Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (1): 55-69.doi: 10.3724/SP.J.1006.2019.84001


Proteomic analysis of sugarcane-Sporisorium scitamineum interaction based on iTRAQ technique

Qi-Qi SONG1(),SINGH Pratiksha2,Kumar SINGH Rajesh2,Xiu-Peng SONG1,Hai-Bi LI1,You-Ye NONG2,Li-Tao YANG1,2,*(),Yang-Rui LI1,2,*()   

  1. 1 Sugarcane Research Center, Chinese Academy of Agricultural Sciences / Guangxi Academy of Agricultural Sciences / Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, Guangxi, China
    2 Agricultural College, Guangxi University / State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China
  • Received:2018-01-04 Accepted:2018-08-20 Online:2018-09-26 Published:2018-09-26
  • Contact: Li-Tao YANG,Yang-Rui LI E-mail:2632754996@qq.com;litao61@hotmail.com;lyr@gxaas.net
  • Supported by:
    This study was supported by the Guangxi Special Fund for Scientific Base and Talent(GKAD17195100);the Special Funds for Bagui Scholars and Distinguished Experts in Guangxi(桂科AD17195100);Guangxi Sugarcane Innovation Team of National Agricultural Industry Technology System(gjnytxgxcxtd-03-01);Guangxi Natural Science Fundation(2015GXNSFBA139060);Guangxi Key Laboratory of Sugarcane Genetic Improvement(16-K-02-01)


Sugarcane smut has become an important disease affecting sugarcane yield and sugar content. In order to investigate the molecular mechanism of sugarcane responding to smut at protein level, the smut-resistant variety GT29 and the smut-susceptible variety Yacheng 71-374 were used in this study. Both varieties were inoculated with the teliospore suspension of smut pathogen by dipping method whereas the control was treated with sterile water. Leaf samples were collected and used for proteomic analysis by iTRAQ technique at 180 days after treatment. The that 1429 proteins presented in GT29 with quantitative information, including 290 differentially expressed proteins with 153 up-regulated and 137 down-regulated; while 1576 proteins in Yacheng 71-374 with quantitative information, including 125 differentially expressed proteins with 55 up-regulated and 70 down-regulated. The number of differentially expressed proteins in resistant variety was higher than that in susceptible variety, and GT29 enriched more metabolic pathways in KEGG, indicating that the immunomodulatory mechanism of the resistant variety may be more complicated, and the regulatory network involved in response was broader. Through the analysis of photosynthesis, antioxidant system, calcium signal, phenylpropane metabolism, hormone related differential expressed protein and co-owned differentially expressed protein, it was found that the photosynthesis pathway, ROS, ABA, calcium signal pathway related protein were up-regulated in both varieties. The up-regulated expressed proteins were more in GT29 than in Yacheng 71-374, which may be involved in resistance response in sugarcane against smut pathogen at later growth stage. Plant disease resistance is a complex process that requires multiple functions and pathways to participate in regulation. The phenylpropanoid metabolic pathway, enzymes GPX, APX, SOD, GST, and CAT, and hormones IAA, ETH, and GA were not found to be involved in the disease resistance process of sugarcane.

Key words: sugarcane, smut, iTRAQ, proteomics

Fig. 1

PCR amplification products of DNA isolated from the control and smut inoculated sugarcane plantlets M: molecular size marker (100-5000 bp); P: S. scitamineum DNA as positive; N: sterile water as negative; G(T): GT29 treatment; G(C): GT29 control; Y(T): Yacheng 71-374 treatment; Y(C): Yacheng 71-374 control."

Table 1

Overall number of peptides and proteins identified"

Total profiles
Identified profiles
Identified peptides
Identified proteins
Quantified proteins
GT29 112 817 8009 3512 1452 1429
Yacheng 71-374 114 550 8832 3990 1594 1576

Fig. 2

Gene ontology annotation analysis"

Differentially expressed protein GO enrichment analysis for GT29 Supplementary Table 1"

GO ID 功能类别
Functional group
Biological process
GO:0019684 Photosynthesis, light reaction 0
GO:0009765 Photosynthesis, light harvesting 0.0002
GO:0015979 Photosynthesis 0.0002
GO:0009772 Photosynthetic electron transport in photosystem II 0.0156
GO:0009767 Photosynthetic electron transport chain 0.0167
GO:0006412 Translation 0.0233
GO:0006091 Generation of precursor metabolites and energy 0.0283
GO:0043043 Peptide biosynthetic process 0.0315
GO:0022900 Electron transport chain 0.0342
GO:0006518 Peptide metabolic process 0.0347
GO:0034645 Cellular macromolecule biosynthetic process 0.0375
GO:0009059 Macromolecule biosynthetic process 0.0375
GO:0043604 Amide biosynthetic process 0.0381
GO:0043603 Cellular amide metabolic process 0.0418
GO:0044267 Cellular protein metabolic process 0.0484
Molecular function
GO:0004478 Methionine adenosyltransferase activity 0.0140
GO:0004857 Enzyme inhibitor activity 0.0140
GO:0016859 Cis-trans isomerase activity 0.0145
GO:0003755 Peptidyl-prolyl cis-trans isomerase activity 0.0145
GO:0051536 Iron-sulfur cluster binding 0.0216
GO:0051540 Metal cluster binding 0.0216
GO:0030234 Enzyme regulator activity 0.0367
GO:0098772 Molecular function regulator 0.0465
Cellular component
GO:0016020 Membrane 0.0024
GO:0043228 Non-membrane-bounded organelle 0.0386
GO:0043232 Intracellular non-membrane-bounded organelle 0.0386
GO:0031224 Intrinsic component of membrane 0.0410

Supplementary Table 2

Differentially expressed protein GO enrichment analysis for Yacheng 71-374"

GO ID 功能类别
Functional group
Biological process
GO:0006979 Response to oxidative stress 0.0086
GO:0019222 Regulation of metabolic process 0.0094
GO:0006560 Proline metabolic process 0.0151
GO:0006561 Proline biosynthetic process 0.0151
GO:0060255 Regulation of macromolecule metabolic process 0.0244
GO:0031323 Regulation of cellular metabolic process 0.0301
GO:0055114 Oxidation-reduction process 0.0465
Molecular function
GO:0004097 Catechol oxidase activity 0.0039
GO:0016841 Ammonia-lyase activity 0.0039
GO:0016682 Oxidoreductase activity, acting on diphenols and related
substances as donors, oxygen as acceptor
GO:0004089 Carbonate dehydratase activity 0.0042
GO:0016684 Oxidoreductase activity, acting on peroxide as acceptor 0.0057
GO:0004601 Peroxidase activity 0.0057
GO:0016829 Lyase activity 0.0083
GO:0016491 Oxidoreductase activity 0.0107
GO:0016840 Carbon-nitrogen lyase activity 0.0113
GO:0016209 Antioxidant activity 0.0154
GO:0020037 Heme binding 0.0174
GO:0046872 Metal ion binding 0.0187
GO:0046914 Transition metal ion binding 0.0208
GO:0043169 Cation binding 0.0242
GO:0046906 Tetrapyrrole binding 0.0244
GO:0045735 Nutrient reservoir activity 0.0347
GO:0016679 Oxidoreductase activity, acting on diphenols and related
substances as donors
GO:0004611 Phosphoenolpyruvate carboxykinase activity 0.0347
GO:0008964 Phosphoenolpyruvate carboxylase activity 0.0347
GO:0016835 Carbon-oxygen lyase activity 0.0385
Cellular component
GO:0009521 Photosystem 0.0195
GO:0034357 Photosynthetic membrane 0.0266
GO:0044436 Thylakoid part 0.0266
GO:0009522 Photosystem I 0.0281
GO:0009579 Thylakoid 0.0307
GO:0009538 Photosystem I reaction center 0.0357

Table 2

Photosynthesis related differentially expressed protein"

Protein ID
Protein name
差异倍数 Fold change
GT29 Yacheng 71-374
c54318_g1;orf1 光系统I反应中心亚基II Photosystem I reaction center subunit II 1.2995↑ 1.2562↑
c69501_g1;orf1 光系统I PsaH, 反应中心亚基III Photosystem I PsaH, reaction centre subunit III 1.9614↑ 0.9303
c48673_g1;orf1 光系统I反应中心亚基IV A Photosystem I reaction center subunit IV A 1.1149 1.3041↑
c56023_g1;orf1 光系统I反应中心亚基V Photosystem I reaction center subunit V 1.5387↑ 1.0456
c43081_g1;orf1 光系统I PsaH, 反应中心亚基VI Photosystem I PsaH, reaction centre subunit VI 0.8432 1.2040↑
c129327_g1;orf1 光系统I亚基VII Subunit VII of photosystem I 1.1871 1.2700↑
c55121_g1;orf1 光系统I反应中心亚基N Photosystem I reaction center subunit N 1.0602 1.4252↑
c56941_g1;orf1 光系统I反应中心亚基XI Photosystem I reaction center subunit XI 1.3609↑ 1.1204
c32636_g1;orf1 铁氧还蛋白[2Fe-2S] Ferredoxin[2Fe-2S] 0.7977↓ 1.0785
c70387_g2;orf1 光系统I组装蛋白ycf4 Photosystem I assembly protein ycf4 1.2823↑ 0.7661↓
c73345_g1;orf1 叶绿素a-b结合蛋白8 Chlorophyll a-b binding protein 8 0.8225↓ 1.1336
c99995_g1;orf1 叶绿素a-b结合蛋白CP26 Chlorophyll a-b binding protein CP26 0.9317 0.7892↓
c52958_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.3946↑ 1.2335↑
c66930_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.5718↑ 1.1641
c69028_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 2.4059↑ 1.1324
c51419_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.0915 1.3043↑
c55759_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.9421↑ 1.2397↑
c57415_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.3181↑ 1.0380
c69028_g3;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.8089↑ 1.0351
c55792_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.8236↑ 1.0311
c51241_g4;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.8423↑ 1.0049
c69028_g2;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 1.9144↑ 0.9817
c121256_g1;orf1 叶绿素a-b结合蛋白 Chlorophyll a-b binding protein 2.4187↑ 0.8355
c73247_g2;orf1 光系统II蛋白D1 Photosystem II protein D1 3.4261↑ 0.9206
c78076_g1;orf1 光系统II蛋白D2 Photosystem II D2 protein 1.3682↑ 0.9089
c54219_g1;orf2 细胞色素b559亚基α Cytochrome b559 subunit α 1.6695↑ 0.7424↓
c77580_g1;orf1 光系统II CP43脱辅基蛋白 Photosystem II CP43 chlorophyll apoprotein 1.4055↑ 0.9421
Protein ID
Protein name
差异倍数 Fold change
GT29 Yacheng 71-374
c126236_g1;orf1 放氧增强蛋白1 Oxygen-evolving enhancer protein 1 1.0064 1.2372↑
c59540_g1;orf1 放氧增强蛋白3 Oxygen-evolving enhancer protein 3 0.8754 1.8631↑
c100226_g1;orf1 放氧增强蛋白 Oxygen-evolving enhancer protein 1.5306↑ 0.9906
c55903_g1;orf1 叶绿体放氧增强蛋白1 (部分) Chloroplast oxygen-evolving enhancer protein 1 (partial) 1.0456 1.2517↑
c51741_g1;orf1 光系统II PsbR Photosystem II PsbR 1.9037↑ 1.0547
c22663_g1;orf1 光系统II 47kDa蛋白 Photosystem II 47 kDa protein 1.7295↑ 0.9404
c56158_g2;orf1 细胞色素b6 (部分) Cytochrome b6 (partial) 1.4786↑ 1.0816
c72546_g2;orf1 细胞色素f Cytochrome f 1.2540↑ 0.9964
c67723_g1;orf1 ATP合成酶CF1α亚基 ATP synthase CF1 α subunit 1.3837↑ 1.0172
c57360_g1;orf2 ATP合成酶 ATP synthase 0.6735↓ 1.0127
c61429_g2;orf1 叶绿体Ptr-ToxA结合蛋白 Chloroplast Ptr ToxA-binding protein 1.4116↑ 0.9843
c54911_g1;orf1 16 kDa膜蛋白 16 kDa membrane protein 1.6364↑ 0.7557↓
c47557_g1;orf1 铜蛋白 Blue (type 1) Copper protein Blue (type 1) 1.1170 1.5826↑

Table 3

Antioxidant related differentially expressed protein"

Protein ID
Protein name
差异倍数 Fold change
GT29 Yacheng 71-374
c50862_g1;orf1 过氧化物酶-5 Peroxiredoxin-5 0.6309↓ 0.9930
c67975_g2;orf2 过氧化物酶54 Peroxidase 54 1.1999 2.0388↑
c59322_g3;orf1 过氧化物酶54前体 Peroxidase 54 precursor 1.4571↑ 1.5671↑
c67975_g1;orf1 过氧化物酶54前体 Peroxidase 54 precursor 1.4967↑ 2.0387↑
c66988_g1;orf1 过氧化物酶12前体 Peroxidase 12 precursor 1.5653↑ 1.0408
c53549_g1;orf1 过氧化物酶-2E-1 Peroxiredoxin-2E-1 0.8258↓ 0.9233
c59322_g4;orf1 过氧化物酶 Peroxidase 1.4017↑ 0.9072
c59146_g1;orf1 过氧化物酶 Peroxidase 0.7301↓ 0.6919↓
c72776_g2;orf1 过氧化物酶 Peroxidase 1.1594 0.6714↓
Protein ID
Protein name
差异倍数 Fold change
GT29 Yacheng 71-374
c58718_g1;orf1 过氧化物酶 Peroxidase 0.4462↓ 0.4493↓
c67818_g4;orf1 过氧化物酶 Peroxidase 1.3312↑ 1.6457↑
c64648_g9;orf1 过氧化物酶 Peroxidase 2.7030↑ 1.4510↑
c70898_g1;orf2 过氧化物酶 Peroxidase 1.2262↑ 1.3997↑
c50276_g1;orf1 过氧化物酶 Peroxidase 1.2289↑ 1.3558↑
c58269_g2;orf1 过氧化物酶 Peroxidase 1.4748↑ 1.2872↑
c46626_g1;orf1 过氧化物酶 Peroxidase 1.4542↑ 1.2559↑
c70898_g1;orf1 过氧化物酶 Peroxidase 1.3312↑ 1.2195↑
c73435_g2;orf1 谷胱甘肽过氧化物酶 Glutathione peroxidase 0.8064↓ 1.0474
c55250_g2;orf1 磷脂氢过氧化物谷胱甘肽过氧化物酶6
Probable phospholipid hydroperoxide glutathione peroxidase 6
0.7848↓ 0.9799
c79083_g1;orf1 L-抗坏血酸过氧化物酶 L-ascorbate peroxidase 0.7024↓ 0.9451
c113714_g1;orf1 APx1-细胞溶质抗坏血酸过氧化物酶 APx1-cytosolic Ascorbate Peroxidase 0.7028↓ 0.9186
c76142_g1;orf1 抗坏血酸过氧化物酶 Ascorbate peroxidase 0.7592↓ 0.9356
c64041_g1;orf1 抗坏血酸过氧化物酶 Ascorbate peroxidase 0.7935↓ 0.9019
c62865_g1;orf1 抗坏血酸过氧化物酶 Ascorbate peroxidase 0.9393 0.7810↓
c73325_g1;orf1 超氧化物歧化酶(Cu/Zn) Superoxide dismutase (Cu/Zn) 0.6040↓ 1.4209↑
c73325_g2;orf2 超氧化物歧化酶(Cu/Zn) Superoxide dismutase (Cu/Zn) 0.4810↓ 1.1765
c55722_g2;orf1 超氧化物歧化酶 Superoxide dismutase 0.5893↓ 1.0278
c66937_g2;orf2 谷胱甘肽S-转移酶4 Glutathione S-transferase 4 0.4706↓ 1.0162
c71423_g2;orf2 谷胱甘肽S-转移酶F8 Glutathione S-transferase F8 0.7288↓ 1.3394↑
c57078_g1;orf1 谷胱甘肽S-转移酶GST 12 Glutathione S-transferase GST 12 1.0751 1.2122↑
c47481_g1;orf1 谷胱甘肽S-转移酶GST 14 Glutathione S-transferase GST 14 0.9491 1.3272↑
c49019_g1;orf1 谷胱甘肽S-转移酶 Glutathione S-transferase 0.9292 1.2484↑
c125211_g1;orf1 谷胱甘肽S-转移酶 Glutathione S-transferase 1.1719 1.2102↑
c67259_g1;orf1 谷胱甘肽S-转移酶 Glutathione S-transferase 0.6751↓ 1.0939
c66937_g2;orf1 谷胱甘肽S-转移酶 Glutathione S-transferase 0.5350↓ 0.9349
c65037_g3;orf1 谷胱甘肽S-转移酶 Glutathione S-transferase 1.2785↑ 0.9165
c66547_g1;orf2 蛋白IN2-1同系物B同型X2 Protein IN2-1 homolog B isoform X2 0.6158↓ 1.0739
c63190_g2;orf1 过氧化氢酶 Catalase-1-like 0.7984↓ 0.9734
c63190_g2;orf2 过氧化氢酶 Catalase-1-like 0.8116↓ 0.8982
c63190_g1;orf1 过氧化氢酶 Catalase 1.2415↑ 0.7038↓

Fig. 3

Co-owned differentially expressed protein COG functional classification"

Table 4

Co-owned differentially expressed proteins up-regulated in GT29 but down-regulated in Yacheng 71-374"

Protein ID
差异倍数 Fold change
GT29 Yacheng 71-374
c62874_g2;orf1 40S核糖体蛋白S5 40S ribosomal protein S5 1.4018↑ 0.8042↓
c60900_g1;orf1 40S核糖体蛋白S18 40S ribosomal protein S18 1.4850↑ 0.7965↓
c61922_g1;orf1 40S核糖体蛋白S10 40S ribosomal protein S10 2.3718↑ 0.7673↓
c53669_g1;orf1 60S核糖体蛋白L35 60S ribosomal protein L35 2.2003↑ 0.8276↓
c71804_g5;orf1 NAD(P)H-醌氧化还原酶亚基H NAD(P)H-quinone oxidoreductase subunit H 1.9719↑ 0.7819↓
c63190_g1;orf1 过氧化氢酶 Catalase 1.2415↑ 0.7038↓
c54219_g1;orf2 细胞色素b559亚基α Cytochrome b559 subunit α 1.6695↑ 0.7424↓
c70387_g2;orf1 光系统I组装蛋白ycf4 Photosystem I assembly protein ycf4 1.2823↑ 0.7661↓
c58104_g1;orf1 叶绿体光系统II 22kDa蛋白质 Chloroplast photosystem II 22 kDa protein 1.3253↑ 0.8263↓
c54911_g1;orf1 16 kDa膜蛋白 16 kDa membrane protein 1.6364↑ 0.7557↓
c42694_g1;orf1 C4磷酸烯醇式丙酮酸羧化酶 Putative C4 phosphoenolpyruvate carboxylase 1.5936↑ 0.7203↓
c42694_g2;orf1 C4磷酸烯醇式丙酮酸羧化 Putative C4 phosphoenolpyruvate carboxylase 1.4599↑ 0.7465↓
c53868_g3;orf1 C4磷酸烯醇式丙酮酸羧化酶 Putative C4 phosphoenolpyruvate carboxylase 1.3213↑ 0.7792↓
c107621_g1;orf1 2A型丝氨酸/苏氨酸蛋白磷酸酶65 kDa调节亚基Aβ亚型
Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform
1.3104↑ 0.8029↓
c68372_g4;orf1 γ-生育酚甲基转移酶 γ-tocopherol methyltransferase 1.2630↑ 0.7888↓
[1] Martinez M, Medina I, Naranjo S, Rodriguez C, Armas R, Pinon D, Vicente C, Legaz M E . Changes of some chemical parameters, involved in sucrose recovery from sugarcane juices, related to the susceptibility or resistance of sugarcane plants to smut (Ustilago scitaminea). Int Sugar J, 2000,102:445-448.
[2] Su Y C, Wang Z Q, Xu L P, Peng Q, Liu F, Li Z, Que Y X . Early selection for smut resistance in sugarcane using pathogen proliferation and changes in physiological and biochemical indices. Front Plant Sci, 2016,7:e84426.
doi: 10.3389/fpls.2016.01133 pmid: 4963460
[3] Lloyd H L . Chemical assay potentially suitable for determination of smut resistance of sugarcane cultivars. Plant Dis, 1983,67:1103-1105.
doi: 10.1094/PD-67-1103
[4] Singh A P, Lal R, Solomon S . Changes in ascorbic acid content in sugarcane affected with smut fungus (Ustilago scitaminea Syd.). Sugar Tech, 2002,4:72-73.
doi: 10.1007/BF02956886
[5] Santiago R, Quintana J, Rodríguez S, Díaz E M, Legaz M E, Vicente C . An elicitor isolated from smut teliospores (Sporisorium scitamineum) enhances lignin deposition on the cell wall of both sclerenchyma and xylem in sugarcane leaves. Pak J Bot, 2010,42:2867-2881.
[6] 莫凤连, 杨丽涛, 潘如科, 宋修鹏, 李杨瑞 . 甘蔗黑穗病菌胁迫对甘蔗内源激素含量的影响. 南方农业学报, 2012,43:1676-1681.
doi: 10.3969/j:issn.2095-1191.2012.11.1676
Mo F L, Yang L T, Pan R K, Song X P, Li Y R . Changes of endogenous hormone content in sugarcane under smut pathogen stress. J Sourhern Agric, 2012,43:1676-1681 (in Chinese with English abstract).
doi: 10.3969/j:issn.2095-1191.2012.11.1676
[7] 苏亚春 . 甘蔗应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘. 福建农林大学博士学位论文,福建福州, 2014.
Su Y C . Transcriptomics and Proteomics of Sugarcane Response to Sporisorium scitamineum Infection and Mining of Resistance-Related Genes. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian,China, 2014 (in Chinese with English abstract).
[8] Leila P, Peters G, Carvalho M B, Vilhena S, Creste R A, Azevedo C B, Monteiro V . Functional analysis of oxidative burst in sugarcane smut-resistant and smut-susceptible genotypes. Planta, 2017,245:749-764.
doi: 10.1007/s00425-016-2642-z
[9] 宋修鹏 . 黑穗病菌侵染初期甘蔗幼苗光合生理变化及基因差异表达. 广西大学博士学位论文, 广西南宁, 2014.
doi: 10.7666/d.D523519
Song X P . Effects of Smut Pathogen on Photosynthetic Characteristics and Gene Differential Expression in Sugarcane at Seedling Stage. PhD Dissertation of Guangxi University, Nanning, Guangxi, China, 2014 (in Chinese with English abstract).
doi: 10.7666/d.D523519
[10] Barnabas L, Ashwin N M R, Kaverinathan K . Proteomic analysis of a compatible interaction between sugarcane and Sporisorium scitamineum. Proteomics, 2016,16:1111-1122.
[11] Su Y C, Xu L P, Wang Z, Peng Q, Yang Y T, Chen Y, Que Y X . Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane . BMC Genomics, 2016,17:800.
doi: 10.1186/s12864-016-3146-8 pmid: 5062822
[12] Que Y X, Xu L P, Lin J W, Ruan M H, Zhang M Q, Chen R K . Differential protein expression in sugarcane during sugarcane-Sporisorium scitamineum interaction revealed by 2-de and maldi-tof-tof/ms. Comp Funct Genomics, 2011: 989016.
doi: 10.1155/2011/989016 pmid: 21822403
[13] 钟云 . Candidatus liberibacter asiaticus诱导的柑橘转录组学及蛋白组学研究. 湖南农业大学博士学位论文, 湖南长沙, 2012
Zhong Y . Proteomics of Citrus Induced by Candidatus liberibacter asiaticus. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2012 (in Chinese with English abstract)
[14] 唐成, 陈露, 安敏敏, 孟丹, 杨立明, 罗玉明 . 水稻幼苗叶片应答稻瘟病侵染的差异蛋白谱分析. 淮阴师范学院学报, 2014,13:322-328.
doi: 10.3969/j.issn.1671-6876.2014.04.009
Tang C, Chen L, An M M, Meng D, Yang L M, Luo Y M . Proteomic analysis reveals an intimate protein pathways provoked by blast in rice seedling leaves. J Huaiyin Teach Coll, 2014,13:322-328 (in Chinese with English abstract).
doi: 10.3969/j.issn.1671-6876.2014.04.009
[15] Marsh E, Alvarez S, Hicks L M, Barbazuk B W, Qiu W P, Kovacs L, Schachtman D . Changes in protein abundance during powdery mildew infection of leaf tissues of Cabernet Sauvignon grapevine (Vitis vinifera L.). Proteomics, 2010,10:2057-2064.
doi: 10.1002/pmic.200900712 pmid: 20232356
[16] 张荣华, 何红, 张革民, 刘海斌, 李杨瑞, 方锋学, 宋焕忠, 方位宽, 闭少玲 . 宿根性特强甘蔗新品种桂糖29号的选育. 中国糖料, 2011, ( 1):1-4.
doi: 10.3969/j.issn.1007-2624.2011.01.001
Zhang R H, He H, Zhang G M, Liu H B, Li Y R, Fang F X, Song H Z, Fang W K, Bi S L . Breeding of new sugarcane variety Guitang 29 with high ratoon ability. Sugar Crops China, 2011, (1):1-4 (in Chinese with English abstract).
doi: 10.3969/j.issn.1007-2624.2011.01.001
[17] 高轶静, 张革民, 张荣华, 宋焕忠, 罗霆, 段维兴, 贤武, 廖江雄, 周会, 游建华 . 甘蔗优良新品种(系)的黑穗病抗性鉴定. 中国糖料, 2013, ( 2):25-26.
doi: 10.3969/j.issn.1007-2624.2013.02.008
Gao Y J, Zhang G M, Zhang R H, Song H Z, Luo T, Duan W X, Xian W, Liao J X, Zhou H, You J H . Evaluation of resistance to smut disease in new sugarcane varieties and breeding lines. Sugar Crops China, 2013, ( 2):25-26 (in Chinese with English abstract).
doi: 10.3969/j.issn.1007-2624.2013.02.008
[18] 熊国如, 张树珍 . 甘蔗黑穗病的研究. 农业灾害研究, 2012,2(4):8-10.
Xiong G R, Zhang S Z . Study on sugarcane smut. J Agric Catastrophol, 2012,2(4):8-10 (in Chinese with English abstract).
[19] 林丽, 张新成, 李杨瑞, 梁俊 . 甘蔗器官固氮酶活性及其对接种固氮菌的响应. 西北植物学报, 2008,28:2472-2477.
Lin L, Zhang X C, Li Y R, Liang J . Changes of nitrogenase activity in sugarcane (Saccharum officinarum L.) and its response to innoculate nitrogen fixation bacteria. Acta Bot Boreali-Occident Sin, 2008,28:2472-2477 (in Chinese with English abstract).
[20] 彭浩, 林文芳, 朱学艺 . 叶绿体蛋白质组研究进展. 西北植物学报, 2008,28:194-203.
Peng H, Lin W F, Zhu X Y . Research progress in chloroplast proteome. Acta Bot Boreali-Occident Sin, 2008,28:194-203 (in Chinese).
[21] 邱念伟, 王颖 . 光合作用光反应过程中的物质与能量转换. 生物学教学, 2011,36(2):71-74
doi: 10.3969/j.issn.1004-7549.2011.02.043
Qiu N W, Wang Y . Substance and energy conversion during photosynthesis photoreaction. Biol Teach, 2011,36(2):71-74 (in Chinese).
doi: 10.3969/j.issn.1004-7549.2011.02.043
[22] 苟萍, 索菲娅, 马东建 . 高等植物铁氧还蛋白的结构与功能. 生命的化学, 2007,27:51-53.
doi: 10.3969/j.issn.1000-1336.2007.01.021
Gou P, Suo F Y, Ma D J . Structure and function of ferredoxin in higher plants. Chem Life, 2007,27:51-53 (in Chinese).
doi: 10.3969/j.issn.1000-1336.2007.01.021
[23] 翟玉山, 邓宇晴, 董萌, 徐倩, 程光远, 彭磊, 林彦铨, 徐景升 . 甘蔗捕光叶绿素a/b结合蛋白基因ScLhca3的克隆及表达. 作物学报, 2016,42:1332-1341.
doi: 10.3724/SP.J.1006.2016.01332
Zhai Y S, Deng Y Q, Dong M, Xu Q, Cheng G Y, Peng L, Lin Y Q, Xu J S . Cloning and characterization of light harvesting chlorophyll a/b-binding protein coding gene(ScLhca3) in sugarcane. Acta Agron Sin, 2016,42:1332-1341 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01332
[24] Mayfield S P, Bennoun P, Rochaix J D . Expression of the nuclear encoded OEE1 protein is required for oxygen evolution and stability of photosystem II particles in Chlamydomonas reinhardtii. EMBO J, 1987,6:313-318.
doi: 10.1002/j.1460-2075.1987.tb04756.x pmid: 3556163
[25] Medentsev A G, Arinbasarova A I, Aimenko V K . Adaptation of the phytopathogenic fungus Fusarium decemcellulare to oxidative stress. Mikrobiologiia, 2001,70:34-38.
doi: 10.1023/A:1004832518783 pmid: 11338833
[26] 余晓丛, 娜仁, 张少英 . 钙信号在植物抗病性中的作用研究进展. 中国农学通报, 2012,28(3):12-16.
doi: 10.3969/j.issn.1000-6850.2012.03.003
Yu X C, Na R, Zhang S Y . Research progress about calcium signal involved in plant resistance to disease. Chin Agric Bull, 2012,28(3):12-16 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6850.2012.03.003
[27] 李丽花, 张瑞杰, 姚远丽, 朱璇 . 24-表油菜素内酯调控苯丙烷代谢增强杏果实抗病性的研究. 现代食品科技, 2017,33(9):71-76.
Li L H, Zhang R J, Yao Y L, Zhu X . 24-epibrassinolide enhances disease resistance in apricot fruits via regulation of phenylpropanoid metabolism. Mod Food Sci Technol, 2017, 33(9):71-76 (in Chinese with English abstract).
[28] 杜翔宇, 刘春燕, 吴琼, 蒋洪蔚, 辛大伟, 陈庆山, 胡国华 . 大豆苯丙氨酸代谢途径关键酶基因的挖掘定位及结构分析. 大豆科学, 2012,31:178-183.
doi: 10.3969/j.issn.1000-9841.2012.02.004
Du X Y, Liu C Y, Wu Q, Jiang H W, Xin D W, Chen Q S, Hu G H . Gene mining and structure analysis of key enzyme genes on phenylalanine acid metabolic pathway in soybean. Soybean Sci, 2012,31:178-183 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-9841.2012.02.004
[29] Liu D X, Fan C S, Tao J H . Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis. World J Gastroentero, 2004,10:3683-3687.
[30] 张烨 . 柠条锦鸡儿咖啡酰辅酶A-O-甲基转移酶基因cDNA和gDNA全长克隆及生物信息学分析. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2011.
Zhang Y . Full-length cDNA and Genomic DNA Cloning of Caffeoyl Coenzyme A-O-methyltransferase from Caragana Korshinkii Kom and Its Bioinformatics Analysis. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2011 (in Chinese with English abstract).
[31] 王志卫, 贝学军, 朱世平 . 植物激素在植物抗病过程中的作用研究进展. 安徽农业科学, 2011,39:9035-9038.
Wang Z W, Bei X J, Zhu S P . Recent advances in phytohormone regulated plant resistance to pathogens. J Anhui Agric Sci, 2011,39:9035-9038 (in Chinese with English abstract).
[32] 赵琴, 潘静, 曹兵, 宋丽华 . 气温升高与干旱胁迫对宁夏枸杞光合作用的影响. 生态学报, 2015,35:6016-6022.
doi: 10.5846/stxb201401090073
Zhao Q, Pan J, Cao B, Song L H . Effects of elevated temperature and drought stress on photosynthesis of Lycium barbarum. Acta Ecol Sin, 2015,35:6016-6022 (in Chinese with English abstract)
doi: 10.5846/stxb201401090073
[33] 庞杰, 张凤兰, 郝丽珍, 杨忠仁, 赵鹏 . 沙芥幼苗叶片解剖结构和光合作用对干旱胁迫的响应. 生态环境学报, 2013,22:575-581.
Pang J, Zhang F L, Hao L Z, Yang Z R, Zhao P . Effect of drought stress on anatomical structure and photosynthesis of Pugionium cornutum (L.) Gaertn. leaves in seedling. Ecol Environ Sci, 2013,22:575-581 (in Chinese with English abstract).
[34] 孙璐, 周宇飞, 李丰先, 肖木辑, 陶冶, 许文娟, 黄瑞冬 . 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012,45:3265-3272.
doi: 10.3864/j.issn.0578-1752.2012.16.005
Sun L, Zhou Y F, Li F X, Xiao M J, Tao Y, Xu W J, Huang R D . Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of sorghum seedlings. Sci Agric Sin, 2012,45:3265-3272 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2012.16.005
[35] 马富举, 李丹丹, 蔡剑, 姜东, 曹卫星, 戴廷波 . 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响. 应用生态学报, 2012,23:724-730.
Ma F J, Li D D, Cai J, Jiang D, Cao W X, Dai T B . Responses of wheat seedlings root growth and leaf photosynthesis to drought stress. Chin J Appl Ecol, 2012,23:724-730 (in Chinese with English abstract).
[36] 徐田军, 董志强, 兰宏亮, 裴志超, 高娇, 解振兴 . 低温胁迫下聚糠萘合剂对玉米幼苗光合作用和抗氧化酶活性的影响. 作物学报, 2012,38:352-359.
doi: 10.3724/SP.J.1006.2012.00352
Xu T J, Dong Z Q, Lan H L, Pei Z C, Gao J, Xie Z X . Effects of PASP-KT-NAA on photosynthesis and antioxidant enzyme activities of maize seedlings under low temperature stress. Acta Agron Sin, 2012,38:352-359 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00352
[37] 沈喜, 李红玉, 贾秋珍, 冯汉青, 李敏权, 梁厚果 . 条锈病对小麦(Triticum aestivum L.)叶片光合功能及光合功能蛋白D1表达的影响. 生态学报, 2008,8:669-676.
doi: 10.3321/j.issn:1000-0933.2008.02.027
Shen X, Li H Y, Jia Q Z, Feng H Q, Li M Q, Liang H G . Influence of wheat ( Triticum aestivum L.) stripe rust infection on photosynthetic function and expression protein D1 of what leaves. Acta Ecol Sin, 2008,8:669-676 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-0933.2008.02.027
[38] Medentsev A G, Aiu A, Aimenko V K . Adaptation of the phytopathogenic fungus Fusarium decemcellulare to oxidative stress. Microbiology, 2001,70:26-30.
doi: 10.1023/A:1004832518783 pmid: 11338833
[39] Mittle R, Vanderauwera S, Gollery M, Breusegem F V . Reactive oxygen gene network of plants. Trends Plant Sci, 2004,9:490-498.
doi: 10.1016/j.tplants.2004.08.009 pmid: 15465684
[40] 张永志, 赵首萍, 徐明飞, 王钢军, 郑纪慈 . Pb胁迫对番茄幼苗抗氧化酶系统的影响. 浙江农业科学, 2009,1:452-456
doi: 10.3969/j.issn.0528-9017.2009.03.005
Zhang Y Z, Zhao S P, Xu M F, Wang G J, Zheng J C . Effect of Pb stress on antioxidant enzyme system in tomato seedlings. Zhejiang Agric Sci, 2009,1:452-456 (in Chinese with English abstract).
doi: 10.3969/j.issn.0528-9017.2009.03.005
[41] Kazan K, Manners J M . Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci, 2009,14:373-382.
doi: 10.1016/j.tplants.2009.04.005 pmid: 19559643
[42] 朱海生, 李永平, 花秀凤, 温庆放 . 草莓9-顺式-环氧类胡萝卜素双加氧酶基因fanced的克隆及表达分析. 园艺学报, 2012,39:40-48.
Zhu H S, Li Y P, Hua X F, Wen Q F . Cloning and expression analysis of 9-cis-epoxycarotenoid dioxygenase gene fanced in strawberry. Acta Hortic Sin, 2012,39:40-48 (in Chinese with English abstract).
[43] 胡帅, 王芳展, 刘振宁, 刘亚培, 余小林 . PYR/PYL/RCAR蛋白介导植物ABA的信号转导. 遗传, 2012,34:560-572
doi: 10.3724/SP.J.1005.2012.00560
Hu S, Wang F Z, Liu Z N, Liu Y P, Yu X L . ABA signaling mediated by PYR/PYL/RCAR inplants. Hereditas, 2012,34:560-572 (in Chinese with English abstract).
doi: 10.3724/SP.J.1005.2012.00560
[44] Que Y X, Su Y C, Guo J L, Wu Q B, Xu L P . A global view of transcriptome dynamics during,Sporisorium scitamineum, challenge in sugarcane by RNA-seq. PLoS One, 2014,9:e106476.
[45] Ton J, Flors V, Mauchmani B . The multifaceted role of ABA in disease resistance. Trends Plant Sci, 2009,14:310-317.
doi: 10.1016/j.tplants.2009.03.006 pmid: 19443266
[46] Fraser R S S . Are ‘pathogenesis-related’ proteins involved in acquired systemic resistance of tobacco plants to tobacco mosaic virus. J Gen Virol, 1982,58:305-313.
doi: 10.1099/0022-1317-58-2-305
[47] Fujita M, Fujita Y, Noutoshi Y . Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 2006,9:436-442.
doi: 10.1016/j.pbi.2006.05.014 pmid: 16759898
[48] Koga H, Dohi K, Mori M . Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol, 2004,65:3-9.
doi: 10.1016/j.pmpp.2004.11.002
[49] 周金鑫, 胡新文, 张海文, 黄荣峰 . ABA在生物胁迫应答中的调控作用. 农业生物技术学报, 2008,16:169-174.
Zhou J X, Hu X W, Zhang H W, Huang R F . Regulatory role of ABA in plant response to biotic stresses. J Agric Biotechol, 2008,16:169-174 (in Chinese with English abstract).
[50] 钱万强 . 松材线虫侵染后马尾松体内的苯丙烷代谢研究. 中南林业科技大学硕士学位论文,湖南长沙, 2009.
doi: 10.7666/d.y1848918
Qian W Q . Phenylpropane Metabolic Research of Pinuus massoniana Infected by Bursaphelenchus xylophilus . MS Thesis of Central South University of Forestry and Technology, Changsha, Hunan, China, 2009 (in Chinese with English abstract).
doi: 10.7666/d.y1848918
[51] Wool I G . Extraribosomal functions of ribosomal proteins. Trends Biochem Sci, 1996,21:164-169.
doi: 10.1016/S0968-0004(96)20011-8 pmid: 8871397
[52] Vasiliou V, Ross D, Nebert D W . Update of the NAD(P)H: quinone oxidoreductase (NQO) gene family. Hum Genomics, 2006,2:329-335.
doi: 10.1186/1479-7364-2-5-329 pmid: 16595077
[53] 魏绍巍, 黎茵 . 植物磷酸烯醇式丙酮酸羧化酶的功能及其在基因工程中的应用. 生物工程学报, 2011,27:1702-1710.
Wei S W, Li Y . Functions of plant phosphoenolpyruvate carboxylase and its applications for genetic engineering. Chin J Biotechnol, 2011,27:1702-1710 (in Chinese with English abstract).
[54] Yu R M, Zhou Y, Xu Z F . Two genes encoding protein phosphatase 2A catalytic subunits are differentially expressed in rice. Plant Mol Biol, 2003,51:295-311.
doi: 10.1023/A:1022006023273 pmid: 12602862
[55] Dellapenna D, Pogson B J . Vitamin synthesis in plants: tocopherols and carotenoid. Annu Rev Plant Biol, 2006,57:711-738.
doi: 10.1146/annurev.arplant.56.032604.144301 pmid: 16669779
[56] 刘宾 . 玉米γ-生育酚甲基转移酶基因的分离及其功能分析. 河北大学硕士学位论文, 河北保定, 2007.
Liu B . Solating and Functional Analysis of γ-tocopherol Methytransferase Gene in Zea mays. MS Thesis of Hebei University, Baoding, Hebei, China, 2007 (in Chinese with English abstract).
[57] 关西贞, 张卫东, 田纪春 . 小麦近等基因系与白粉病菌互作的生理指标研究. 华北农学报, 2010,25(1):217-221.
doi: 10.7668/hbnxb.2010.01.044
Guan X Z, Zhang W D, Tian J C . Physiological indicators of near-isogenic wheat lines in interaction with powdery mildew. Acta Agric Boreali-Sin, 2010,25(1):217-221 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2010.01.044
[58] 刘守伟, 吴凤芝, 马艳玲 . 枯萎病菌对不同抗性黄瓜品种几种酶活性的影响. 植物保护, 2009,35(1):82-85.
Liu S W, Wu F Z, Ma Y L . Effects of fusarium wilt pathogen on the enzyme activity of cucumber cultivars of different resistance. Plant Prot, 2009,35(1):82-85 (in Chinese with English abstract).
[1] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[2] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[3] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[4] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[5] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[6] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[7] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[8] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[9] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[10] CANG Xiao-Yan, XIA Hong-Ming, LI Wen-Feng, WANG Xiao-Yan, SHAN Hong-Li, WANG Chang-Mi, LI Jie, ZHANG Rong-Yue, HUANG Ying-Kun. Evaluation of natural resistance to smut in elite sugarcane varieties (lines) [J]. Acta Agronomica Sinica, 2021, 47(11): 2290-2296.
[11] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, WANG Tong, LIU Shu-Xian, SHANG He-Yang, ZHAO He, XU Jing-Sheng. Cloning of sugarcane ScCRT1 gene and its response to SCMV infection [J]. Acta Agronomica Sinica, 2021, 47(1): 94-103.
[12] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[13] LUO Jun,LIN Zhao-Li,LI Shi-Yan,QUE You-Xiong,ZHANG Cai-Fang,YANG Zai-Qi,YAO Kun-Cun,FENG Jing-Fang,CHEN Jian-Feng,ZHANG Hua. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field [J]. Acta Agronomica Sinica, 2020, 46(4): 596-613.
[14] WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642.
[15] ZHANG Hai, LIU Shu-Xian, YANG Zong-Tao, WANG Tong, CHENG Guang-Yuan, SHANG He-Yang, XU Jing-Sheng. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein [J]. Acta Agronomica Sinica, 2020, 46(11): 1722-1733.
Full text



No Suggested Reading articles found!