Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (10): 1478-1487.doi: 10.3724/SP.J.1006.2019.94002


Cloning of NAD(P)H complex O subunit gene and its interaction with VPg of Sugarcane mosaic virus

ZHAI Yu-Shan,ZHAO He,ZHANG Hai,DENG Yu-Qing,CHENG Guang-Yuan,YANG Zong-Tao,WANG Tong,PENG Lei,XU Qian,DONG Meng,XU Jing-Sheng()   

  1. Sugarcane Research & Development Centre, China Agricultural Technology System, Fujian Agriculture and Forestry University / Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture / Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, Fujian, China
  • Received:2018-12-31 Accepted:2019-01-19 Online:2019-10-12 Published:2019-09-10
  • Contact: Jing-Sheng XU E-mail:xujingsheng@126.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31371688)


NAD(P)H dehydrogenase (NDH) complex mediates cyclic electron transports, playing key role in efficient photosynthesis in chloroplast. The involvement of NDH complex in Sugarcane mosaic virus (SCMV) infection of sugarcane (Saccharum spp. hybrid) has not been reported. In this study, we isolated the coding sequence of the subunit of the NAD(P)H dehydrogenase complex from sugarcane and designated it as ScNdhO. The open reading frame (ORF) of ScNdhO is 471 bp and encodes a 156 aa length protein. Bioinformatics analysis showed that ScNdhO is a stable hydrophilic protein with no signal peptide and transmembrane domain. The secondary structure of ScNdhO is composed of mostly random coilα-helices, with a typical domain of NDH complex O subunit. Phylogenetic tree analysis showed that ScNdhO belongs to the NDHO supperfamily. Real-time quantitative PCR analysis showed that ScNdhO gene was tissue specific in sugarcane, with the lowest expression level in roots or stem, and the highest in leaf. The expression of ScNdhO was upregulated in the early stage of SCMV infection, but downregulated with time going. Subcellular location assays showed that ScNdhO was located in chloroplast. ScNdhO interacted with the VPg from SCMV as demonstrated by yeast two hybrid and bimolecular fluorescence complementation assays. We proposed that ScNdhO should be selectively employed by SCMV and involved in the mosaic symptom.

Key words: sugarcane, SCMV, chloroplast, NAD(P)H dehydrogenase complex, O subunit

Table 1

Primers used in this study"

Primer name
Primer sequence (5′-3′)

Fig. 1

Deduced amino acid sequence and the phylogenic tree of ScNdhO protein"

Fig. 2

Subcellular localization of ScNdhO fused with GFP in the epidermal cells of N. benthamiana The ScNdhO-GFP was labled by arrow; Up row: GFP control; Middle row: localization of ScNdhO-GFP; Down row: colocalization of ScNdhO-GFP with VPg-mCherry; bar = 50 μm."

Fig. 3

Expression profile of ScNdhO in different sugarcane tissues The error bars represent the standard error of each treating group (n = 3)."

Fig. 4

Expression profile of ScNdhO under the infection of SCMV The error bars represent the standard error of each treating group (n = 3)."

Fig. 5

Y2H assay for protein-protein interactions between ScNdhO and SCMV-VPg The positive and negative controls are yeast cotransformants with pGADT7-T plus pGBKT7-53 and pGADT7-T plus pGBKT7-Lam, respectively. SD/-Leu/-Trp: synthetic defined yeast minimal medium lacking Leu and Trp; SD/-Leu/-Trp/-His/-Ade: synthetic defined yeast minimal medium lacking Leu, Trp, His, and Ade."

Fig. 6

BiFC assay for protein-protein interactions between ScNdhO and VPg from SCMV ScNdhO was fused to the C-terminal half of YFP, while SCMV-VPg was fused to the N-terminal half of YFP. ScNdhO-YC and SCMV-VPg-YN were transiently coexpressed in N. benthamiana leave. The fluorescent signal was monitored by confocal microscopy at 48 hpi. bar = 50 μm."

[1] 翁卓, 黄寒 . 中国制糖产业竞争力对比与政策建议——基于对巴西、印度、泰国考察的比较. 甘蔗糖业, 2015, ( 4):65-72.
Weng Z, Huang H . Comparative analysis on China’s sugar industry competitiveness: based onthe comparison of Brazil, India and Thailand sugar industry. Sugar Canesugar, 2015, ( 4):65-72 (in Chinese with English abstract).
[2] 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露 . 国外甘蔗产业发展现状. 世界农业, 2015, ( 8):147-152.
Liu Y Q, Li Y P, Liang H W, Song Q D, Qin X L, Ye L . Current status and development of the abroad sugarcane industry. Wold Agric, 2015, ( 8):147-152 (in Chinese with English abstract).
[3] Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P . Viral metagenomic-based screening of sugarcane from florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis, 2018,102:2317-2323.
[4] Li W F, Zhang R Y, Shan H L, Yin J, Wang X Y, Luo Z M, Huang Y K, Shen K . Occurrence dynamics and control strategies of major pests and diseases of sugarcane in Yunnan. Agric Sci Technol, 2017,18:2490-2494.
[5] 徐正银, 吕榜丽, 李璞, 周龙武, 唐瑶, 唐君海, 秦碧霞, 蒙姣荣, 温荣辉, 陈保善 . 广西甘蔗病毒病害调查及病原病毒鉴定. 南方农业学报, 2014,45:1957-1962.
Xu Z Y, Lyu B L, Li P, Zhou L W, Tang Y, Tang J H, Qin B X, Meng J R, Wen R H, Chen B S . Disease survey and identification of viruses in sugarcane in Guangxi. J South Agric, 2014,45:1957-1962 (in Chinese with English abstract).
[6] Wu L, Zu X, Wang S, Chen Y . Sugarcane mosaic virus—Long history but still a threat to industry. Crop Prot, 2012,42:74-78.
[7] 熊国如, 李增平, 赵婷婷, 蔡文伟, 王俊刚, 王文治, 冯翠莲, 张雨良, 张树珍 . 海南蔗区甘蔗病害种类及发生情况. 热带作物学报, 2010,31:1588-1595.
Xiong G R, Li Z P, Zhao T T, Cai W W, Wang J G, Wang W Z, Feng C L, Zhang Y L, Zhang S Z . Primary investigation to sugarcane on the diseases in Hainan Province. Chin J Trop Crops, 2010,31:1588-1595 (in Chinese with English abstract).
[8] Xu D L, Park J W, Mirkov T E, Zhou G H . Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol, 2008,153:1031-1039.
[9] Putra L K, Kristini A, Achadian E M A, Damayanti T A . Sugarcane streak mosaic virus in Indonesia: distribution, characterisation, yield losses and management approaches. Sugar Technol, 2014,16:392-399.
[10] 刘家勇, 赵培方, 赵俊, 崔洁, 陈学宽, 夏红明, 杨昆, 吴才文 . 甘蔗花叶病对甘蔗叶片叶绿素含量的影响. 中国糖料, 2011, ( 4):7-9.
Liu J Y, Zhao P F, Zhao J, Cui J, Chen X K, Xia H M, Yang K, Wu C W . Effect of Sugarcane mosaic virus on chlorophyll content of sugarcane leaves. Sugar Crops China, 2011, ( 4):7-9 (in Chinese with English abstract).
[11] Koike H, Gillaspie A G. Mosaic. In: Ricaud C, Egan B T, Gillaspie A G, Hughes C G, eds. Diseases of Sugarcane, Major Diseases. Amsterdam: Elsevier, 1989. pp 301-322.
[12] Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S . Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N- PIPO. Sci Rep, 2017,7:9868, doi: 10.1038/s41598-017- 10497-6.
[13] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升 . 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016,45:135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S . The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ( Nat Sci Edn), 2016,45:135-140 (in Chinese with English abstract).
[14] 翟玉山, 彭磊, 杨永庆, 邓宇晴, 程光远, 郑艳茹, 徐景升 . 甘蔗条纹花叶病毒 HC-Pro、P3N-PIPO、CP和VPg基因酵母双杂交诱饵表达载体的构建及自激活检测. 华北农学报, 2016,31(1):83-89.
doi: 10.7668/hbnxb.2016.01.014
Zhai Y S, Peng L, Yang Y Q, Deng Y Q, Cheng G Y, Zheng Y R, Xu J S . Construction and self-activated detection of the baits of HC-Pro, P3N-PIPO, CP and VPg from Sugarcane streak mosaic virus for yeast two hybrid system. Acta Agric Boreali-Sin, 2016,31(1):83-89 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2016.01.014
[15] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升 . 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016,46:775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S . Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016,46:775-782 (in Chinese with English abstract).
[16] Dong M, Cheng G Y, Peng L, Xu Q, Yang Y Q, Xu J S . Transcriptome analysis of sugarcane response to the infection by Sugarcane streak mosaic virus( SCSMV). Trop Plant Biol, 2017,10:45-55.
[17] Zhai Y S, Deng Y Q, Cheng G Y, Peng L, Zheng Y R, Yang Y, Xu J S . Sugarcane elongin C is involved in infection by sugarcane mosaic disease pathogens. Biochem Biophys Res Commun, 2015,466:312-318.
[18] 朱海龙, 程光远, 彭磊, 柴哲, 郭晋隆, 许莉萍, 徐景升 . 甘蔗条纹花叶病毒 P3 蛋白与甘蔗Rubisco大亚基互作的研究. 西北植物学报, 2014,34:676-681.
Zhu H L, Cheng G Y, Peng L, Chai Z, Guo J L, Xu L P, Xu J S . Interaction between Sugarcane streak mosaic virus P3 and rubisco large subunit from sugarcane. Acta Bot Boreali-Occident Sin, 2014,34:676-681 (in Chinese with English abstract).
[19] Ling H, Huang N, Wu Q, Su Y, Peng Q, Ahmed W, Gao S, Su W, Que Y, Xu L . Transcriptional Insights into the Sugarcane- Sorghum mosaic virus Interaction. Trop Plant Biol, 2018,11:163-176.
[20] Hall J S, Adams B, Parsons T J, French R, Lane L C, Jensen S G . Molecular cloning, sequencing, and phylogenetic relationships of a new potyvirus: Sugarcane streak mosaic virus, and a reevaluation of the classification of the Potyviridae. Mol Phylogenet Evol, 1998,10:323-332.
[21] Ward C W, Shukla D D . Taxonomy of potyviruses: current problems and some solutions. Intervirology, 1991,32:269-296.
[22] Li W F, He Z, Li S F, Huang Y K, Zhang Z X, Jiang D M, Wang X Y, Luo Z M . Molecular characterization of a new strain of Sugarcane streak mosaic virus( SCSMV). Arch Virol, 2011,156:2101-2104.
[23] Xu D L, Zhou G H, Xie Y J, Mock R, Li R . Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae. Virus Genes, 2010,40:432-439.
[24] Olspert A, Carr J P, Firth A E . Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucl Acids Res, 2016,44:7618-7629.
[25] Wang A . Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015,53:45-66.
[26] Wittmann S, Chatel H, Fortin M G, Laliberté J F . Interaction of the viral protein genome linked of turnip mosaic Potyvirus with the translational eukaryotic initiation factor(iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 1997,234:84-92.
[27] Heinlein M . Plant virus replication and movement. Virology , 2015, 479- 480:657-671.
[28] Cheng X, Wang A . The potyvirus silencing suppressor protein VPg mediates degradation of SGS3 via ubiquitination and autophagy pathways. J Virol, 2017,91:e01478-16.
[29] 王镜岩, 朱圣庚, 徐长法 . 生物化学(下册)( 第3版). 北京: 高等教育出版社, 2002. pp 197-227.
Wang J Y, Zhu S G, Xu C F. Biochemistry (Volume 2), 3rd edn. Beijing: Higher Education Press, 2002. pp 197-227(in Chinese).
[30] Strand D D, Fisher N, Kramer D M . The higher plant plastid NAD(P)H dehydrogenase-like complex (NDH) is a high efficiency proton pump that increases ATP production by cyclic electron flow. J Biol Chem, 2017,292:11850-11860.
[31] 米华玲 . 类囊体膜NAD(P)H脱氢酶复合体调控光合作用的研究进展. 植物生理学报, 2016,52:1457-1465.
Mi H L . The regulation of NAD(P)H dehydrogenase complexes bound in thylakoid membranes in photosynthesis. Acta Phytophysiol Sin, 2016,52:1457-1465 (in Chinese with English abstract).
[32] Yamori W, Shikanai T . Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol, 2016,67:81-106.
[33] Ishikawa N, Takabayashi A, Sato F, Endo T . Accumulation of the components of cyclic electron flow around photosystem I in C4 plants, with respect to the requirements for ATP. Photosynth Res, 2016,129:1-17.
[34] Ishikawa N, Takabayashi A, Noguchi K, Tazoe Y, Yamamoto H, Von C S, Sato F, Endo T . NDH-Mediated cyclic electron flow around photosystem I is crucial for C4 photosynthesis. Plant Cell Physiol, 2016,57:2020-2028.
[35] Xu M, Shi N, Li Q, Mi H . An active supercomplex of NADPH dehydrogenase mediated cyclic electron flow around photosystem I from the panicle chloroplast of Oryza sativa. Acta Biochim Biophys Sin, 2014,46:757-765.
[36] 李庆华, 何志辉, 米华玲 . 叶绿体NAD(P)H脱氢酶(NDH)复合体的研究进展. 植物生理学报, 2013,49:401-409.
Li Q H, He Z H, Mi H L . The research progress of chloroplast NAD(P)H dehydrogenase (NDH) complex. Acta Phytopathol Sin, 2013,49:401-409 (in Chinese with English abstract).
[37] Wu Y X, Zheng F F, Ma W M, Han Z G, Gu Q, Shen Y G, Mi H L . Regulation of NAD(P)H dehydrogenase-dependent cyclic electron transport around PSI by NaHSO3 at low concentrations in tobacco chloroplasts. Plant Cell Physiol, 2011,52:1734-1743.
[38] Mi H, Endo T, Ogawa T, Asada K . Thylakoid membrane-bound, NADPH-Specific pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol, 1995,36:661-668.
[39] Mi H, Endo T, Schreiber U, Ogawa T, Asada K . NAD(P)H dehydrogenase-dependent cyclic electron flow around photosystem I in the cyanobacterium Synechocystis PCC 6803: a study of dark-starved cells and spheroplasts. Plant Cell Physiol, 1994,35:163-173.
[40] Mi H, Endo T, Schreiber U, Ogawa T, Asada K . Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol, 1992,33:1233-1237.
[41] Zhao J, Gao F, Fan D Y, Chow W S, Ma W . NDH-1 is important for photosystem I function of Synechocystis sp. strain PCC 6803 under environmental stress conditions. Front Plant Sci, 2017,8:2183, doi: 10.3389/fpls.2017.02183.
[42] Xin C, He Z, Min X, Peng L, Mi H . NdhV subunit regulates the activity of type-1 NAD(P)H dehydrogenase under high light conditions in cyanobacterium Synechocystis sp. PCC 6803. Sci Rep, 2016,6:28361, doi: 10.1038/srep28361.
[43] He Z, Xu M, Wu Y, Lyu J, Fu P, Mi H . NdhM subunit is required for the stability and the function of NAD(P)H dehydrogenase complexes involved in CO2 uptake in Synechocystis sp. strain PCC 6803. J Biol Chem, 2016,291:5902-5912.
[44] Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye J Y, Mi H L . Chloroplastic NAD( P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol, 2006,141:465-474.
[45] Yuri M, Mihoko H, Chikahiro M, Ken-ichi T, Tsuyoshi E, Masao T, Toshiharu S . Cyclic electron flow around photosystem I is essential for photosynthesis. Nature, 2004,429:579-582.
[46] Mi H, Klughammer C, Schreiber U . Light-induced dynamic changes of NADPH fluorescence in Synechocystis PCC 6803 and its ndhB-defective mutant M55. Plant Cell Physiol, 2000,41:1129-1135.
[47] Endo T, Shikanai T, Takabayashi A, Asada K, Sato F . The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Lett, 1999,457:5-8.
[48] Kato Y, Sugimoto K, Shikanai T . NDH-PSI supercomplex assembly precedes full assembly of the NDH complex in chloroplast. Plant Physiol, 2018,176:1728-1738.
[49] Gao F, Zhao J, Wang X, Qin S, Wei L, Ma W . NdhV is a subunit of NADPH dehydrogenase essential for cyclic electron transport in Synechocystis sp. strain PCC 6803. Plant Physiol, 2016,170:752-760.
[50] Gao F, Zhao J, Chen L, Battchikova N, Ran Z, Aro E M, Ogawa T, Ma W . The NDH-1L-PSI supercomplex is important for efficient cyclic electron transport in cyanobacteria. Plant Physiol, 2016,172:1451-1464.
[51] Zhao J H, Rong W Q, Gao F D, Ogawa T, Ma W M . Subunit Q is required to stabilize the large complex of NADPH dehydrogenase in Synechocystis sp. strain PCC 6803. Plant Physiol, 2015,168:443-451.
[52] Zhang J S, Gao F D, Zhao J H, Teruo O, Wang Q X, Ma W M . NdhP is an exclusive subunit of large complex of NADPH dehydrogenase essential to stabilize the complex in Synechocystis sp. strain PCC 6803. J Biol Chem, 2014,289:18770-18781.
[53] Zhang J S, Gao F D, Zhao J H, Teruo O, Wang Q X, Ma W M . NdhO, a subunit of NADPH dehydrogenase, destabilizes medium size complex of the enzyme in Synechocystis sp. strain PCC 6803. J Biol Chem, 2014,289:26669-26676.
[54] Dai H L, Zhang L L, Zhang J S, Mi H L, Ogawa T, Ma W M . Identification of a cyanobacterial CRR6 protein, Slr1097, required for efficient assembly of NDH-1 complexes in Synechocystis sp. PCC 6803. Plant J, 2013,75:858-866.
[55] Battchikova N, Wei L, Du L, Bersanini L, Aro E M, Ma W . Identification of novel Ssl0352 protein (NdhS), essential for efficient operation of cyclic electron transport around photosystem I, in NADPH:plastoquinone oxidoreductase (NDH-1) complexes of Synechocystis sp. PCC 6803. J Biol Chem, 2011,286:36992-37001.
[56] Kentaro I, Tsuyoshi E, Toshiharu S, Eva-Mari A . Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits. Plant Cell Physiol, 2011,52:1560-1568.
[57] Rumeau D, Bécuwe-Linka N, Beyly A, Louwagie M, Garin J, Peltier G . New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants. Plant Cell, 2005,17:219-232.
[58] Wei T Y, Zhang C W, Hou X L, Wang A M . The SNARE protein Syp71 is essential for Turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog, 2013,9:e1003378.
[59] 朱海龙, 翟玉山, 程光远, 郭晋隆, 许莉萍, 徐景升 . 感染甘蔗花叶病毒甘蔗叶片cDNA文库的构建及评价. 西北农业学报, 2014,23(11):79-84.
Zhu H L, Zhai Y S, Cheng G Y, Guo J L, Xu L P, Xu J S . Construction and evaluation of yeast two hybrid cDNA library for sugarcane leaf infected with Sugarcane mosaic virus( SCMV). Acta Agric Boreali-occident Sin, 2014,23(11):79-84 (in Chinese with English abstract).
[60] Guo J L, Ling H, Wu Q B, Xu L P, Que Y X . The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014,4:7042, doi: 10.1038/srep07042.
[61] Yao W, Ruan M, Qin L, Yang C, Chen R, Chen B, Zhang M . Field performance of transgenic sugarcane lines resistant to Sugarcane mosaic virus. Front Plant Sci, 2017,8:104, doi: 10.3389/fpls.2017.00104.
[62] 杨川毓, 施肖堃, 张铃, 郭莺, 阮妙鸿, 陈如凯, 张木清 . 抗花叶病转SrMV-P1基因甘蔗的活性氧代谢分析. 热带作物学报, 2012,33:1101-1106.
Yang C Y, Shi X K, Zhang L, Guo Y, Ruan M H, Chen R K, Zhang M Q . Evaluation on yield and sugar characteristics in transgenic sugarcane mediated with SrMV-P1 gene from Sugarcane mosaic virus. Chin J Trop Crops, 2012,33:1101-1106 (in Chinese with English abstract).
[63] 郭莺, 阮妙鸿, 吴杨, 刘佳, 杨川毓, 张木清 . 甘蔗转HC-Pro基因的研究. 热带作物学报, 2010,31:965-971.
Guo Y, Ruan M H, Wu Y, Liu J, Yang C Y, Zhang M Q . HC-Pro gene transformation in sugarcane. Chin J Trop Crops, 2010,31:965-971 (in Chinese with English abstract).
[64] David M K, John R E . The importance of energy balance in improving photosynthetic productivity. Plant Physiol, 2011,155:70-78.
[65] Naoya N, Megumi I, Michel H, Akiho Y, Yuri Nakajima M . Promotion of cyclic electron transport around photosystem I during the evolution of NADP-malic enzyme-type C4 photosynthesis in the genus Flaveria. New Phytol, 2013,199:832-842.
[66] Munekage Y N, Eymery F, Rumeau D, Cuiné S, Oguri M, Nakamura N, Yokota A, Genty B G P . Elevated expression of PGR5 and NDH-H in bundle sheath chloroplasts in C4 flaveria species. Plant Cell Physiol, 2010,51:664-668.
[67] Darie C C, Pascalis L D, Mutschler B, Haehnel W . Studies of the Ndh complex and photosystem II from mesophyll and bundle sheath chloroplasts of the C4-type plant Zea mays. J Plant Physiol, 2006,163:800-808.
[68] Peng L W, Yoichiro F, Masayuki F, Toshiharu S . Multistep assembly of chloroplast NADH dehydrogenase-like subcomplex A requires several nucleus-encoded proteins, including CRR41 and CRR42, in Arabidopsis. Plant Cell, 2012,24:202-214.
[69] Fraile A, Garcíaarenal F, Carr J P, Loebenstein G . The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res, 2010,76:1-32.
[70] Ng J C K, Perry K L . Transmission of plant viruses by aphid vectors. Mol Plant Pathol, 2004,5:505-511.
[71] Nault L R . Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am, 1997,90:521-541.
[72] Simon H, Glen P . Do plant viruses facilitate their aphid vectors by inducing symptoms that alter behavior and performance? Environ Entomol, 2008,37:1573-1581.
[73] Salvaudon L, Mescher M C . Outcomes of co-infection by two potyviruses: implications for the evolution of manipulative strategies. Proc Biol Sci, 2013,280:20122959, doi: 10.1098/rspb. 2012.2959.
[1] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[2] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[3] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[4] DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885.
[5] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[6] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[7] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[8] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[9] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[10] CANG Xiao-Yan, XIA Hong-Ming, LI Wen-Feng, WANG Xiao-Yan, SHAN Hong-Li, WANG Chang-Mi, LI Jie, ZHANG Rong-Yue, HUANG Ying-Kun. Evaluation of natural resistance to smut in elite sugarcane varieties (lines) [J]. Acta Agronomica Sinica, 2021, 47(11): 2290-2296.
[11] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, WANG Tong, LIU Shu-Xian, SHANG He-Yang, ZHAO He, XU Jing-Sheng. Cloning of sugarcane ScCRT1 gene and its response to SCMV infection [J]. Acta Agronomica Sinica, 2021, 47(1): 94-103.
[12] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[13] LUO Jun,LIN Zhao-Li,LI Shi-Yan,QUE You-Xiong,ZHANG Cai-Fang,YANG Zai-Qi,YAO Kun-Cun,FENG Jing-Fang,CHEN Jian-Feng,ZHANG Hua. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field [J]. Acta Agronomica Sinica, 2020, 46(4): 596-613.
[14] WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642.
[15] ZHANG Hai, LIU Shu-Xian, YANG Zong-Tao, WANG Tong, CHENG Guang-Yuan, SHANG He-Yang, XU Jing-Sheng. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein [J]. Acta Agronomica Sinica, 2020, 46(11): 1722-1733.
Full text



No Suggested Reading articles found!