580 胞外Extracellular
GhLAC44 Ghir_D03G010220 D03:35974903-35978183 3281 534 胞外Extracellular
GhLAC45 Ghir_D03G013060 D03:43363895-43367056 3162 556 胞外Extracellular
GhLAC46 Ghir_D03G013490 D03:44287872-44290796 2925 453 胞外Extracellular
GhLAC47 Ghir_D03G013500 D03:44314668-44316870 2203 531 胞外Extracellular
GhLAC48 Ghir_D03G015740 D03:48218625-48221114 2490 576 胞外Extracellular
GhLAC49 Ghir_D04G013650 D04:44922823-44925840 3018 573 胞外Extracellular
GhLAC50 Ghir_D04G013660 D04:45073981-45077137 3157 573 胞外Extracellular
Gene name
Gene ID
Chromosome location
Gene size (bp)
Protein (aa)
Subcellular localization
GhLAC51 Ghir_D04G013670 D04:45158044-45161359 3316 592 胞外Extracellular
GhLAC52 Ghir_D04G013680 D04:45181487-45184916 3430 567 胞外Extracellular
GhLAC53 Ghir_D04G013870 D04:45597220-45599865 2646 556 胞外Extracellular
GhLAC54 Ghir_D05G009240 D05:7540512-7543586 3075 556 胞外Extracellular
GhLAC55 Ghir_D05G009870 D05:8212961-8215461 2501 579 胞外Extracellular
GhLAC56 Ghir_D05G025170 D05:23475679-23484348 8670 552 胞外Extracellular
GhLAC57 Ghir_D05G025180 D05:23486473-23489452 2980 531 胞外Extracellular
GhLAC58 Ghir_D05G025190 D05:23514531-23517069 2539 563 胞外Extracellular
GhLAC59 Ghir_D05G025200 D05:23542441-23557617 15177 566 胞外Extracellular
GhLAC60 Ghir_D05G025220 D05:23575706-23578427 2722 562 胞外Extracellular
GhLAC61 Ghir_D05G031070 D05:33904186-33908534 4349 555 胞外Extracellular
GhLAC62 Ghir_D06G012330 D06:29988284-29990547 2264 571 胞外Extracellular
GhLAC63 Ghir_D06G018210 D06:59288750-59291253 2504 568 胞外Extracellular
GhLAC64 Ghir_D06G018220 D06:59357081-59359262 2182 568 胞外Extracellular
GhLAC65 Ghir_D06G018250 D06:59500342-59502844 2503 568 胞外Extracellular
GhLAC66 Ghir_D08G022010 D08:63494311-63496810 2500 576 胞外Extracellular
GhLAC67 Ghir_D09G015810 D09:44179260-44181960 2701 583 胞外Extracellular
GhLAC68 Ghir_D10G009840 D10:11987141-11989232 2092 541 胞外Extracellular
GhLAC69 Ghir_D10G025960 D10:66026294-66029136 2843 554 胞外Extracellular
GhLAC70 Ghir_D10G026620 D10:67161382-67164003 2622 569 胞外Extracellular
GhLAC71 Ghir_D11G010590 D11:9024231-9027561 3331 574 胞外Extracellular
GhLAC72 Ghir_D11G036190 D11:72693575-72696286 2712 570 胞外Extracellular
GhLAC73 Ghir_D11G036210 D11:72700213-72702426 2214 583 胞外Extracellular
GhLAC74 Ghir_D11G036340 D11:72775350-72777973 2624 556 胞外Extracellular
GhLAC75 Ghir_D12G012430 D12:41466012-41468206 2195 569 胞外Extracellular
GhLAC76 Ghir_D13G002060 D13:1759037-1761649 2613 576 胞外Extracellular
GhLAC77 Ghir_D13G002440 D13:2206264-2213052 6789 567 胞外Extracellular
GhLAC78 Ghir_D13G002640 D13:2386833-2389243 2411 563 胞外Extracellular
GhLAC79 Ghir_D13G003370 D13:3233418-3235743 2326 563 胞外Extracellular
GhLAC80 Ghir_D13G003390 D13:3256191-3258374 2184 557 胞外Extracellular
GhLAC81 Ghir_D13G024730 D13:62656628-62661237 4610 435 胞外Extracellular
GhLAC82 Ghir_A03G023780 Scaffold2615:13682-16169 2488 576 胞外Extracellular
GhLAC83 Ghir_A08G026500 Scaffold2204:49182-53499 4318 564 胞外Extracellular

Fig. 1

Chromosome location of LAC family members in G. hirsutum L."

Fig. 2

Phylogenic tree of LACs family members in Arabidopsis and G. hirsutum L."

Fig. 3

Gene structure analysis of LAC family members in G. hirsutum L."

Fig. 4

Conservative motifs of LAC gene family in G. hirsutum L."

Fig. 5

Expression analysis of LAC genes under V. dahliae stress based on transcriptome data"

Fig. 6

Gene relative expression of GhLAC4, GhLAC11, and GhLAC12 under V. dahliae stress"

[1] Gao X Q, Wheeler T, Li Z H, Kenerley C M, He P, Shan L B . Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J, 2011,66:293-305.
doi: 10.1111/j.1365-313X.2011.04491.x
[2] Bolek Y, Elzik K M, Pepper A E, Bell A A, Magill C W, Thaxton P M, Reddy O U K . Mapping of Verticillium wilt resistance genes in cotton. Plant Sci, 2005,168:1581-1590.
doi: 10.1016/j.plantsci.2005.02.008
[3] Zhang Y, Wang X F, Rong W, Yang J, Li Z K, Wu L Q, Zhang G Y, Ma Z Y . Histochemical analyses reveal that stronger intrinsic defenses in Gossypium barbadense than in G. hirsutum are associated with resistance to Verticillium dahliae. Mol Plant Microbe Int, 2017,30:984-996.
doi: 10.1094/MPMI-03-17-0067-R
[4] Cai Y F, He X H, Mo J C, Sun Q, Yang J P, Liu J G . Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: a review. Afr J Biotechnol, 2009,8:7363-7372.
[5] 张天真, 周兆华, 闵留芳, 郭旺珍, 潘家驹, 何金龙, 纵瑞收, 汤杰珍, 郭小平, 蒯本科, 王谧, 朱协飞, 陈兆夏, 唐灿明, 刘康, 孙敬, 惠书勤, 黄在进 . 棉花对黄萎病的抗性遗传模式及抗(耐)病品种的选育技术. 作物学报, 2000,26:673-680.
Zhang T Z, Zhou Z H, Min L F, Guo W Z, Pan J J, He J L, Zong R S, Tang J Z, Guo X P, Kuai B K, Wang M, Zhu X F, Chen Z X, Tang C M, Liu K, Sun J, Hui S Q, Huang Z J . Inheritance of cotton resistance to Verticillium dahliae and strategies to develop resistant or tolerant cultivars. Acta Agron Sin, 2000,26:673-680 (in Chinese with English abstract).
[6] Malinovsky F G, Fangel J U, Willats W G T . The role of the cell wall in plant immunity. Front Plant Sci, 2014,5:178.
[7] Bowers J H, Nameth S T, Riedel R M, Rowe R C . Infection and colonization of potato roots by Verticillium dahliae as affected by Pratylenchus penetrans and P. crenatus. Phytopathology, 1996,86:614-621.
doi: 10.1094/Phyto-86-614
[8] Fradin E F, Thomma B P H J . Physiology and molecular aspects of Verticillium wilt caused by V. dahliae and V. alboatrum. Mol Plant Pathol, 2006,7:71-86.
doi: 10.1111/mpp.2006.7.issue-2
[9] 赵蕾, 张天宇 . 植物病原菌产生的降解酶及其作用. 微生物学通报, 2002,29:89-93.
Zhao L, Zhang T Y . Production and roles of the degrading enzymes prodused by phytopathogen. Microbiol Chin, 2002,29:89-93 (in Chinese with English abstract).
[10] Smit F, Dubery I A . Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor. Phytochemistry, 1997,44:811-815.
doi: 10.1016/S0031-9422(96)00595-X
[11] Wang Y, Coussa O B, Lebris P, Antelme S, Soulhat C, Gineau E, Dalmais M, Bendahmane A, Morin H, Mouille G, Legée F, Cézard L, Lapierre C, Sibout R . LACCASE 5 is required for lignification of the Brachypodium distachyon culm. Plant Physiol, 2017,168:192-204.
doi: 10.1104/pp.114.255489
[12] 王骥, 朱木兰, 卫志明 . 棉花漆酶基因在转基因新疆杨中的表达及其对木质素合成的影响. 分子细胞生物学报, 2008, ( 1):11-18.
W J, Zhu M L, Wei Z M . Cotton Laccase gene overexpression in transgenic Populus alba var.pyramidalis and its effects on the lignin biosynthesis in transgenic plants. J Mol Cell Biol, 2008, ( 1):11-18 (in Chinese with English abstract).
[13] 赵先炎, 庞明利, 赵强, 任怡然, 郝玉金, 由春香 . 番茄漆酶基因LeLACmiR397的克隆与表达分析. 园艺学报, 2015,42:1285-1298.
doi: 10.16420/j.issn.0513-353x.2014-1079
Zhao X Y, Pang M L, Zhao Q, Ren Y R, Hao Y J, You C X . Cloning and expression analysis of tomato LeLACmiR397 gene. Acta Hortic Sin, 2015,42:1285-1298 (in Chinese with English abstract).
doi: 10.16420/j.issn.0513-353x.2014-1079
[14] 田奇琳, 林玉玲, 郑庆游, 苏荣峰, 赖钟雄 . 龙眼DlLac7的克隆及其表达调控分析. 果树学报, 2016,33:1185-1193.
Tian Q L, Lin Y L, Zheng Q Y, Su R F, Lai Z X . Cloning and expression analyses of DlLac7 in Dimocarpus longan. J Fruit Sci, 2016,33:1185-1193 (in Chinese with English abstract).
[15] 黄晨, 陈帅, 程小芳, 张新, 黎星辉, 孙晓玲 . 茶树漆酶基因CsLAC4CsLAC12的克隆与表达分析. 植物保护学报, 2018,45:1069-1077.
Huang C, Chen S, Cheng X F, Zhang X, Li X H, Sun X L . Cloning and expression analysis of the laccase genes CsLAC4 and CsLAC12 from the tea plant. J Plant Prot, 2018, 45:1069-1077 (in Chinese with English abstract).
[16] Liu Q Q, Luo L, Wang X X, Shen Z G, Zheng L Q . Comprehensive analysis of rice laccase gene(OsLAC) family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int J Mol Sci, 2017,18:1-16.
doi: 10.3390/ijms18010001
[17] Wang J H, Feng J J, Jia W T, Fan P X, Bao H X G D L, Li S Z, Li Y X . Genome-wide dentification of sorghum bicolor laccases reveals potential targets for lignin modification. Front Plant Sci, 2017,8:714.
doi: 10.3389/fpls.2017.00714
[18] Roy J L, Blervacq A S, Créach A, Huss B, Hawkins S, Neutelings G . Spatial regulation of monolignol biosynthesis and laccase genes control developmental and stress-related lignin in flax. BMC Plant Biol, 2017,17:124.
doi: 10.1186/s12870-017-1072-9
[19] Zhang Y, Wu L Z, Wang X F, Chen B, Zhao J, Cui J, Li Z K, Yang J, Wu L Q, Wu J H, Zhang G Y, Ma Z Y . The cotton laccase gene GhLAC15 enhanced Verticillium wilt resistance via increasing defense-induced lignification and lignin components in the cell wall of plants. Mol Plant Pathol, 2019,20:309-322.
doi: 10.1111/mpp.2019.20.issue-3
[20] Hu Q, Min L, Yang X Y, Jin S X, Zhang L, Li Y Y, Ma Y Z, Qi X W, Li D Q, Liu H B, Lindsey K, Zhu L F, Zhang X L . Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via DAMP-triggered immunity. Plant Physiol, 2017,176:1-34.
[21] Balasubramanian V K, Rai K M, Thu S W, Hii M M, Mendu V . Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development. Sci Rep, 2016,29:6.
[22] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X . Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015,33:524-530.
doi: 10.1038/nbt.3208
[23] Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, Ye Z X, Huang H, Yan F L, Ma Y Z, Zhang L, Liu M, You J Q, Yang Y C, Liu Z P, Huang F, Li B Q, Qiu P, Zhang Q H, Zhu L F, Jin S X, Yang X Y, Min L, Li G L, Chen L L, Zheng H K, Lindsey K, Lin Z X, Udall J A, Zhang X L . Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019,51:224-229.
doi: 10.1038/s41588-018-0282-x
[24] Yu J, Jung S, Cheng C H, Ficklin1 S P, Lee T, Zheng P, Jones D, Percy R G, Main D . CottonGen: a genomics, genetics and breeding database for cotton research. Nucleic Acids Res, 2014,42:1229-1236.
[25] Zhang Y, Wang X F, Rong W, Yang J, Ma Z Y . Island cotton enhanced disease susceptibility 1 gene encoding a lipase-like protein plays a crucial role in response to Verticillium dahliae by regulating the SA level and H2O2 accumulation. Front Plant Sci, 2016,7:1830.
[26] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262
[27] Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Bris P L, Borrega N, Hervé J, Blondet E, Balzergue S, Lapierre C, Jouanin L . Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell, 2011,23:1124-1137.
doi: 10.1105/tpc.110.082792
[28] Zhao Q, Nakashima J, Chen F, Yin Y B, Fu C X, Yun J F, Shao H, Wang X Q, Wang Z Y, Dixon R A . LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 2013,25:3976-3987.
doi: 10.1105/tpc.113.117770
[29] Turlapati P V, Kim K W, Davin L B, Lewis N G . The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta, 2011,233:439-470.
doi: 10.1007/s00425-010-1298-3
[30] Szakasits D, Heinen P, Wieczorek K, Hofmann J, Wagner F, Kreil D P, Sykacek P, Grundler F M W, Bohlmann H . The transcriptome of syncytia induced by the cyst nematode Heterodera schachtii in Arabidopsis roots. Plant J, 2010,57:771-784.
doi: 10.1111/tpj.2009.57.issue-5
[31] Yang J, Zhang Y, Wang X F, Wang W Q, Li Z K, Wu J H, Wang G N, Wu L Q, Zhang G Y, Ma Z Y . HyPRP1 performs a role in negatively regulating cotton resistance to V. dahliae via the thickening of cell walls and ROS accumulation. BMC Plant Biol, 2018,18:339.
doi: 10.1186/s12870-018-1565-1
[32] Li F G, Fan G Y, Wang K B, Sun F M, Yuan Y L, Song G L, Li Q, Ma Z Y, Lu C R, Zou C S, Chen W B, Liang X M, Shang H H, Liu W Q, Shi C C, Xiao G H, Gou C Y, Ye W W, Xu X, Zhang X Y, Wei H L, Li Z F, Zhang G Y, Wang G Y, Liu K, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X . Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet, 2014,46:567-572.
doi: 10.1038/ng.2987
[33] Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D, Ye W X, Chang L J, Zhang W P, Song Q X, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J . Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537.
doi: 10.1038/nbt.3207
[34] Chezem W R, Memon A, Li F S, Weng J K, Clay N . SG2-Type R2R3-MYB Transcription factor MYB15 controls defense- induced lignification and basal immunity in Arabidopsis. Plant Cell, 2017,29:1907-1926.
doi: 10.1105/tpc.16.00954
[35] Ye J, Zhong T, Zhang D, Ma C, Wang L, Yao L, Zhang Q, Zhu M, Xu M . The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Mol Plant, 2019,12:360-373.
doi: 10.1016/j.molp.2018.10.005
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[4] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[5] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
[6] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[7] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[8] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[9] HUANG Ning, HUI Qian-Long, FANG Zhen-Ming, LI Shan-Shan, LING Hui, QUE You-Xiong, YUAN Zhao-Nian. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(5): 882-893.
[10] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[11] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[12] HUANG Su-Hua, LIN Xi-Yue, LEI Zheng-Ping, DING Zai-Song, ZHAO Ming. Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability [J]. Acta Agronomica Sinica, 2021, 47(11): 2278-2289.
[13] HUANG Xiao-Fang,BI Chu-Yun,SHI Yuan-Yuan,HU Yun-Zhuo,ZHOU Li-Xiang,LIANG Cai-Xiao,HUANG Bi-Fang,XU Ming,LIN Shi-Qiang,CHEN Xuan-Yang. Discovery and analysis of NBS-LRR gene family in sweet potato genome [J]. Acta Agronomica Sinica, 2020, 46(8): 1195-1207.
[14] MI Wen-Bo, FANG Yuan, LIU Zi-Gang, XU Chun-Mei, LIU Gao-Yang, ZOU Ya, XU Ming-Xia, ZHENG Guo-Qiang, CAO Xiao-Dong, FANG Xin-Ling. Differential proteomics analysis of fertility transformation of the winter rape thermo-sensitive sterile line PK3-12S (Brassica rapa L.) [J]. Acta Agronomica Sinica, 2020, 46(10): 1507-1516.
[15] SHI Li-Jie,JIANG Cong-Cong,WANG Fang-Mei,YANG Ping,FENG Zong-Yun. Genome-wide characterization and transcriptional analysis of the protein disulfide isomerase-like genes in barley (Hordeum vulgare) [J]. Acta Agronomica Sinica, 2019, 45(9): 1365-1374.
Full text



No Suggested Reading articles found!