Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1683-1696.doi: 10.3724/SP.J.1006.2022.14126
• OCROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
CHEN Lu(), ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing()
[1] | Pradhan D M P, Mukherjee A, George J, Chakrabarti S K, Vimala B, Naskar S K, Sahoo B K, Samal S. High starch, beta carotene and anthocyanin rich sweet potato: ascent to future food and nutrition security in coastal and backward areas. Int J Trop Agric, 2015, 10: 9-22. |
[2] | 徐飞, 袁澍, 梁厚果, 林宏辉. 交替氧化酶和解偶联蛋白在植物线粒体中的作用及其相互关系. 植物生理学通讯, 2009, 45(2): 105-110. |
Xu F, Yuan S, Liang H G, Lin H H. The roles of alternative oxidase and uncoupling protein in plant mitochondria and their interrelationships. Plant Physiol Commun, 2009, 45(2): 105-110.(in Chinese with English abstract) | |
[3] | 张海洋. 解偶联蛋白家族成员结构基础和功能机制的研究. 南京大学硕士学位论文, 江苏南京, 2015. |
Zhang H Y. The Study on Structural Basis and Functinal Mechanismod Uncoupling Proteins. MS Thesis of Nanjing University, Nanjing, Jiangsu, China, 2015.(in Chinese with English abstract) | |
[4] |
Sweetlove L J, Heazlewood J L, Herald V, Holtzapffel R H, Millar A H. The impact of oxidative stress on Arabidopsis mitochondria. J Plant, 2010, 32: 891-904.
doi: 10.1046/j.1365-313X.2002.01474.x |
[5] |
Alscher R G, Donahue J L, Cramer C L. Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant, 1997, 100: 224-233.
doi: 10.1111/j.1399-3054.1997.tb04778.x |
[6] |
Pastore D, Fratianni A, Di Pede S, Passarella S. Effects of fatty acids, nucleotides and reactive oxygen species on durum wheat mitochondria. FEBS Lett, 2000, 470: 88-92.
pmid: 10722851 |
[7] |
Ricquier D, Kader J C. Mitochondrial protein alteration in active brown fat: a sodium dodecyl sulfate-polyacrylamide gel electrophoretic study. Biochem Biophys Res Commun, 1976, 73: 577-583.
doi: 10.1016/0006-291X(76)90849-4 |
[8] |
Laloi M, Klein M, Riesmeier J W, Müller-Röber B, Fleury C, Bouillaud F, Ricquier D. A plant cold-induced uncoupling protein. Nature, 1997, 389: 135-136.
doi: 10.1038/38156 |
[9] |
Maia I G, Benedetti C E, Leite A, Turcinelli S R, Arruda P. AtPUMP: an Arabidopsis gene encoding a plant uncoupling mitochondrial protein. FEBS Lett, 1998, 429: 403-406.
pmid: 9662458 |
[10] |
Pastore D, Trono D, Laus M N, Di Fonzo N, Flagella Z. Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J Exp Bot, 2007, 58: 195-210.
pmid: 17261694 |
[11] |
Taylor N L, Heazlewood J L, Day D A, Millar A H. Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics, 2005, 4: 1122-1133.
doi: 10.1074/mcp.M400210-MCP200 |
[12] | 刘自梅. 番茄线粒体解偶联蛋白基因(LeUCP)沉默对番茄光合作用, 呼吸作用及抗逆性的影响. 浙江大学硕士学位论文, 浙江杭州, 2011. |
Liu Z M. Effects of Mitochondrial Uncoupled Protein Gene Silencing on Photosynthesis, Respiration and Stress Resistance of Tomato. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2011.(in Chinese with English abstract) | |
[13] |
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods an Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants. Mol Biol Evol, 2011, 28: 2731-2739.
doi: 10.1093/molbev/msr121 |
[14] | 苏丽艳. 番茄SlETR6基因的克隆及非生物胁迫下的表达分析. 华北农学报, 2019, 34(1): 23-29. |
Su L Y. Cloning and expression analysis of ethylene receptor gene SIETR6 in Solanum lycopersicum under abiotic stress. Acta Agric Boreali-Sin, 2019, 34(1): 23-29.(in Chinese with English abstract) | |
[15] | 段奥其, 冯凯, 刘洁霞, 徐志胜, 熊爱生. 芹菜NAC转录因子基因AgNAC1的克隆及其对非生物胁迫的响应. 园艺学报, 2018, 45: 1125-1135. |
Duan A Q, Feng K, Liu J X, Xu Z S, Xiong A S. Cloning and response to abiotic stress of NAC transcription gene AgNAC1 in Apium graveolens. Acta Hortic Sin, 2018, 45: 1125-1135 (in Chinese with English abstract) | |
[16] |
Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[17] |
Barreto P, Couñago R M, Arruda P. Mitochondrial uncoupling protein-dependent signaling in plant bioenergetics and stress response. Mitochondrion, 2020, 53: 109-120.
doi: S1567-7249(19)30343-5 pmid: 32439620 |
[18] |
Borecky J, Nogueira F, Oliveira K, Maia I G, Vercesi A E, Arruda P. The plant energy-dissipating mitochondrial systems: depicting the genomic structure and the expression profiles of the gene families of uncoupling protein and alternative oxidase in monocots and dicots. J Exp Bot, 2006, 57: 849-864.
pmid: 16473895 |
[19] | Hourton-Cabassa C, Matos A R, Zachowski A, Moreau F. The plant uncoupling protein homologues: a new family of energy- dissipating proteins in plant mitochondria. J Plant Biochem Physiol, 2004, 42: 283-290. |
[20] |
Ricquier D, Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J, 2000, 345: 161.
doi: 10.1042/bj3450161 |
[21] |
Costa A, Nantes I L, Ježek P, Leite A, Vercesi A E. Plant uncoupling mitochondrial protein activity in mitochondria isolated from tomatoes at different stages of ripening. J Bioenerg Biomembr, 1999, 31: 527-533.
pmid: 10653480 |
[22] |
Brandalise M, Maia I G, Boreck J, Vercesi A E, Arruda P. Overexpression of plant uncoupling mitochondrial protein in transgenic tobacco increases tolerance to oxidative stress. J Bioenerg Biomembr, 2003, 35: 203-209.
pmid: 13678271 |
[23] |
Czobor Á, Hajdinák P, Németh B, Piros B, Németh Á, Szarka A. Comparison of the response of alternative oxidase and uncoupling proteins to bacterial elicitor induced oxidative burst. PLoS One, 2019, 14: e0210592.
doi: 10.1371/journal.pone.0210592 |
[24] |
Calegario F F, Cosso R G, Fagian M M, Almeida F V, Jardim W F, Jezek P, Arruda P, Vercesi A E. Stimulation of potato tuber respiration by cold stress is associated with an increased capacity of both plant uncoupling mitochondrial protein (PUMP) and alternative oxidase. J Bioenerg Biomembr, 2003, 35: 211-220.
pmid: 13678272 |
[25] |
Armstrong A F, Badger M R, Day D A, Barthet M M, Smith P M, Millar A H, Whelan J, Atkin O K. Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration. Plant Cell Environ, 2010, 31: 1156-1169.
doi: 10.1111/j.1365-3040.2008.01830.x |
[26] | Mizuno N, Sugie A, Kobayashi F, Takumi S. Mitochondrial alternative pathway is associated with development of freezing tolerance in common wheat. J Plant Biochem Physiol, 2008, 165: 462-467. |
[27] | Ozawa K, Murayama S, Ai K U, Handa H. Overexpression of wheat mitochondrial uncoupling protein in rice plants confers tolerances to oxidative stresses promoted by exogenous hydrogen peroxide and low temperature. Mol Plant Breed, 2006, 18: 51-56. |
[28] |
Popov V N, Eprintsev A T, Maltseva E V. Activation of genes encoding mitochondrial proteins involved in alternative and uncoupled respiration of tomato plants treated with low temperature and reactive oxygen species. Russ J Plant Physiol, 2011, 58: 914-920.
doi: 10.1134/S1021443711040091 |
[29] |
Begcy K, Mariano E D, Mattiello L, Nunes A V, Mazzafera P, Maia I G, Menossi M. An Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants. PLoS One, 2011, 6: e23776.
doi: 10.1371/journal.pone.0023776 |
[30] | 石晓雯. 甘薯逆境胁迫和花青素合成相关microRNA及其靶基因的鉴定和分析. 山西农业大学硕士学位论文, 山西太谷, 2018. |
Shi X W. Identification and Analysis of microRNA and Their Target Genes Related to Anthocyanin Synthesis under Stress in Sweet Potato.MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2018.(in Chinese with English abstract) | |
[31] | 吴雨捷, 吴健, 王幼平, 孙勤富. WRKY转录因子在植物抗逆反应中的功能研究进展. 分子植物育种, 2020, 18: 7413-7422. |
Wu Y J, Wu J, Wang Y P, Sun Q F. Advances in functional studies of WRKY transcription factors in plant adverse response. Mol Plant Breed, 2020, 18: 7413-7422.(in Chinese with English abstract) |
[1] | ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995. |
[2] | ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027. |
[3] | BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079. |
[4] | GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114. |
[5] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[6] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[7] | WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198. |
[8] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[9] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[10] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[11] | WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655. |
[12] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[13] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[14] | MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164. |
[15] | JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98. |
|