Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1683-1696.doi: 10.3724/SP.J.1006.2022.14126


Identification and expression analysis of uncoupling protein gene family in sweetpotato

CHEN Lu(), ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing()   

  1. School of Food and Health, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
  • Received:2021-07-15 Accepted:2021-10-19 Online:2022-07-12 Published:2021-11-01
  • Contact: YANG Hu-Qing E-mail:13097686588@yeah.net;yanghq@zafu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31871857);China Agriculture Research System(CARS-10-B19);Natural Science Foundation of Zhejiang Province(LQ20C200002)


The objectives of this study are to identify and analyze the uncoupling protein (UCPs) gene family members in sweetpotato (Ipopoea batatas (L.) Lam) and to investigate its expression specificity in different tissues of sweetpotato and its response to low temperature (4℃), high salinity (NaCl) and drought (PEG-6000) stresses. The results showed that the UCP (IbUCP) gene family of sweetpotato included five genes, which were named IbUCP1 (GenBank accession number: MW753000), IbUCP2 (GenBank accession number: MW753004), IbUCP3 (GenBank accession number: MW753001), IbUCP4 (GenBank accession number: MW753002), and IbUCP5 (GenBank accession number: MW753003), respectively. IbUCP contains 261-375 amino acid residues with the theoretical isoelectric point from 8.53 to 9.86. IbUCP were mainly located in mitochondria. IbUCP was a hydrophilic protein belonging to the superfamily of mitochondrial. The secondary structure of IbUCP was mainly composed of α-helix and random coils, which was consistent with the prediction of tertiary structure. IbUCP did not contain transmembrane helix structure and signal peptide. IbUCP family members were divided into five branches, which were closely related to Ipomoea triloba and Ipomoea nil, and was conserved to a certain extent. Promoter prediction revealed that IbUCPs family genes not only has basic transcription elements, but also some signal response elements, transcription factor recognition binding elements, and stress response cis-acting elements. Expression analysis showed that the IbUCPs gene family were tissue-specific. The IbUCP4 expressed the highest in stem, and the other IbUCPs genes were found expressed the highest in tuberous root. IbUCP1, IbUCP4, and IbUCP5 responded to low temperature stress.All members of the IbUCPs gene family all responded to high salinity stress. Additionally, under drought stress, IbUCP1, IbUCP4, and IbUCP5 all responded and reached the peak at different time, respectively. Various stresses can regulate the expression of IbUCPs, and this study provides a theoretical basis for the function mining of UCP gene in sweetpotato and the selection of sweetpotato stress-resistant varieties.

Key words: sweetpotato (Ipomoea batatas (L.) Lam), uncoupling protein, bioinformatics, relative expression analysis, stress

Table 1

Primers used for this study"

Primer function
Primer name
Primer sequence (5′-3′)
qRT-PCR amplification
Internal reference genes

Table 2

Sequence and physicochemical properties analysis of UCP in sweetpotato"

基因名称 Gene name 编码氨基酸数量
Amino acids number
Instability index
IbUCP1 308 C1485H2370N406O419S11 32,968.28 9.48 29.16 95.32 0.096 线粒体Mitochondria
IbUCP2 375 C1860H2868N476O512S15 40,571.01 8.53 38.33 93.25 0.261 线粒体Mitochondria
IbUCP3 261 C1254H2016N356O363S9 28,176.51 9.62 42.00 96.05 0.017 线粒体Mitochondria
IbUCP4 291 C1347H2182N384O396S14 30,541.32 9.82 30.88 88.80 0.087 线粒体Mitochondria
IbUCP5 319 C1511H2452N420O426S20 33,959.85 9.86 26.78 89.00 0.104 线粒体Mitochondria

Fig. 1

Hydrophilic and hydrophobic analysis of UCP in sweetpotato"

Table 3

Secondary structure prediction of UCP in sweetpotato (%)"

Protein name
Alpha helix
Beta turn
Extended strand
Random coil
IbUCP1 49.35 6.82 13.96 29.87
IbUCP2 44.53 7.73 17.33 30.40
IbUCP3 46.46 8.81 13.03 31.80
IbUCP4 47.08 6.53 10.65 35.74
IbUCP5 46.08 7.84 12.54 35.54

Fig. 2

Secondary and tertiary structure of UCP in sweetpotato"

Fig. 3

Conserved structural domain of UCP in sweetpotato"

Fig. 4

Conserved protein motif of UCP family in sweetpotato"

Fig. 5

Transmembrane structure analysis of UCP in sweetpotato"

Fig. 6

Prediction of signal peptide of UCP in sweetpotato"

Fig. 7

Amino acid sequence alignment between Ipomoea batatas UCP and Arabidopsis thaliana UCP"

Fig. 8

Phylogenetic tree of UCP family AtPUMP1, AtUCP2, AtUCP3, AtUCP4, AtUCP5: Arabidopsis thaliana PUMP1 (NP_190979.1), UCP2 (NP_974962.1), UCP3 (NP_172866.1), UCP4 (BAH56967.1), UCP5 (NP_179836.1); FvUCP4: Fragaria vesca subsp. Vesca UCP4 (XP_004299717.1); SpUCP1, SpUCP2-like isoform X1, SpUCP2-like isoform X2, SpUCP3, SpUCP5: Solanum pennellii UCP1 (XP_015086211.1), UCP2-like isoform X1 (XP_015086155.1), UCP2-like isoform X2 (XP_015086156.1), UCP3 (XP_015074974.1), UCP5 (XP_015058445.1); HbUCP1-like, UCP2-like, UCP3, UCP5-like: Hevea brasiliensis UCP1-like (XP_021664307.1), UCP2-like (XP_021647687.1), UCP3 (XP_021691868.1), UCP5-like (XP_0216 35248.1); ZjUCP1, ZjUCP2 isoform X1, ZjUCP2 isoform X2, ZjUCP2 isoform X3, ZjUCP3, ZjUCP5: Ziziphus jujuba UCP1 (XP_015897075.1), UCP2 isoform X1 (XP_015873942.1), UCP2 isoform X2 (XP_024926760.1), UCP2 isoform X3 (XP_024926761.1), UCP3 (XP_015895 050.1)、UCP5 (XP_015890603.1); LeUCP, LeUCP2, LeUCP3, LeUCP5: Lycopersicon esculentum UCP (NP_001234584.1), UCP2 (XP_004246961.1), UCP3 (XP_004238805.1), UCP5 (XP_0042 50140.1); TaUCP1a: Triticum aestivum UCP1a (BAB16384.1); OsUCP1, OsUCP2, OsUCP3, OsUCP5: Oryza sativa UCP1 (XP_015616794.1), UCP2 (XP_015622201.1), UCP3 (XP_015636356.1), UCP5 (XP_01565 0890.1); StUCP, StUCP3, StUCP5-like: Solanum tuberosum UCP (CAA72107.1), UCP3 (XP_006355129.2), UCP5-like (XP_006360391.1); HaUCP, HaUCP1, HaUCP3, HaUCP5: Helianthus annuus UCP (XP_022001748.1), UCP1 (XP_021988906.1), UCP3 (XP_021997212.1), UCP5 (XP_022009806.1); InUCP1, InUCP2-like, InUCP3, InUCP5, InUCP5-like: UCP1 (XP_019186835.1), UCP2-like (XP_019167977.1), UCP3 (XP_019165923.1), UCP5 (XP_019153217.1), UCP5-like (XP_019 18563 7.1); ItUCP1, ItUCP2-like isoform X1, ItUCP2-like isoform X1, ItUCP2-like isoform X2, ItUCP2-like isoform X3, ItUCP2-like isoform X4, ItUCP3, ItUCP5: Ipomoea triloba UCP1 (XP_03 1102145.1), UCP2-like isoform X1 (XP_031110514.1), UCP2-like isoform X2 (XP_031110 515.1), UCP2-like isoform X3 (XP_031110516.1), UCP2-like isoform X4 (XP_031110517.1), UCP3 (XP_031115656.1), UCP5 (XP_031109433.1); IbUCP1, IbUCP2, IbUCP3, IbUCP4, IbUCP5: Ipomoea batatas UCP1 (MW753000), UCP2 (MW753004), UCP3 (MW753001), UCP4 (MW753002), UCP5 (MW753003). "

Table 4

Predictive analysis of cis-acting elements of IbUCPs promoters"

Typical sequence
Part of a light responsive element
G-box CAGCAC 光响应的顺式作用元件
Cis-acting regulatory element involved in light responsiveness
ARE AAACCA 厌氧诱导的顺式作用元件
Cis-acting regulatory element essential for the anaerobic induction
AuxRR-core GGTCCAT 生长素响应有关的元件
Cis-acting regulatory element involved in auxin responsiveness
Ethylene responsive element
TCA-element TTTTTTCTACC 水杨酸响应
Salicylic acid response element
as-1 TGACG 水杨酸响应
Salicylic acid response element
GARE-motif TATGTTG 赤霉素响应
Gibberellin-responsive element
Cis-acting element involved in the abscisic acid responsiveness
Elements associated with MYB binding sites
Typical sequence
Elements associated with MYB binding sites
MYB binding site
W-box TTGACC WRKY转录因子结合位点
WRKY transcription factor binding site
CAT-box GCCACT 分生组织相关的顺势调节元件
Cis-acting regulatory element related to meristem expression
circadian CTATAGAAAT 参与昼夜节律调控的顺式调控元件
Cis-acting regulatory element involved in circadian control
TC-rich repeats GTTTTCTTA 参与防御和胁迫响应的顺式调控元件
Cis-acting element involved in defense and stress responsiveness
O2-site GGTGGAGTAG 参与玉米醇溶蛋白代谢调节的顺式作用调节元件
Cis-acting regulatory element involved in zein metabolism regulation
GCN4_motif TGAGTCA 参与胚乳表达的顺式调控元件
Cis-regulatory element involved in endosperm expression

Fig. 9

Tissue specific expression analysis of IbUCPs genes Different lowercase letters above the bars indicate significant difference at the 0.05 probability level. "

Fig. 10

Roots and seedlings of sweetpotato after stress treatment A: sweetpotato roots were treated at low temperature for 0, 1, 2, 3, 7, 14, 21, and 28 days respectively from left to right; B: sweetpotato seedlings were treated at low temperature for 0, 1, 3, 6, 12, 24, and 48 hours respectively from left to right; C: sweetpotato seedlings were treated at high salinity for 0, 1, 3, 6, 12, 24, and 48 hours respectively from left to right; D: sweetpotato seedlings were treated at drought for 0, 1, 3, 6, 12, 24, and 48 hours respectively from left to right. "

Fig. 11

Relative expression analysis of IbUCPs gene family in response to abiotic stress *, **, and *** mean significant differences among different treatments of same gene at the 0.05, 0.01, and 0.001 probability levels, respectively. "

[1] Pradhan D M P, Mukherjee A, George J, Chakrabarti S K, Vimala B, Naskar S K, Sahoo B K, Samal S. High starch, beta carotene and anthocyanin rich sweet potato: ascent to future food and nutrition security in coastal and backward areas. Int J Trop Agric, 2015, 10: 9-22.
[2] 徐飞, 袁澍, 梁厚果, 林宏辉. 交替氧化酶和解偶联蛋白在植物线粒体中的作用及其相互关系. 植物生理学通讯, 2009, 45(2): 105-110.
Xu F, Yuan S, Liang H G, Lin H H. The roles of alternative oxidase and uncoupling protein in plant mitochondria and their interrelationships. Plant Physiol Commun, 2009, 45(2): 105-110.(in Chinese with English abstract)
[3] 张海洋. 解偶联蛋白家族成员结构基础和功能机制的研究. 南京大学硕士学位论文, 江苏南京, 2015.
Zhang H Y. The Study on Structural Basis and Functinal Mechanismod Uncoupling Proteins. MS Thesis of Nanjing University, Nanjing, Jiangsu, China, 2015.(in Chinese with English abstract)
[4] Sweetlove L J, Heazlewood J L, Herald V, Holtzapffel R H, Millar A H. The impact of oxidative stress on Arabidopsis mitochondria. J Plant, 2010, 32: 891-904.
doi: 10.1046/j.1365-313X.2002.01474.x
[5] Alscher R G, Donahue J L, Cramer C L. Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant, 1997, 100: 224-233.
doi: 10.1111/j.1399-3054.1997.tb04778.x
[6] Pastore D, Fratianni A, Di Pede S, Passarella S. Effects of fatty acids, nucleotides and reactive oxygen species on durum wheat mitochondria. FEBS Lett, 2000, 470: 88-92.
pmid: 10722851
[7] Ricquier D, Kader J C. Mitochondrial protein alteration in active brown fat: a sodium dodecyl sulfate-polyacrylamide gel electrophoretic study. Biochem Biophys Res Commun, 1976, 73: 577-583.
doi: 10.1016/0006-291X(76)90849-4
[8] Laloi M, Klein M, Riesmeier J W, Müller-Röber B, Fleury C, Bouillaud F, Ricquier D. A plant cold-induced uncoupling protein. Nature, 1997, 389: 135-136.
doi: 10.1038/38156
[9] Maia I G, Benedetti C E, Leite A, Turcinelli S R, Arruda P. AtPUMP: an Arabidopsis gene encoding a plant uncoupling mitochondrial protein. FEBS Lett, 1998, 429: 403-406.
pmid: 9662458
[10] Pastore D, Trono D, Laus M N, Di Fonzo N, Flagella Z. Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J Exp Bot, 2007, 58: 195-210.
pmid: 17261694
[11] Taylor N L, Heazlewood J L, Day D A, Millar A H. Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics, 2005, 4: 1122-1133.
doi: 10.1074/mcp.M400210-MCP200
[12] 刘自梅. 番茄线粒体解偶联蛋白基因(LeUCP)沉默对番茄光合作用, 呼吸作用及抗逆性的影响. 浙江大学硕士学位论文, 浙江杭州, 2011.
Liu Z M. Effects of Mitochondrial Uncoupled Protein Gene Silencing on Photosynthesis, Respiration and Stress Resistance of Tomato. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2011.(in Chinese with English abstract)
[13] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods an Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants. Mol Biol Evol, 2011, 28: 2731-2739.
doi: 10.1093/molbev/msr121
[14] 苏丽艳. 番茄SlETR6基因的克隆及非生物胁迫下的表达分析. 华北农学报, 2019, 34(1): 23-29.
Su L Y. Cloning and expression analysis of ethylene receptor gene SIETR6 in Solanum lycopersicum under abiotic stress. Acta Agric Boreali-Sin, 2019, 34(1): 23-29.(in Chinese with English abstract)
[15] 段奥其, 冯凯, 刘洁霞, 徐志胜, 熊爱生. 芹菜NAC转录因子基因AgNAC1的克隆及其对非生物胁迫的响应. 园艺学报, 2018, 45: 1125-1135.
Duan A Q, Feng K, Liu J X, Xu Z S, Xiong A S. Cloning and response to abiotic stress of NAC transcription gene AgNAC1 in Apium graveolens. Acta Hortic Sin, 2018, 45: 1125-1135 (in Chinese with English abstract)
[16] Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[17] Barreto P, Couñago R M, Arruda P. Mitochondrial uncoupling protein-dependent signaling in plant bioenergetics and stress response. Mitochondrion, 2020, 53: 109-120.
doi: S1567-7249(19)30343-5 pmid: 32439620
[18] Borecky J, Nogueira F, Oliveira K, Maia I G, Vercesi A E, Arruda P. The plant energy-dissipating mitochondrial systems: depicting the genomic structure and the expression profiles of the gene families of uncoupling protein and alternative oxidase in monocots and dicots. J Exp Bot, 2006, 57: 849-864.
pmid: 16473895
[19] Hourton-Cabassa C, Matos A R, Zachowski A, Moreau F. The plant uncoupling protein homologues: a new family of energy- dissipating proteins in plant mitochondria. J Plant Biochem Physiol, 2004, 42: 283-290.
[20] Ricquier D, Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J, 2000, 345: 161.
doi: 10.1042/bj3450161
[21] Costa A, Nantes I L, Ježek P, Leite A, Vercesi A E. Plant uncoupling mitochondrial protein activity in mitochondria isolated from tomatoes at different stages of ripening. J Bioenerg Biomembr, 1999, 31: 527-533.
pmid: 10653480
[22] Brandalise M, Maia I G, Boreck J, Vercesi A E, Arruda P. Overexpression of plant uncoupling mitochondrial protein in transgenic tobacco increases tolerance to oxidative stress. J Bioenerg Biomembr, 2003, 35: 203-209.
pmid: 13678271
[23] Czobor Á, Hajdinák P, Németh B, Piros B, Németh Á, Szarka A. Comparison of the response of alternative oxidase and uncoupling proteins to bacterial elicitor induced oxidative burst. PLoS One, 2019, 14: e0210592.
doi: 10.1371/journal.pone.0210592
[24] Calegario F F, Cosso R G, Fagian M M, Almeida F V, Jardim W F, Jezek P, Arruda P, Vercesi A E. Stimulation of potato tuber respiration by cold stress is associated with an increased capacity of both plant uncoupling mitochondrial protein (PUMP) and alternative oxidase. J Bioenerg Biomembr, 2003, 35: 211-220.
pmid: 13678272
[25] Armstrong A F, Badger M R, Day D A, Barthet M M, Smith P M, Millar A H, Whelan J, Atkin O K. Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration. Plant Cell Environ, 2010, 31: 1156-1169.
doi: 10.1111/j.1365-3040.2008.01830.x
[26] Mizuno N, Sugie A, Kobayashi F, Takumi S. Mitochondrial alternative pathway is associated with development of freezing tolerance in common wheat. J Plant Biochem Physiol, 2008, 165: 462-467.
[27] Ozawa K, Murayama S, Ai K U, Handa H. Overexpression of wheat mitochondrial uncoupling protein in rice plants confers tolerances to oxidative stresses promoted by exogenous hydrogen peroxide and low temperature. Mol Plant Breed, 2006, 18: 51-56.
[28] Popov V N, Eprintsev A T, Maltseva E V. Activation of genes encoding mitochondrial proteins involved in alternative and uncoupled respiration of tomato plants treated with low temperature and reactive oxygen species. Russ J Plant Physiol, 2011, 58: 914-920.
doi: 10.1134/S1021443711040091
[29] Begcy K, Mariano E D, Mattiello L, Nunes A V, Mazzafera P, Maia I G, Menossi M. An Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants. PLoS One, 2011, 6: e23776.
doi: 10.1371/journal.pone.0023776
[30] 石晓雯. 甘薯逆境胁迫和花青素合成相关microRNA及其靶基因的鉴定和分析. 山西农业大学硕士学位论文, 山西太谷, 2018.
Shi X W. Identification and Analysis of microRNA and Their Target Genes Related to Anthocyanin Synthesis under Stress in Sweet Potato.MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2018.(in Chinese with English abstract)
[31] 吴雨捷, 吴健, 王幼平, 孙勤富. WRKY转录因子在植物抗逆反应中的功能研究进展. 分子植物育种, 2020, 18: 7413-7422.
Wu Y J, Wu J, Wang Y P, Sun Q F. Advances in functional studies of WRKY transcription factors in plant adverse response. Mol Plant Breed, 2020, 18: 7413-7422.(in Chinese with English abstract)
[1] ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995.
[2] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice  [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[3] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[4] GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114.
[5] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[6] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[7] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[8] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[9] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[10] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[11] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[12] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[13] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[14] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[15] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
Full text



[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .