Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1669-1682.doi: 10.3724/SP.J.1006.2022.14111

• OCROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period

LI Jie-Ya1(), LI Hong-Yan1(), YE Guang-Ji1,2,3,4,5,*(), SU Wang1,2,3,4,5, SUN Hai-Hong1,2,3,4,5, WANG Jian1,2,3,4,5,*()   

  1. 1Qinghai University, Xining 810016, Qinghai, China
    2Qinghai Academy of Agriculture and Forestry, Xining 810016, Qinghai, China
    3Key Laboratory of Biotechnology, Ministry of Education Qinghai-Tibet Plateau, Qinghai University, Xining 810016, Qinghai, China
    4Key Laboratory of potato breeding Qinghai Province, Xining 810016, Qinghai, China
    5Ministry of State Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Xining 810016, Qinghai, China
  • Received:2021-06-25 Accepted:2021-10-19 Online:2022-07-12 Published:2022-05-10
  • Contact: YE Guang-Ji,WANG Jian E-mail:17453345@qq.com;1286068155@qq.com;13997089595 @163.com;jianwang2197@163.com
  • About author:First author contact:

    ** Contributed equally to this work

Abstract:

Researches on the biosynthesis mechanism of anthocyanins have been widely done in plants, while little information is available on the mechanism of anthocyanins degradation and compositions in anthocyanins. The storage period affects the quality of potatoes. During storage period, the changes in anthocyanins content and composition of colored potato tubers remains unclear. In this study, the contents and components of anthocyanins and reducing sugar content were measured during storage period. Additionally, the relative expression of anthocyanins metabolism related genes (StPAL, StC4H, St4CL, StF3H, StDFR, StUFGT, StF35H, StAN1, and StbHLH1) were analyzed using qRT-RCR. The results showed that with the extension of storage period, the total contents and components of anthocyanins decreased. The relative expression levels of anthocyanins metabolism-related genes were down-regulated, but not StDFR in Heijingang. During storage period, the elevated reducing sugar might affect the anthocyanin content. Overall, these results indicated that a high level of anthocyanin during storage contributed to the high-quality colored potato, providing theoretical basis for breeding new colored potato varieties and manufacture products in future.

Key words: colored potato, storage period, gene relative expression, anthocyanins

Fig. 1

Pathway of plant anthocyanin biosynthesis[3]"

Table 1

Primers for qRT-PCR related to anthocyanin synthesis"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
StPAL GCAATGTGCAATGGACAGATTA GGCAAACATTTAGCAGATTGGA
StC4H GAGAGATCAACGAGGATAACGT CCACTCAATTGACCACAATGTT
St4CL TACTTGAAGCACGACGATGTGGTG GAACTACAGCAGCGACTGAGACAC
StANS ATTCCATCTGTTTTCAGTTCGC TACTCGTCACATTTCACTTCGA
StF3'5'H CCTATGGACCTCGTTGGAAGTTGC GCTCATTGGCACGAACATTGGC
StUFGT TGTGTTGCATCCTAGTTACGGA TCGAAGAGACAGGAGGCTCG
StDFR TGTCCATGCTACTGTTCGTGATCC GCTTCCTCCACTGCCAAGTCTG
StF3’H GGCTCGTTGTGGAATCTGACCTG TCTCACAGCTCGGATGCAATTC
StbHLH1 ACATCACAGGCAGCTGAAGTT GTTTGCTATCATCTGVACCCCA
StAN1 CACCCTTATCCGCCTACAAA TTCTTCTCGGCTCCACTTCA
X83206 GGATGCTTACGCTGGATGGAATGC TTCCGGTGTGGTTGGATTCTGTTC

Fig. 2

Cross-sectional view of different colored potato resources"

Fig. 3

Anthocyanin content of different colored potato resources"

Fig. 4

Color change of two colored potato tubers during storage period"

Fig. 5

Changes in anthocyanin content of two colored potatoes during storage period"

Table 2

Analysis of potato anthocyanins components"

品种
Variety
时期
Phase
飞燕草色素
Delphinidin
矢车菊色素
Cyanidin
矮牵牛色素
Petunidin chloride
天竺葵色素
Pelargonidin
芍药素
Peonidin
锦葵色素
Malvidin
总计
Total
黑金刚
Heijingang
前期Prophase (7 d) 2.19 3.37 39.46 3.17 35.21 4.13 87.33
后期Later period (35 d) 1.31# 1.03# 18.98# 2.01# 12.51# 2.34# 30.98
红美人
Hongmeiren
前期Prophase (7 d) 5.91 73.75 7.65 87.31
后期Later period (35 d) 1.22# 6.12# 3.91# 10.57

Fig. 6

High performance liquid chromatograms of ‘Heijingang’ potatoes during different storage period a: ‘Heijingang’ potato samples in the early storage period; c: ‘Heijingang’ potato samples in the late storage period; b and d: six kinds of anthocyanin standard products. *, P<0.05."

Fig. 7

High performance liquid chromatograms of ‘Hongmeiren’ potatoes during different storage period a: ‘Hongmeiren’ potato samples in the early storage period; c: ‘Hongmeiren’ potato samples in the late storage period; b and d: six kinds of anthocyanin standard products. *, P<0.05."

Table 3

Correlation analysis between anthocyanin content and anthocyanin gene expression"

品种
Variety
相关系数
Correlation
coefficient
y x1 x2 x3 x4 x5 x6 x7 x8 x9
黑金刚
Heijingang
x1 0.99 1.00 0.67 0.96 -0.84 0.74 0.85 0.82 0.87 0.88
x2 0.71 0.67 1.00 0.72 -0.95 0.95 0.92 0.82 0.87 0.73
x3 0.95 0.96 0.72 1.00 -0.83 0.78 0.87 0.71 0.83 0.93
x4 -0.86 -0.84 -0.95 -0.83 1.00 -0.96 -0.97 -0.94 -0.97 -0.80
x5 0.72 0.74 0.95 0.78 -0.96 1.00 0.98 0.85 0.95 0.67
x6 0.83 0.85 0.92 0.87 -0.97 0.98 1.00 0.87 0.98 0.75
x7 0.81 0.82 0.82 0.71 -0.94 0.85 0.87 1.00 0.95 0.66
x8 0.84 0.87 0.87 0.83 -0.97 0.95 0.98 0.95 1.00 0.71
x9 0.94 0.88 0.73 0.93 -0.80 0.67 0.75 0.66 0.71 1.00
红美人
Hongmeiren
x1 0.86 1.00 0.61 0.89 0.90 0.15 0.94 0.22 0.86 0.95
x2 0.59 0.61 1.00 0.64 0.50 -0.09 0.82 0.87 0.86 0.67
x3 0.99 0.89 0.64 1.00 0.98 -0.11 0.86 0.21 0.88 0.98
x4 0.97 0.90 0.50 0.98 1.00 -0.08 0.81 0.04 0.81 0.97
x5 0.98 0.88 0.56 0.98 0.98 1.00 0.85 0.15 0.87 0.98
x6 0.86 0.94 0.82 0.86 0.81 0.21 1.00 0.53 0.98 0.93
x7 0.19 0.22 0.87 0.21 0.04 0.07 0.53 1.00 0.59 0.27
x8 0.89 0.86 0.86 0.88 0.81 0.16 0.98 0.59 1.00 0.93
x9 0.98 0.95 0.67 0.98 0.97 0.04 0.93 0.27 0.93 1.00

Fig. 8

Relative expression patterns of anthocyanin-related genes in colored potato during storage period"

Fig. 9

Reducing sugar content of colored potatoes during storage period"

[1] 仇菊, 刘鹏, 孙君茂. 彩色马铃薯营养保健功能及其食品开发研究进展. 食品与机械, 2016, 32(10): 226-229.
Qiu J, Liu P, Sun J M. Research progress on the nutrition and health function of colored potato and its food development. Food Mach, 2016, 32(10): 226-229. (in Chinese with English abstract)
[2] Li X P, Sui Y, Li S Y, Xie B J, Sun Z D. A-type procyanidins from litchi pericarp ameliorate hyperglycaemia by regulating hepatic and muscle glucose metabolism in streptozotocin (STZ)-induced diabetic mice fed with high fat diet. J Funct Foods, 2016, 27: 711-722.
doi: 10.1016/j.jff.2016.08.010
[3] Liu Y, Tikunov Y, Schouten R E, Marcelis L F M, Visser R G F, Bovy A. Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables: a review. Front Chem, 2018, 6: 52.
doi: 10.3389/fchem.2018.00052
[4] Nizioł-Łukaszewska Z, Wasilewski T, Bujak T, Gawe-Bben K, Osika P, Czerwonka D. Cornus mas L. extract as a multifunctional material for manufacturing cosmetic emulsions. Chin J Nat Med, 2018, 16: 284-292.
[5] Chen K, Wei X T, Zhang J, Pariyani R, Jokioja J, Kortesniemi M, Linderborg K M, Heinonen J, Sainio T, Zhang Y M, Yang B. Effects of anthocyanin extracts from bilberry (Vaccinium myrtillus L.) and purple potato (Solanum tuberosum L. var. ‘Synkeä Sakari’) on the plasma metabolomic profile of zucker diabetic fatty rats. J Agric Food Chem, 2020, 68: 9436-9450.
doi: 10.1021/acs.jafc.0c04125
[6] Ju J H, Yoon H S, Park H J, Kim M Y, Shin H K, Park K Y, Yang J O, Sohn M S, Do M S. Anti-obesity and antioxidative effects of purple sweet potato extract in 3T3-L1 adipocytes in vitro. J Med Food, 2011, 14: 1097-1106.
doi: 10.1089/jmf.2010.1450
[7] Bonar N, Liney M, Zhang R X, Austin C, Dessoly J, Davidson D, Stephens J, McDougall G, Taylor M, Bryan G J, Hornyik C. Potato miR828 is associated with purple tuber skin and flesh color. Front Plant Sci, 2018, 9: 1742.
doi: 10.3389/fpls.2018.01742
[8] Jaromír L, Karel H, Matyáš O, Vladimír P, Kateřina H, Kateřina P, Petr D, Jaroslav Č. Impact of selected factors-cultivar, storage, cooking and baking on the content of anthocyanins in coloured-flesh potatoes. Food Chem, 2012, 133: 1107-1116.
doi: 10.1016/j.foodchem.2011.07.077
[9] 白粉娥, 成宇峰. 两种彩色马铃薯品种花色苷成分分析及其总抗氧化活性的比较研究. 保鲜与加工, 2018, 18(2): 108-113.
Bai F E, Cheng Y F. Comparative study of anthocyanins component and total antioxidant activity between two colorful potato cultivars. Storage Proc, 2018, 18(2): 108-113. (in Chinese with English abstract)
[10] 陈蒙, 刘海峰. 山葡萄C4H基因的克隆表达及遗传转化分析. 西南大学学报(自然科学版), 2019, 41(10): 11-21.
Chen M, Liu H F. Cloning expression and genetic transformation analysis of C4H gene of Vitis vinifera. J Southwest Univ (Nat Sci Edn), 2019, 41(10): 11-21. (in Chinese with English abstract)
[11] Colin G S, Matthew W R, Alfred Z, Dudley F, Bolwell G P. Tissue and subcellular immunolocalisation of enzymes of ligninsynthesis in differentiating and wounded hypocotyl tissue of French bean (Phaseolus vulgaris L.). Planta, 1994, 192: 155-164.
doi: 10.1007/BF01089030
[12] Blount J W, Korth K L, Masoud S A, Rasmussen S, Lamb C, Dixon R A. Altering expression of cinnamic acid 4-hydroxylase in transgenic plants providese evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol, 2000, 122: 107-116.
pmid: 10631254
[13] 赵钰涵, 付春, 朱琳, 马俊杰, 周希萌, 李长生, 李爱芹, 厉广辉, 夏晗, 王兴军, 赵传志. 比较转录组分析揭示花生种皮花青素积累的分子调控机制. 山东农业科学, 2019, 51(9): 1-8.
Zhao Y H, Fu C, Zhu L, Ma J J, Zhou X M, Li C S, Li A Q, Li G H, Xia H, Wang X J, Zhao C Z. Comparative transcriptome analysis reveals the molecular regulation mechanism of peanut seed coat anthocyanin accumulation. Shandong Agric Sci, 2019, 51(9): 1-8. (in Chinese with English abstract)
[14] 王华, 李茂福, 杨媛, 金万梅. 果实花青素生物合成分子机制研究进展. 植物生理学报, 2015, 51: 29-43.
Wang H, Li M F, Yang Y, Jin W M. Research progress on molecular mechanism of fruit anthocyanin biosynthesis. Acta Phytophy, 2015, 51: 29-43. (in Chinese with English abstract)
[15] 金万梅, 王华. 植物表达载体pCAMBIA2301-del-ros的构建及其在草莓上的验证. 农业生物技术学报, 2014, 22: 389-396.
Jin W M, Wang H. Construction of plant expression vector pCAMBIA2301-del-ros and its verification on strawberry. J Agric Biotechnol, 2014, 22: 389-396 (in Chinese with English abstract).
[16] 徐青, 王代波, 刘国华, 李冰晶, 周元敬. 花青素稳定性影响因素及改善方法研究进展. 食品研究与开发, 2020, 41(7): 218-224.
Xu Q, Wang D B, Liu G H, Li B J, Zhou Y J. Advances in research on factors influencing the stability of anthocyanins and ways to improve them. Food Res Dev, 2020, 41(7): 218-224. (in Chinese with English abstract)
[17] 李冠臻. pH和温度对紫苏花青素稳定性的影响. 辽宁农业科学, 2018, 21(1): 84-85.
Li G Z. pH and temperature on the stability of acetyl anthocyanins. Liaoning Agric Sci, 2018, 21(1): 84-85. (in Chinese with English abstract)
[18] Araceli C O, Pacheco-Hernández M D L, Páez-Hernández M E, Rodríguez J A, Galán-Vidal C A. Chemical studies of anthocyanins: a review. Food Chem, 2008, 113: 859-871.
doi: 10.1016/j.foodchem.2008.09.001
[19] 李颖畅, 李冰心, 吕春茂, 孟宪军. 酰基化蓝莓花色苷的稳定性和对氧自由基清除能力. 食品工业科技, 2012, 33(6): 212-214.
Li Y C, Li B X, Lyu C M, Meng X J. The stability and scavenging ability of acylated blueberry anthocyanins to oxygen free radicals. Sci Technol Food Ind, 2012, 33(6): 212-214. (in Chinese with English abstract)
[20] 殷丽琴, 彭云强, 钟成, 付绍红, 杨进, 黄敏, 余勤, 韦献雅, 牛应泽. 高效液相色谱法测定8个彩色马铃薯品种中花青素种类和含量. 食品科学, 2015, 36(18): 143-147.
Yin L Q, Peng Y Q, Zhong C, Fu S H, Yang J, Huang M, Yu Q, Wei X Y, Niu Y Z. Determination of anthocyanin types and contents in 8 colored potato varieties by high performance liquid chromatography. Food Sci, 2015, 36(18): 143-147. (in Chinese with English abstract)
[21] 高建芳, 柯丽萍, 孙玉强. 基于花青素代谢培育蓝色花卉的研究进展. 生物工程学报, 2020, 36: 678-692.
Gao J F, Ke L P, Sun Y Q. Research progress on the cultivation of blue flowers based on anthocyanin metabolism. J Biol Engin, 2020, 36: 678-692. (in Chinese with English abstract)
[22] Brown C R, Wrolstad R, Durst R, Yang C P, Clevidence B. Breeding studies in potatoes containing high concentrations of anthocyanins. Am Potato Res, 2003, 80: 241-249.
[23] Albert N W, Lewis D H, Zhang H, Louis J I, Jameson P E, Davies K M. Light induced vegetative anthocyanin pigmentation in Petunia. J Exp Bot, 2009, 60: 2191-2202.
doi: 10.1093/jxb/erp097 pmid: 19380423
[24] 于振, 徐龙飞, 苏成付, 周庆萍, 王绪英, 朱毅. 不同品种紫色马铃薯花色苷含量及组分分析. 食品工业, 2016, 37(12): 269-272.
Yu Z, Xu L F, Su C F, Zhou Q P, Wang X Y, Zhu Y. Analysis of anthocyanin content and composition of different varieties of purple potato. Food Ind, 2016, 37(12): 269-272. (in Chinese with English abstract)
[25] 姜超. 彩色马铃薯优良新品系培育及花青素组分的HPLC-MS分析. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2017.
Jiang C. Cultivation of New Color Potato Lines and HPLC-MS Analysis of Anthocyanin Components. PhD Dissertation of Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China, 2017. (in Chinese with English abstract)
[26] Espley R V, Hellens R P, Putterill J, David E S, Sumathi K A, Andrew C A. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J, 2007, 49: 414-427.
doi: 10.1111/j.1365-313X.2006.02964.x
[27] 卢其能, 杨清. 马铃薯花色苷研究进展. 北方园艺, 2007, (9): 54-57.
Lu Q N, Yang Q. The research progress of potato anthocyanins. Northern Hortic, 2007, (9): 54-57 (in Chinese with English abstract).
[28] Brown C R. Antioxidants in potato. Am Potato Res, 2005, 82: 163-172.
[29] Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol, 2006, 140: 637-646.
pmid: 16384906
[30] Gregory A G, Mark A M, Tarana H S, Andrew J M, Simone D C. Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta, 2010, 232: 219-234.
doi: 10.1007/s00425-010-1165-2
[31] Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol, 2006, 140: 637-646.
pmid: 16384906
[32] 杨少华, 王丽, 穆春, 王翔, 何静辉, 赵静尧, 王林嵩. 蔗糖调节拟南芥花青素的生物合成. 中国生物化学与分子生物学报, 2011, 27: 364-369.
Yang S H, Wang L, Mu C, Wang X, He J H, Zhao J Y, Wang L S. Sucrose regulates Arabidopsis anthocyanin biosynthesis. Chin J Biochem Mol Biol, 2011, 27: 364-369. (in Chinese with English abstract)
[33] 袁立娜. 颠茄MYB1调控花色素苷生物合成的功能研究. 西南大学硕士学位论文,重庆, 2019. pp 33-42.
Yuan L N. Study on the Function of Belladonna MYB1 in Regulating Anthocyanin Biosynthesis. MS Thesis of Southwest University, Chongqing, China, 2019. pp 33-42. (in Chinese with English abstract)
[34] 杨玉霞, 孙菲菲, 张昌伟. 蝴蝶兰全长cDNA文库构建及F3′H基因克隆. 西北植物学报, 2013, 33: 1731-1738.
Yang Y X, Sun F F, Zhang C W. Construction of phalaenopsis full-length cDNA library and F3′H gene cloning. Acta Bot Northwest, 2013, 33: 1731-1738 (in Chinese with English abstract).
[35] 欧阳汝欣. 蓝色花的形成机制. 生物学通报, 2007, (3): 15.
Ou-Yang X R. The formation mechanism of blue flowers. Biol Bull, 2007, (3): 15. (in Chinese with English abstract)
[36] Brugliera F, Tao G Q, Tems U, Kalc G, Mouradova E, Price K, Stevenson K, Nakamura N, Stacey I, Katsumoto Y, Tanaka Y, Mason J G. Violet/Blue chrysanthemums-metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiol, 2013, 54: 1696-1710.
doi: 10.1093/pcp/pct110 pmid: 23926066
[37] 李云萍, 郭晋雅, 高峰. 紫心甘薯花青素积累与PAL活性的关系. 西南大学学报(自然科学版), 2010, 32(2): 68-72.
Li Y P, Guo J Y, Gao F. The relationship between anthocyanin accumulation of purple heart sweet potato and PAL activity. J Southwest Univ (Nat Sci Edn), 2010, 32(2): 68-72. (in Chinese with English abstract)
[38] 徐靖, 林延慧, 王效宁, 韩义胜, 唐力琼, 王新华, 朱红林. 甘薯4-香豆酸辅酶A连接酶基因的生物信息学鉴定和表达分析. 西北植物学报, 2020, 40: 581-587.
Xu J, Lin Y H, Wang X N, Han Y S, Tang L Q, Wang X H, Zhu H L. Bioinformatics identification and expression analysis of sweet potato 4-coumarate coenzyme A ligase gene. Acta Bot Boreali-Occident Sin, 2020, 40: 581-587 (in Chinese with English abstract).
[39] 刘恺媛, 王茂良, 辛海波, 张华, 丛日晨, 黄大庄. 植物花青素合成与调控研究进展. 中国农学通报, 2021, 37(14): 41-51.
Liu K Y, Wang M L, Xin H B, Zhang H, Cong R C, Huang D Z. Research progress on the synthesis and regulation of plant anthocyanins. Chin Agric Sci Bull, 2021, 37(14): 41-51. (in Chinese with English abstract)
[40] 贾羊毛加, 王芳, 叶广继, 王舰. 紫色马铃薯花青素StAN1基因的克隆及功能分析. 西北植物学报, 2019, 39: 397-403.
Jia Y M J, Wang F, Ye G J, Wang J. Cloning and functional analysis of purple potato anthocyanin StAN1 gene. Acta Bot Boreali-Occident Sin, 2019, 39: 397-403. (in Chinese with English abstract)
[41] Gisbert C, Dumm J M, Prohens J, Vilanova C, Stommel R. A spontaneous eggplant (Solanum melongena L.) color mutant conditions anthocyanin free fruit pigmentation. HortScience, 2016, 51: 793-798.
doi: 10.21273/HORTSCI.51.7.793
[42] 刘芳, 杨元军, 陈广侠, 霍雨猛, 毕玉平. F3’5’H对马铃薯花青素合成的调控. 济南大学学报(自然科学版), 2018, 32(3): 192-198.
Liu F, Yang Y J, Chen G X, Huo Y M, Bi Y P. The regulation of F3’5’H on potato anthocyanin synthesis. J Jinan Univ (Nat Sci Edn), 2018, 32(3): 192-198. (in Chinese with English abstract)
[43] 戴思兰, 洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种. 中国农业科学, 2016, 49: 529-542.
Dai S L, Hong Y. Molecular breeding of ornamental plant flower color improvement based on anthocyanin synthesis and coloringmechanism. Sci Agric Sin, 2016, 49: 529-542. (in Chinese with English abstract)
[1] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[2] ZHOU Tian-Shan,WANG Xin-Chao,YU You-Ben,XIAO Yao,QIAN Wen-Jun,XIAO Bin,YANG Ya-Jun. Correlation Analysis between Total Catechins (or Anthocyanins) and Expression Levels of Genes Involved in Flavonoids Biosynthesis in Tea Plant with Purple Leaf [J]. Acta Agron Sin, 2016, 42(04): 525-531 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .