Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 2100-2114.doi: 10.3724/SP.J.1006.2022.14110
• RESEARCH NOTES • Previous Articles Next Articles
GUO Jia-Xin(), LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei*()
[1] | Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci, 2005, 1012: 615-620. |
[2] |
Ge Y, Li Y, Lv D K, Bai X, Ji W, Cai H, Wang A X, Zhu Y M. Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors. Funct Integr Genomic, 2011, 11: 369-379.
doi: 10.1007/s10142-010-0191-2 |
[3] |
Wang G, Zhu Q G, Meng Q W, Wu C G. Transcript profiling during salt stress of young cotton (Gossypium hirsutum) seedlings via solexa sequencing. Acta Physiol Plant, 2012, 34: 107-115.
doi: 10.1007/s11738-011-0809-6 |
[4] |
廖欢, 侯振安. 盐碱胁迫对不同棉花品种生长及离子组含量分布的影响. 新疆农业科学, 2020, 57: 219-232.
doi: 10.6048/j.issn.1001-4330.2020.02.003 |
Liao H, Hou Z A. Effects of salt-alkali stress on the growth and ion group content distribution of different cotton varieties. Xinjiang Agric Sci, 2020, 57: 219-232. (in Chinese with English abstract) | |
[5] | Li Y Y, Zhao K, Ren J H, Ding Y L, Wu L L, Catherine O. Analysis of the dielectric constant of saline-alkali soils and the effect on radar backscattering coefficient: a case study of soda alkaline saline soils in western Jilin province using RADARSAT2 data. Sci World J, 2014, 56: 30-45. |
[6] |
Ashraf J, Zou D Y, Wang D Y, Malik W, Zhang Y P, Abid M A, Cheng H L, Yang Q H, Song G L. Recent insights into cotton functional genomics: progress and future perspectives. Plant Biotechnol J, 2018, 16: 699-713.
doi: 10.1111/pbi.12856 |
[7] |
Harris M A. Potential biochemical indicators of salinity tolerance in plants. Plant Sci, 2003, 166: 3-16.
doi: 10.1016/j.plantsci.2003.10.024 |
[8] |
Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar et cultivars. Environ Exp Bot, 2002, 47: 39-50.
doi: 10.1016/S0098-8472(01)00109-5 |
[9] |
de Lacerda C F, Cambraia J, Oliva M A, Ruiz H A, Prisco J T. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ Exp Bot, 2003, 49: 107-120.
doi: 10.1016/S0098-8472(02)00064-3 |
[10] |
Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002, 25: 239-250.
doi: 10.1046/j.0016-8025.2001.00808.x |
[11] |
Yang C, Xu H H, Wang L, Liu J, Shi D C, Wang D L. Comparative effects of salt-stress and alkaline-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 2009, 47: 79-86.
doi: 10.1007/s11099-009-0013-8 |
[12] |
Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
doi: 10.1016/j.plaphy.2010.08.016 |
[13] |
Ahmad P, Jaleel C A, Salem M A, Nabi G, Sharma S. Roles of enzymatic and nonenzymatic antioxidants in pants during abiotic stress. Crit Rev Biotechnol, 2010, 30: 161-175.
doi: 10.3109/07388550903524243 |
[14] | Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot, 2007, 592: 206-216. |
[15] |
Li H W, Zang B S, Deng X W, Wang X P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 2011, 234: 1007-1018.
doi: 10.1007/s00425-011-1458-0 |
[16] |
Leshem Y, Melamed B N, Cagnac O, Ronen G, Levine A. Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2 containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA, 2006, 103: 18008-18013.
doi: 10.1073/pnas.0604421103 |
[17] |
Bino R J, Hall R D, Fiehn O, Kopka J, Saito K, Draper J, Nikolau B J, Mendes P, Roessner-Tunali U, Beale M H. Potential of metabolomics as a functional genomics tool. Trends Plant Sci, 2004, 9: 418-425.
doi: 10.1016/j.tplants.2004.07.004 |
[18] |
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[19] |
Ma S Q, Lyu L, Meng C, Zhang C S, Li Y Q. Integrative analysis of the and transcriptome of sorghum bicolor reveals dynamic changes in flavonoids accumulation under saline-alkali stress. J Agric Food Chem, 2020, 68: 14781-14789.
doi: 10.1021/acs.jafc.0c06249 |
[20] |
Gui G, Lyu C H, Stevanato P, Li R, Liu H, Yu L, Wang Y. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. Int J Mol Sci, 2019, 20: 5910-5928.
doi: 10.3390/ijms20235910 |
[21] |
Guo R, Shi L X, Yan C R, Zhong X, Gu F X, Liu Q, Xia X, Li H. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol, 2017, 17: 41-53.
doi: 10.1186/s12870-017-0994-6 |
[22] |
Guo R, Yang Z Z, Li F, Yan C R, Zhong X L, Liu Q, Xia X, Li H R, Zhao L. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biol, 2015, 15: 170-182.
doi: 10.1186/s12870-015-0546-x |
[23] |
Ampofo-Asiama J, Baiye V M M, Hertog M L A T M, Waelkens E, Geeraerd A H, Nicolai B M. The metabolic response of cultured tomato cells to low oxygen stress. Plant Biol, 2014, 16: 594-606.
doi: 10.1111/plb.12094 |
[24] |
Kim J K, Bamba T, Harada K, Fukusaki E, Kobayashi A. Time-coursemetabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot, 2006, 58: 415-424.
doi: 10.1093/jxb/erl216 |
[25] |
Rizhsky L, Liang H J, Shuman J, Shulaev V, Davletova S. When defense pathways collide the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol, 2004, 134: 1683-1696.
doi: 10.1104/pp.103.033431 |
[26] |
Hodges D M, Delong J M, Prange F R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207: 604-611.
doi: 10.1007/s004250050524 |
[27] |
Abbas G, Saqib M, Akhtar J, Haq M A U. Interactive effects of salinity and iron deficiency on different rice genotypes. J Plant Nutr Soil Sci, 2015, 178: 306-311.
doi: 10.1002/jpln.201400358 |
[28] |
Yang C, Chong J, Li C, Kim C, Shi D, Wang D. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil, 2007, 294: 263-276.
doi: 10.1007/s11104-007-9251-3 |
[29] |
Lokhande V H, Nikam T D, Patade V Y, Ahire M L, Suprasanna P. Efects of optimal and supra-optimal salinity stress on antioxidative defense, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult, 2011, 104: 41-49.
doi: 10.1007/s11240-010-9802-9 |
[30] | 孙叶烁, 张国新, 丁守鹏, 姚玉涛, 丁冯洁. 盐胁迫对樱桃番茄风味品质的影响. 核农学报, 2022, 36: 838-844. |
Sun Y S, Zhang G X, Ding S P, Yao Y T, Ding F J. Effects of salt stress on flavor compounds of cherry tomato fruits. J Nucl Agric Sci, 2022, 36: 838-844. (in Chinese with English abstract) | |
[31] |
Hare P D, Cress W A, Staden J V. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ, 1998, 21: 535-553.
doi: 10.1046/j.1365-3040.1998.00309.x |
[32] |
Liu X, Yang C, Zhang L, Li L, Liu S, Yu J, You L, Zhou D, Xia C, Zhao J. Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology, 2011, 20: 1422-1431.
doi: 10.1007/s10646-011-0699-9 |
[33] |
Gagneul D, Aïnouche A, Duhaze C. A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol, 2007, 144: 1598-1611.
pmid: 17468212 |
[34] | Brosché M, Vinocur B, Alatalo E R, Lamminmäki A, Teichmann T, Ottow E A, Djilianov D, Afif D, Bogeat-Triboulot M B, Altman A, Polle A, Dreyer E, Rudd S, Paulin L, Auvinen P, Kangasjärvi J. Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol, 2005, 6: 681-689. |
[35] |
Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot, 2015, 115: 433-447.
doi: 10.1093/aob/mcu239 |
[36] |
Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 463-499.
doi: 10.1146/annurev.arplant.51.1.463 |
[37] |
Flowers T J, Colmer T D. Plant salt tolerance: adaptations in halophytes. Ann Bot, 2015, 115: 327-331.
doi: 10.1093/aob/mcu267 |
[38] | Wang Y, Stevanato P, Yu L, Zhao H J, Sun X W, Sun F, Li J, Geng G. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. J Plant Res, 2017, 1306: 1079-1093. |
[39] | Fougère F, Rudulier D L, Streeter J G. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, Bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol, 1991, 964: 1228-1236. |
[40] | Kaplan F, Kopka J, Haskell D W, Wei Z, Schiller K C, Gatzke N, Sun D Y, Charles L G. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol, 2004, 1364: 4159-4168. |
[41] | Rosa M, Prado C, Podazza G, Interdonato R, Pardo F E. Soluble sugars-metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav, 2009, 4: 383-393. |
[42] |
Yang Y. Guo Y. Elucidating the molecular mechanisms mediating plant saltstress responses. New Phytol, 2018, 217: 523-539.
doi: 10.1111/nph.14920 |
[43] |
Singh M, Kumar J, Singh S, Singh V P, Prasad S M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Bio/Technol, 2015, 14: 407-426.
doi: 10.1007/s11157-015-9372-8 |
[44] | Wang L, Li G, Wei S, Li L, Li J. Effects of exogenous glucose and sucrose on photosynthesis in triticale seedlings under salt stress. Photosynthetica, 2019, 571: 286-294. |
[45] | Less H, Galili G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol, 2008, 147: 316-330. |
[46] |
Forde B G, Lea P J. Glutamate in plants: metabolism, regulation, and signaling. J Exp Bot, 2007, 58: 2339-2358.
doi: 10.1093/jxb/erm121 |
[47] |
Kirma M, Araujo W L, Fernie A R, Galili G. The multifaceted role of aspartate-family amino acids in plant metabolism. J Exp Bot, 2012, 63: 4995-5001.
doi: 10.1093/jxb/ers119 |
[48] |
Wang H, Ahan J, Wu Z H, Shi D C, Liu B, Yang C W. Alteration of nitrogen metabolism in rice variety ‘Nipponbare' induced by alkali stress. Plant Soil, 2012; 355: 131-147.
doi: 10.1007/s11104-011-1086-2 |
[49] |
Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci, 1998, 3: 389-395.
doi: 10.1016/S1360-1385(98)01311-9 |
[50] |
Yang C, Chong J, Li C, Kim C, Shi D, Wang D. Osmotic adjustment and ion balance traits of an alkaline resistant halophyte Kochia sieversiana during adaptation to saline and alkaline conditions. Plant Soil, 2007, 294: 263-276.
doi: 10.1007/s11104-007-9251-3 |
[51] |
Yang C W, Xu H H, Wang L L, Liu J, Shi D C, Wang D L. Comparative effects of salt stress and alkaline-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 2009, 47: 79-86.
doi: 10.1007/s11099-009-0013-8 |
[52] |
Ma B, Chen J, Zheng H Y, Fang T, Ogutu C, Li S H, Han Y P, Wu B H. Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chem, 2015, 172: 86-91.
doi: 10.1016/j.foodchem.2014.09.032 |
[53] |
Chen W C, Cui P J, Sun H Y, Guo W Q, Yang C W, Jin H, Fang B, Shi D C. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.). Ind Crops Prod, 2009, 30: 351-358.
doi: 10.1016/j.indcrop.2009.06.007 |
[54] |
Fu H J, Yu H Y, Li T X, Wu Y. Effect of cadmium stress on inorganic and organic components in xylem sap of high cadmium accumulating rice line (Oryza sativa L.). Ecotoxicol Environ Saf, 2019, 168: 330-337.
doi: 10.1016/j.ecoenv.2018.10.023 |
[55] |
Zhou L, Yu J, Yan P, Huang B. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). Physiol Plant, 2017, 159: 42-58.
doi: 10.1111/ppl.12483 pmid: 27507681 |
[56] | Baron K, Stasolla C. The role of polyamines during in vivo and in vitro development. In Vitro Cell Deve Biol Plant, 2008, 44: 384-395. |
[57] | Bueno M, Cordovilla M P. Polyamines in Halophytes. Front Recent Dev Plant Sci, 2019, 10: 439-445. |
[58] |
辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响. 作物学报, 2021, 47: 2001-2011.
doi: 10.3724/SP.J.1006.2021.04238 |
Xin Z Q, Dai H H, Xin Y F, He X, Xie H Y, Wu N B. Effects of exogenous 2,4-Epibrassinolide on nitrogen metabolism and TAs metabolism of Atropa belladonna L. under NaCl stress. Acta Agron Sin, 2021, 47: 2001-2011. (in Chinese with English abstract) |
[1] | KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179. |
[2] | LI Ming-Jiang, LEI Jian-Feng, ZULIPIYE·Tuoheniyazi, DAI Pei-Hong, LIU Chao, LIU Xiao-Dong. Cloning and functional verification of GhIQM1 gene of cotton in response to Verticillium wilt [J]. Acta Agronomica Sinica, 2022, 48(9): 2265-2273. |
[3] | ZHU Ling-Xiao, SONG Shi-Jia, LI Hao-Ran, SUN Hong-Chun, ZHANG Yong-Jiang, BAI Zhi-Ying, ZHANG Ke, LI An-Chang, LIU Lian-Tao, LI Cun-Dong. Screening of low nitrogen tolerant cultivars based on low nitrogen tolerance comprehensive index at seeding stage in cotton [J]. Acta Agronomica Sinica, 2022, 48(7): 1800-1812. |
[4] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[5] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[6] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[7] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[8] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[9] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[10] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[11] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[12] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[13] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[14] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[15] | DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592. |
|