Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (05): 650-656.doi: 10.3724/SP.J.1006.2018.00650


Expression Pattern and Protein Localization of a Yellow-Green Leaf 6 (YGL6) Gene in Rice (Oryza sativa)

Jun-Qiong SHI1,2(), Ya-Qin WANG1, Tian-Quan ZHANG1, Ling MA1, Guang-Hua HE1,*()   

  1. 1 Rice Research Institute, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400716, China
    2 School of Life Sciences, Southwest University, Chongqing 400716, China
  • Received:2017-09-23 Accepted:2018-01-08 Online:2018-05-20 Published:2018-01-29
  • Contact: Guang-Hua HE E-mail:shijunqiong@163.com;hegh@swu.edu.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2017YFD0100201), Chongqing Science and Technology Commission Project (CSTCCXLJRC201713, cstc2016shms-ztzx0017), and the Fundamental Research Funds for the Central Universities (XDJK2016C111).


Leaf color mutants are used not only as morphological markers in hybrid rice breeding, but also as ideal materials in studies on the structure and function of photosystem, chlorophyll biosynthesis and regulation mechanism. A new rice mutant exhibiting stable inheritance was derived from ethyl methane sulfonate (EMS)-treated restorer line Jinhui 10 (Oryza sativa), tentatively named as yellow-green leaf 6 (ygl6). The ygl6 leaf displayed yellow-green at seeding stage, and pale green at jointing stages. The YGL6 complementation experiment implied that the Os12g23180 is the YGL6 gene. The expression pattern analysis indicated that YGL6 was expressed in green tissues including young leaves, mature leaves, sheaths and green glume, with the highest expression level in young leaves. And YGL6 expression was induced by light. Transient expression of the YGL6-GFP protein in rice protoplast showed that YGL6 was localized in chloroplasts. These results provide a foundation for functional analysis of YGL6.

Key words: rice (Oryza sativa), yellow-green leaf 6 (ygl6), YGL6 gene, chloroplast, expression pattern

Fig. 1

Functional complementation analysis of YGL6 A: phenotypes of WT, ygl6 mutant, and transgenic plant (ygl6/YGL6); B: leaves of WT, ygl6 mutant, and transgenic plant; C: the YGL6 sequencing of WT, ygl6 mutant, and transgenic plant; D: pigment contents of WT, ygl6 mutant, and transgenic plant. *P﹤0.05."

Fig. 2

Phylogenetic analysis of the YGL6"

Fig. 3

Expression analysis of YGL6 by qRT-PCR A: expression level of YGL6 at seedling stage in WT and the YGL6 mutant; B: expression level of YGL6 at booting stage in WT. *P﹤0.05."

Fig. 4

qRT-PCR analysis of the expression level of YGL6 A: expression level of YGL6 in wild-type plants at different hours transferred to continuous light from continuous darkness; B: expression level of YGL6 in wild-type plants at different hours transferred to continuous darkness from continuous light."

Fig. 5

Subcellular location of YGL6 protein using rice protoplasts A-D: negative control (35S-GFP); E-H: subcellular location of YGL6 protein (35S-YGL6ORF-GFP)."

[1] Fromme P, Melkozernov A, Jordan P, Krauss N.Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems.Febs Lett, 2003, 555: 40-44
doi: 10.1016/S0014-5793(03)01124-4 pmid: 14630316
[2] Larkin R M, Alonso J M, Ecker J R, Chory J.GUN4, a regulator of chlorophyll synthesis and intracellular signaling.Science, 2003, 299: 902-906
doi: 10.1126/science.1079978 pmid: 12574634
[3] Dong H, Fei G L, Wu CY, Wu F Q, Sun Y Y, Chen M J, Ren Y L, Zhou K N, Cheng Z J, Wang J L, Jiang L, Zhang X, Guo X P, Lei C L, Su N, Wang H Y, Wan J M.A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol, 2013, 162: 1867-1880
[4] Yoo S, Cho S H, Sugimoto H, Li J, Kusumi K, Koh H J, Iba K, Paek N C.Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol, 2009, 150: 388-401
[5] Kusumi K, Mizutani A, Nishimura M, Iba K.A virescent gene V1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant J, 1997, 12: 1241-1250
doi: 10.1046/j.1365-313x.1997.12061241.x
[6] Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K.A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions.Plant J, 2011, 68: 1039-1050
doi: 10.1111/j.1365-313X.2011.04755.x pmid: 21981410
[7] Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G.Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system.Plant Cell Physiol, 2003, 44: 463-472
doi: 10.1093/pcp/pcg064 pmid: 12773632
[8] Lee S, Kim J H, Enu S Y, Lee C H, Hirochika H, An G.Differential regulation of chlorophyll a oxygenase genes in rice.Plant Mol Biol, 2005, 57: 805-818
doi: 10.1007/s11103-005-2066-9
[9] Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K.The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation.Plant Cell Physiol, 2004, 45: 985-996
doi: 10.1093/pcp/pch111 pmid: 15356324
[10] Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K.The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007, 52: 512-527
doi: 10.1111/j.1365-313X.2007.03251.x pmid: 17727616
[11] Zhang H, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C.Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325-337
[12] Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J.A chlorophyll deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis.Plant Physiol, 2007, 145: 29-40
doi: 10.1104/pp.107.100321 pmid: 17535821
[13] Koussevitzky S, Nott A, Mockler T C, Hong F.Signals from chloroplasts converge to regulate nuclear gene expression.Science, 2007, 316: 715-719
doi: 10.1126/science. 1140516
[14] Terry M J, Kendrick R E.Feedback inhibition of chlorophyll synthesis in the phyochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato.Plant Physiol, 1999, 119: 143-152
doi: 10.1104/pp.119.1.143 pmid: 9880355
[15] Huq E, Al-Sady B, Hudson M.Phytochrome-interacting factor l is a critical bHLH regulator of chlorophyll biosynthesis.Science, 2004, 305: 1937-1942
doi: 10.1126/science.1099728 pmid: 15448264
[16] Reinbothe S, Polhnann S, Springer A.A role of Toc33 in the protochlorophyllide-dependent plastid import pathway of NADPH: protochlorophyllide oxidoteductase (POR). Plant J, 2005, 42: 1-12
doi: 10.1111/j.1365-313X.2005.02353.x pmid: 15773849
[17] Sergei K, Elena B, Sergei S A.Mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell, 2001, 13: 89-100
doi: 10.2307/3871155 pmid: 11158531
[18] Shi J Q, Wang Y Q, Guo S, Ma L, Wang Z W, Zhu X Y, Sang X C, Ling Y H, Wang N, Zhao F M, He G H.Molecular mapping and candidate gene analysis of a Yellow-green leaf 6 (ygl6) mutant in rice. Crop Sci, 2015, 55: 669-680
doi: 10.2135/cropsci2014.07.0483
[19] Ren D Y, Li Y F, Zhao F M, Sang X C, Shi J Q, Wang N, Guo S, Ling Y H, Zhang C W, Yang Z L, He G H.MULTI-FLORET SPIKELET1, encoding an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice. Plant Physiol, 2013, 162: 872-884
[20] Lichtenthaler H K.Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.Method Enzymol, 1987, 48: 350-382
doi: 10.1016/0076-6879(87)48036-1
[21] Gothandarn K M, Kim E S, Cho H J, Chung Y Y.OsPPR1 a pentatricopeptide tepeat protein office is essential for the chloroplast biogenesis, Plant Mo1 Bio1, 2005, 58: 421-433
[22] Kusumi K, Yara A, Mitsui N, Tozawa Y, Iba K.Characterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTp.Plant Cell Physiol, 2004, 45: 1194-1201
doi: 10.1093/pcp/pch133 pmid: 15509842
[23] Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park N C.The senescence-induced stay green protein regulates chloropgyll degradation.Plant Cell, 2007, 19: 1649-1664
doi: 10.1105/tpc.106.044891 pmid: 17513504
[24] Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirpchika H, Nishimura M, Tanaka A.Rice NON-YELLOW COLORING 1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362-1375
[25] Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M.Two short-chain dehydrogenase/reductases NON-YELLOW COLORING 1 and NYC1-LIKE are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J, 2009, 57: 120-131
[26] Eberhard S, Loiselay C, Drapier D, Bujaldon S, Girard-Bascou J, Kuras R, Choquet Y, Wollman F A.Dual functions of the nucleus-encoded factor TDA1 in trapping and translation activation of atpA transcripts in Chlamydomonas reinhardtii chloroplasts. Plant J, 2011, 67: 1055-1066
doi: 10.1111/j.1365-313X.2011.04657.x pmid: 21623973
[27] Gottesman S, Storz G.Bacterial small RNA regulators: versatile roles and rapidly evolving variations.Cold Spring Harb Perspect Biol, 2011, 3: 1-16
doi: 10.1101/cshperspect.a003798 pmid: 20980440
[28] Stern D B, Goldschmidt-Clermont M, Hanson M R.Chloroplast RNA metabolism.Annu Rev Plant Biol, 2010, 61: 125-155
doi: 10.1146/annurev-arplant-042809-112242
[29] Barkan A.Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold.Plant Physiol, 2011, 155: 1520-1532
doi: 10.1104/pp.110.171231 pmid: 21346173
[30] Baker M E, Grundy W N, Elkan C P.Spinach CSP41, an mRNA-binding protein and ribonuclease, is homologous to nucleotide-sugar epimerases and hydroxysteroid dehydrogenases.Biochem Biophys Res Commun, 1998, 248: 250-254
doi: 10.1006/bbrc.1998.8951 pmid: 9675122
[31] Yang J, Schuster G, Stern D B.CSP41, a sequence-specific chloroplast mRNA binding protein, is an endoribonuclease.Plant Cell, 1996, 8: 1409-1420
doi: 10.1105/tpc.8.8.1409
[32] Pfannschmidt T, Ogrzewalla K, Baginsky S, Sickmann A, Meyer H E, Link G.The multisubunit chloroplast RNA polymerase A from mustard (Sinapis alba L.). Integration of a prokaryotic core into a larger complex with organelle-specific functions. Eur J Biochem, 2000, 267: 253-261
[33] Yamaguchi K, Beligni M V, Prieto S, Haynes P A, McDonald W H. Proteomic characterization of the Chlamydomonas reinhardtii chloroplast ribosome. Identification of proteins unique to the 70S ribosome. J Biol Chem, 2003, 278: 33774-33785
[34] Pfalz J, Bayraktar O A, Prikryl J, Barkan A.Site-specific binding of a PPR protein defines and stabilizes 5° and 3° mRNA termini in chloroplasts.EMBO J, 2009, 28: 2042-2052
doi: 10.1038/emboj.2009.121 pmid: 19424177
[35] Bollenbach T J, Stern D B.Secondary structures common to chloroplast mRNA 3°-untranslated regions direct cleavage by CSP41, an endoribonuclease belonging to the short chain dehydrogenase/reductase superfamily.J Biol Chem, 2003, 278: 25832-25838
doi: 10.1074/jbc.M303559200 pmid: 12734190
[1] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[2] DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885.
[3] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[4] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[5] YU Hui-Fang, ZHANG Wei-Na, KANG Yi-Chen, FAN Yan-Ling, YANG Xin-Yu, SHI Ming-Fu, ZHANG Ru-Yan, ZHANG Jun-Lian, QIN Shu-Hao. Genome-wide identification and expression patterns in response to signals from Phytophthora infestans of CrRLK1Ls gene family in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 249-258.
[6] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[7] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
[8] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[9] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[10] Li-Na SHANG,Xin-Long CHEN,Sheng-Nan MI,Gang WEI,Ling WANG,Ya-Yi ZHANG,Ting LEI,Yong-Xin LIN,Lan-Jie HUANG,Mei-Dan ZHU,Nan WANG. Phenotypic identification and gene mapping of temperature-sensitive green- revertible albino mutant tsa2 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2019, 45(5): 662-675.
[11] Hui-Min WANG,Xin-Guo LI,Shu-Bo WAN,Zhi-Meng ZHANG,Hong DING,Guo-Wei LI,Wen-Wei GAO,Zhen-Ying PENG. Structure and expression analysis of the members of peanut annexin gene family [J]. Acta Agronomica Sinica, 2019, 45(3): 390-400.
[12] ZHAI Yu-Shan,ZHAO He,ZHANG Hai,DENG Yu-Qing,CHENG Guang-Yuan,YANG Zong-Tao,WANG Tong,PENG Lei,XU Qian,DONG Meng,XU Jing-Sheng. Cloning of NAD(P)H complex O subunit gene and its interaction with VPg of Sugarcane mosaic virus [J]. Acta Agronomica Sinica, 2019, 45(10): 1478-1487.
[13] Ya-Jiao CHENG,Yuan-Fang FAN,Jun-Xu CHEN,Zhong-Lin WANG,Ting-Ting TAN,Jia-Feng LI,Sheng-Lan LI,Feng YANG,Wen-Yu YANG. Effects of Light Intensity on Photosynthetic Characteristics and Assimilates of Soybean Leaf [J]. Acta Agronomica Sinica, 2018, 44(12): 1867-1874.
[14] LIU Hong-Yan, ZHOU Fang, LI Jun, YANG Min-Min, ZHOU Ting, HAO Guo-Cun,ZHAO Ying-Zhong . Anatomical Structure and Photosynthetic Characteristics of a Yellow Leaf Mutant YL1 in Sesame (Sesamum indicum L.) [J]. Acta Agron Sin, 2017, 43(12): 1856-1863.
[15] LI Min,YU Tai-Fei,XU Zhao-Shi,ZHANG Shuang-Xi,MIN Dong-Hong,CHEN Ming,MA You-Zhi,CHAI Shou-Cheng,ZHENG Wei-Jun. Soybean Transcription Factor Gene GmNF-YCa Enhances Osmotic Stress Tolerance of Transgenic Arabidopsis [J]. Acta Agron Sin, 2017, 43(08): 1161-1169.
Full text



No Suggested Reading articles found!