Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (5): 1222-1234.doi: 10.3724/SP.J.1006.2022.14060

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications

XIAO Jian1(), CHEN Si-Yu1, SUN Yan1, YANG Shang-Dong1,*(), TAN Hong-Wei2,*()   

  1. 1Agricultural College, Guangxi University, Nanning 530004, Guangxi, China
    2Guangxi Key Laboratory of Sugarcane Genetic Improvement / Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
  • Received:2021-04-13 Accepted:2021-07-12 Online:2022-05-12 Published:2021-08-03
  • Contact: YANG Shang-Dong,TAN Hong-Wei E-mail:1318513279@qq.com;ysd706@gxu.edu.cn;hongwei_tan@163.com
  • Supported by:
    National Key Research and Development Program of China(2020YFD1000505);National Natural Science Foundation of China(31760368);Guangxi Zhuang Autonomous Region Academy of Agricultural Sciences Guangxi Sugarcane Genetic Improvement Key Laboratory Open Project(16-K-04-01);China Agricuture Research System (Sugarcane Host Cultivation, CARS170206);Guangxi Innovation-Driven Development Special Project (Guike AA17202042);Guangxi Sugarcane Industry Innovation Team Sugarcane Cultivation Post

Abstract:

To explore the beneficial endophytic bacteria in sugarcanes and their functions, we analyzed the characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications. At the phylum level, the proportion of Actinobacteria in roots of sugarcanes under different fertilization levels were lower than that in the control. However, the proportion of Chloroflexi in roots of sugarcanes under different fertilization levels applications were higher than that in CK. At the genus level, Haliangium, Acidicapsa, unclassified_f__Ktedonobacteraceae, and unclassified_f__Acidobacteriaceae_ Subgroup_1 were the specific dominant endophytic bacterial genera in root of sugarcanes under conventional fertilization level (3000 kg hm-2, H treatment); while Sphingomonas was the specific dominant endophytic bacterial genus in roots of sugarcanes under fertilization level (1500 kg hm-2, M treatment); Mesorhizobium, norank_f__BIrii41, Glycomyces, norank_f__67-14, Reyranella, unclassified_f__Steroidobacteraceae, unclassified_f__Xanthobacteraceae, norank_f__Roseiflexaceae, and Dongia were the specific dominant endophytic bacterial genus in roots of sugarcanes under the fertilization level (300 kg hm-2, L treatment). On the contrary, Caulobacter, Pseudonocardia, Nocardia, Kitasatospora, norank_f__norank_o__norank_c__Actinobacteria, Oceanibaculum, and Amycolatopsis were the unique dominant endophytic bacterial genera in root of sugarcane without fertilization application (control). And Actinospica, Catenulispora, Acidothermus, Dyella, and norank_f__Xanthobacteraceae were lost in root of sugarcanes under low nitrogen applications. Gene function prediction also revealed that, compared to no-fertilization treatment, both the endophytic bacterial community structure and the metabolic functions of endophytic bacteria in roots of sugarcanes were affected by different fertilizer applications. However, the structures of endophytic bacterial community in roots of sugarcane were significant differences among different fertilization treatments depending on the amounts of fertilizer applications. Compared to conventional fertilization, the yields of sugarcanes, and the structure, metabolic function of endophytic bacteria in roots of sugarcanes were not significantly changed by fertilizer application under 1500 kg hm-2 treatment. In conclusion, the conventional fertilization at the present stage can be substituted by reducing fertilizer application from 3000 kg hm-2 to 1500 kg hm-2 level in sugarcane.

Key words: sugarcane (Saccharum L.), reduced fertilization, endophytic bacteria, high-throughput sequencing

Table 1

Yields of different fertilization levels in sugarcane (t hm-2)"

样本
Sample name
产量Yield
2018 2019 2020
CK 56.41±2.59 b 58.02±5.32 b 53.95±5.87 b
H 111.09±2.69 a 114.15±5.21 a 108.04±11.22 a
M 107.78±6.92 a 106.60±2.68 a 99.24±5.36 a
L 61.21±4.13 b 64.29±4.05 b 60.79±7.10 b

Table 2

Numbers of different taxonomic levels of endophytic bacteria under different fertilization levels in sugarcane"

样本
Sample
分类操作单元数量
Number of operational
taxonomic units (OTU)
不同分类阶元归类数量 Number of different taxonomic categories

Phylum

Class

Order

Family

Genus

Species
CK 406 14 26 73 110 185 276
H 569 18 34 84 138 231 372
M 570 19 31 84 136 234 362
L 641 20 35 93 152 266 419
总计 Total 963 20 40 105 184 338 565

Table 3

Alpha diversity of endophytic bacteria in root of sugarcane under different fertilization levels"

样本
Sample name
香农指数
Shannon index
辛普森指数
Simpson index
ACE指数
ACE index
Chao1指数
Chao1 index
CK 3.41±0.02 c 0.082±0.012 a 414.08±29.20 b 309.04±19.74 b
H 4.05±0.06 ab 0.039±0.001 b 522.80±9.85 a 538.11±8.83 a
M 4.45±0.12 a 0.030±0.003 b 584.38±34.07 a 545.31±4.66 a
L 4.20±0.06 ab 0.046±0.017 ab 507.29±12.03 a 460.50±82.69 a

Fig. 1

Endophytes bacterial composition in root of sugarcane at phylum level under different fertilization levels Abbreviations of sample are the same as those given in Table 1."

Fig. 2

Endophytes bacterial composition in root of sugarcane at genus level under different fertilization levels Abbreviations of sample are the same as those given in Table 1."

Fig. 3

Venn diagrams of genus and species classification of endophytic bacterial under different fertilization levels in sugarcane Abbreviations of sample are the same as those given in Table 1."

Table 4

Proportion of predicted functional profiles among different samples (Pathway level 1) (%)"

一级功能层 Pathway level 1 H M L CK
代谢Metabolism 25.86 24.16 21.40 28.58
环境信息处理Environmental information processing 24.76 23.43 23.35 28.47
遗传信息处理Genetic information processing 27.02 24.70 21.22 27.05
细胞过程Cellular processes 24.65 24.85 22.42 28.09
人类疾病Human diseases 24.96 24.85 22.96 27.23
有机系统Organismal systems 26.23 23.71 21.30 28.76

Fig. 4

COG function of endophytic bacterial in root of sugarcane at OTU level under different fertilization levels Abbreviations of sample are the same as those given in Table 1."

[1] Chandel A K, Silva S S D, Carvalho W, Singh O V. Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol, 2012, 87:11-20.
[2] Li Y R. China: an emerging sugar super power. Sugar Technol, 2004, 6:213-227.
doi: 10.1007/BF02942501
[3] 赵亚南, 宿敏敏, 吕阳, 况福虹, 陈轩敬, 张跃强, 石孝均. 减量施肥下小麦产量、肥料利用率和土壤养分平衡. 植物营养与肥料学报, 2017, 23:864-873.
Zhao Y N, Su M M, Lyu Y, Kuang F H, Chen X J, Zhang Y Q, Shi X J. Wheat yield, nutrient use efficiencies and soil nutrient balance under reduced fertilizer rate. Plant Nutr Fert Sci, 2017, 23:864-873 (in Chinese with English abstract).
[4] 吴宪, 王蕊, 胡菏, 修伟明, 李刚, 赵建宁, 杨殿林, 王丽丽, 王欣奕. 潮土细菌及真菌群落对化肥减量配施有机肥和秸秆的响应. 环境科学, 2020, 41:4669-4681.
Wu X, Wang R, Hu H, Xiu W M, Li G, Zhao J N, Yang D L, Wang L L, Wang X Y. Response of bacterial and fungal communities to chemical fertilizer reduction combined with organic fertilizer and straw in fluvo-aquic soil. Chin J Environ Sci, 2020, 41:4669-4681 (in Chinese with English abstract).
[5] Li Y R, Yang L T. Sugarcane agriculture and sugar industry in China. Sugar Technol, 2015, 17:1-8.
doi: 10.1007/s12355-014-0342-1
[6] 许霞, 苟永刚, 罗莎莎, 王宇姝, 余玲玲, 王建武. 减量施氮对甘蔗//大豆间作系统产量稳定性的影响. 热带作物学报, 2020, 41:1354-1365.
Xu X, Gou Y G, Luo S S, Wang Y S, Yu L L, Wang J W. Effect of nitrogen reduction on yield stability of sugarcane-soybean intercropping system. Chin J Trop Crops, 2020, 41:1354-1365 (in Chinese with English abstract).
[7] Robertson G P, Vitousek P M. Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour, 2009, 34:97-125.
doi: 10.1146/energy.2009.34.issue-1
[8] 区惠平, 周柳强, 黄金生, 曾艳, 朱晓晖, 谢如林, 谭宏伟, 黄碧燕. 长期不同施肥对甘蔗产量稳定性、肥料贡献率及养分流失的影响. 中国农业科学, 2018, 51:1931-1939.
Qu H P, Zhou L Q, Huang J S, Zeng Y, Zhu X H, Xie R L, Tan H W, Huang B Y. Effects of long-term different fertilization on sugarcane yield stability, fertilizer contribution rate and nutrition loss. Sci Agric Sin, 2018, 51:1931-1939 (in Chinese with English abstract).
[9] Yang S M, Li F M, Sukhdev S M, Wang P, Suo D R, Wang J G. Long-term fertilization effects on crop yield and nitrate nitrogen, accumulation in soil in northwestern China. Agron J, 2004, 96:1039-1049.
doi: 10.2134/agronj2004.1039
[10] 郭强, 莫勇武, 唐利球, 谭宏伟, 马文清, 秦昌鲜, 何为中, 闭德金, 彭崇, 施泽升, 何洪良, 陈海生. 蔗渣还田和减量施肥对甘蔗农艺性状和品质的影响. 广西糖业, 2019, (3):31-35.
Guo Q, Mo Y W, Tang L Q, Tan H W, Ma W Q, Qin C X, He W Z, Bi D J, Peng C, Shi Z S, He H L, Chen H S. Effects of sugarcane bagasse mulching and reduced fertilization on agronomic characters and quality of sugarcane. Guangxi Sugar Ind, 2019, (3):31-35 (in Chinese with English abstract).
[11] Pan H, Chen M M, Feng H J, Wei M, Song F P, Lou Y H, Cui X M, Wang H, Zhuge Y P. Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil Tillage Res, 2020, 198:104540.
doi: 10.1016/j.still.2019.104540
[12] 苟琪, 吕燕, 张涛, 李靖宇, 赵会君, 刘建利. 宁夏枸杞叶不同生长时期内生细菌群落动态及其影响因素. 生态学杂志, 2020, 39:2593-2601.
Gou Q, Lyu Y, Zhang T, Li J Y, Zhao H J, Liu J L. Dynamics and influencing factors of endophytic bacterial community in leaves of Lycium barbarum during different growth periods. Chin J Ecol, 2020, 39:2593-2601 (in Chinese with English abstract).
[13] 顾美英, 古丽尼沙·沙依木, 张志东, 朱静, 刘晓静, 唐琦勇, 欧提库尔·玛合水提, 宋素琴, 冯雷, 唐光木, 徐万里. 黑果枸杞不同组织内生细菌群落多样性. 微生物学报, 2021, 61:152-166.
Gu M Y, Gulinisha S, Zhang Z D, Zhu J, Liu X J, Tang Q Y, Outikuer M, Song S Q, Feng L, Tang G M, Xu W L. Diversity and function analysis of endophytic bacterial community in different tissues of Lycium ruthenicum Murr. Acta Microbiol Sin, 2021, 61:152-166 (in Chinese with English abstract).
[14] Lundberg D S, Lebeis S L, Paredes S H, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del R T G, Edgar R C, Eickhorst T, Ley R E, Hugenholtz P, Tringe S G, Dangl J L. Defining the core Arabidopsis thaliana root microbiome. Nature, 2012, 488:86-90.
doi: 10.1038/nature11237
[15] Bulgarelli D, Garrido-Oter R, Münch P C, Weiman A, Dröge J, Pan Y, McHardy A C, Schulze-Lefert P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe, 2015, 17:392-403.
doi: S1931-3128(15)00031-1 pmid: 25732064
[16] Grice E A, Kong H H, Conlan S, Deming C B, Davis J, Young A C, Bouffard G G, Blakesley R W, Murray P R, Green E D, Turner M L, Segre J A. Topographical and temporal diversity of the human skin microbiome. Science, 2009, 324:1190-1192.
doi: 10.1126/science.1171700
[17] Simpson E H. The measurement of diversity. Nature, 1949, 163:688.
doi: 10.1038/163688a0
[18] Chao A, Wang W H, Chen Y C, Kuo C Y. Estimating the number of shared species in two communities. Statist Sin, 2000, 10:227-246.
[19] 罗俊, 林兆里, 李诗燕, 阙友雄, 张才芳, 杨仔奇, 姚坤存, 冯景芳, 陈建峰, 张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响. 作物学报, 2020, 46:596-613.
doi: 10.3724/SP.J.1006.2020.94102
Luo J, Lin Z L, Li S Y, Que Y X, Zhang C F, Yang Z Q, Yao K C, Feng J F, Chen J F, Zhang H. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field. Acta Agron Sin, 2020, 46:596-613 (in Chinese with English abstract).
[20] 李儒仲, 侬芳廷, 杨二鹏, 韦承坤, 黄严, 陈超君, 梁和. 机械种植下不同施氮水平对甘蔗生长、产量及含糖量的影响. 广西职业技术学院学报, 2015, 8(6):1-4.
Li R Z, Nong F T, Yang E P, Wei C K, Huang Y, Chen C J, Liang H. Effects of nitrogen application on sugarcane’s growth, yield and sugar content by mechanical planting. J Guangxi Vocat Technol Coll, 2015, 8(6):1-4 (in Chinese with English abstract).
[21] 谢金兰, 陈引芝, 朱秋珍, 刘晓燕, 吴建明, 王维赞. 氮肥施用量与施用方法对甘蔗生长的影响. 中国农学通报, 2012, 28(31):237-242.
Xie J L, Chen Y Z, Zhu Q Z, Liu X Y, Wu J M, Wang W Z. Effects of nitrogen fertilizer and application methods on sugarcane growth. Chin Agric Sci Bull, 2012, 28(31):237-242 (in Chinese with English abstract).
[22] 杨文亭, 李志贤, 赖健宁, 吴鹏, 章莹, 王建武. 甘蔗-大豆间作和减量施氮对甘蔗产量和主要农艺性状的影响. 作物学报, 2014, 40:556-562.
Yang W T, Li Z X, Lai J N, Wu P, Zhang Y, Wang J W. Effects of sugarcane-soybean intercropping and reduced nitrogen application on yield and major agronomic traits of sugarcane. Acta Agron Sin, 2014, 40:556-562 (in Chinese with English abstract).
[23] 刘亚男, 马海洋, 冼皑敏, 王琚钢, 陈菁, 石伟琦. 施氮方式和灌水量对甘蔗农艺性状、养分累积及产量的影响. 南方农业学报, 2017, 48:252-258.
Liu Y N, Ma H Y, Xian A M, Wang J G, Chen J, Shi W Q. Effects of different nitrogen application methods and irrigation amounts on agronomic characters, nutrient accumulation and yield of sugarcane. J South Agric, 2017, 48:252-258 (in Chinese with English abstract).
[24] 张跃彬, 樊仙, 刀静梅. 不同氮水平对甘蔗生长的影响. 中国糖料, 2013, (3):15-17.
Zhang Y B, Fan X, Dao J M. Different nitrogen levels on the effect of the growth of sugarcane. Sugar Crops China, 2013, (3):15-17 (in Chinese with English abstract).
[25] 韦剑锋, 梁启新, 陈超君, 蓝立斌, 梁和. 施氮量对甘蔗氮素吸收与利用的影响. 广东农业科学, 2011, 38(19):66-68.
Wei J F, Liang Q X, Chen C J, Lan L F, Liang H. Effect of application amount of nitrogen fertilizer (~(15) N) on nitrogen absorption and utilization in sugarcane. Guangdong Agric Sci, 2011, 38(19):66-68 (in Chinese with English abstract).
[26] Samuelson M E, Larsson C M. Nitrate regulation of zeation riboside levels in barley roots: effects of inhibitors of N assimilation and comparison with ammonium. Plant Sci, 1993, 93:77-84.
doi: 10.1016/0168-9452(93)90036-Y
[27] 韦朝海, 肖美兰. 水生生态调控及水污染治理中微生物的应用. 应用基础与工程科学学报, 1999, (4):3-5.
Wei C H, Xiao M L. Aqueous ecological regulation and application of microorganisms in water pollution control. J Basic Sci Eng, 1999, (4):3-5 (in Chinese with English abstract).
[28] 石晶盈, 陈维信, 刘爱媛. 植物内生菌及其防治植物病害的研究进展. 生态学报, 2006, 26:2395-2401.
Shi J Y, Chen W X, Liu A Y. Advances in the study of endophytes and their effects on control of plant diseases. Acta Ecol Sin, 2006, 26:2395-2401 (in Chinese with English abstract).
[29] 张志红, 彭桂香, 李华兴, 蔡燕飞, 张新明, 赵兰凤. 生物肥与甲壳素和恶霉灵配施对香蕉枯萎病的防治效果. 生态学报, 2011, 31:1149-1156.
Zhang Z H, Peng G X, Li H X, Cai Y F, Zhang X M, Zhao L F. Effects on controlling banana Fusarium wilt by bio-fertilizer, chitosan, hymexazol and their combinations. Acta Ecol Sin, 2011, 31:1149-1156 (in Chinese with English abstract).
[30] 乔鹏, 汤利, 郑毅, 李少明. 不同抗性小麦品种与蚕豆间作条件下的养分吸收与白粉病发生特征. 植物营养与肥料学报, 2010, 16:1086-1093.
Qiao P, Tang L, Zheng Y, Li S M. Characteristics of nutrient uptakes and powdery mildew incidence of different resistant wheat cultivars intercropping with faba bean. Plant Nutr Fert Sci, 2010, 16:1086-1093 (in Chinese with English abstract).
[31] 杨建波. 间作大豆对甘蔗生长及内生细菌、固氮细菌多样性的效应. 广西大学博士学位论文, 广西南宁, 2014.
Yang J B. Effects of Intercropping with Soybean on Growth of Sugarcane and Diversities of Endophytic Bacteria and Endophytic Nitrogen-fixing Bacteria. PhD Dissertation of Guangxi University, Nanning, Guangxi, China, 2014 (in Chinese with English abstract).
[32] 冯天祥, 王玲, 陈海敏, 盛清, 左锐, 谢文杰. 植物内生放线菌功能及生物活性物质研究进展. 中国生物工程杂志, 2015, 35(4):98-106.
Feng T X, Wang L, Chen H M, Sheng Q, Zuo R, Xie W J. Research advances on function and bioactive substances of endophytic actinomycetes. China Biotechnol, 2015, 35(4):98-106 (in Chinese with English abstract).
[33] 赵立君, 刘云根, 王妍, 赵蓉, 任伟, 徐鸣洲. 典型高原湖滨带底泥细菌群落结构及多样性特征. 微生物学通报, 2020, 47:401-410.
Zhao L J, Liu Y G, Wang Y, Zhao R, Ren W, Xu M Z. Bacterial community structure and diversity of sediments in a typical plateau lakeshore. Microbiol China, 2020, 47:401-410 (in Chinese with English abstract).
[34] 秦杰, 高振峰, 岳爱琴, 张永坡, 高春艳, 赵晋忠, 王敏, 杜维俊. 一株晋大53号大豆中慢生根瘤菌的分离鉴定及抗逆分析. 大豆科学, 2020, 39:898-905.
Qin J, Gao Z F, Yue A Q, Zhang Y P, Gao C Y, Zhao J Z, Wang M, Du W J. Isolation, identification and stress resistance analysis of a Mesorhizobium isolated from soybean variety Jinda 53. Soybean Sci, 2020, 39:898-905 (in Chinese with English abstract).
[35] 韩晓雪, 吕玲玲, 罗晓霞, 张利莉. 罗布泊糖霉菌属放线菌系统进化分析. 塔里木大学学报, 2014, 26(4):8-15.
Han X X, Lyu L L, Luo X X, Zhang L L. Evolutionary analysis of the genus Glycomyces isolated from Lop Nur. J Tarim Univ, 2014, 26(4):8-15 (in Chinese with English abstract).
[36] 苏小惠, 白玉超, 佘玮, 杨瑞芳, 崔丹丹, 李林林, 王继龙, 崔国贤. 不同苎麻品种根际微生物多样性群落结构分析. 中国麻业科学, 2019, 41(3):114-121.
Su X H, Bai Y C, She W, Yang R F, Cui D D, Li L L, Wang J L, Cui G X. Microbial community structures and diversities in different ramie varieties rhizosphere soils. Plant Fiber Sci China, 2019, 41(3):114-121 (in Chinese with English abstract).
[37] 张芳芳, 宋希强, 朱国鹏. 不同生境下五唇兰根部可培养内生细菌多样性研究. 植物科学学报, 2016, 34:135-142.
Zhang F F, Song X Q, Zhu G P. Diversity of culturable endophytic bacteria isolated from the root tissues of Phalaenopsis pulcherrimain two different habitats. Plant Sci J, 2016, 34:135-142 (in Chinese with English abstract).
[38] 陈泽斌, 黄丽, 夏振远, 赵兴能, 徐胜光, 林丽, 任禛, 靳松, 王墨浪. 云南不同地区烟草内生细菌多样性特征. 西南农业学报, 2015, 28:857-861.
Chen Z B, Huang L, Xia Z Y, Zhao X N, Xu S G, Lin L, Ren Z, Jin S, Wang M L. Species diversity characteristics of endophytic bacteria in tobacco at different regions of Yunnan province. J Southwest Agric Univ, 2015, 28:857-861 (in Chinese with English abstract).
[39] 楚敏, 张丽娟, 刘晓静, 朱静, 王玮, 顾美英, 谢玉清, 张志东. 不同产地及品种大蒜内生菌群落多样性分析及拮抗作用测定. 新疆农业科学, 2017, 54:2067-2074.
doi: 10.6048/j.issn.1001-4330.2017.11.014
Chu M, Zhang L J, Liu X J, Zhu J, Wang W, Gu M Y, Xie Y Q, Zhang Z D. Diversity of the endophytes and screening of antagonistic microbes in Garlic varieties from different producing areas. Xinjiang Agric Sci, 2017, 54:2067-2074 (in Chinese with English abstract).
[1] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[2] ZHANG Wei, HONG Yan-Yun, LIU Deng-Wang, ZHANG Bo-Wen, YI Tu-Yong, LI Lin. Effects of calcium application on the structural diversity of endophytic bacterial community in peanut roots under acidic red soil cultivation [J]. Acta Agronomica Sinica, 2021, 47(1): 116-124.
[3] CAI Yan, HAO Ming-De, ZHANG Li-Qiong, ZANG Yi-Fei, HE Xiao-Yan. Effect of Cropping Systems on Microbial Diversity in Black Loessial Soil Tested by 454 Sequencing Technology [J]. Acta Agronomica Sinica, 2015, 41(02): 339-346.
[4] SUN Ai-Qing,ZHANG Jie-Dao,WAN Yong-Shan,LIU Feng-Zhen,ZHANG Kun,SUN Li. In silico Expression Profile of Genes in Response to Drought in Peanut [J]. Acta Agron Sin, 2013, 39(06): 1045-1053.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!