Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (8): 1581-1592.doi: 10.3724/SP.J.1006.2021.04160


Response of rhizosphere bacterial community diversity to salt stress in peanut

DAI Liang-Xiang1(), XU Yang1, ZHANG Guan-Chu1, SHI Xiao-Long2, QIN Fei-Fei1, DING Hong1,*(), ZHANG Zhi-Meng1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
  • Received:2020-07-17 Accepted:2021-01-13 Online:2021-08-12 Published:2021-02-18
  • Contact: DING Hong,ZHANG Zhi-Meng E-mail:liangxiangd@163.com;dingpeanut@163.com;qinhdao@126.com
  • Supported by:
    National Natural Science Foundation of China(31971856);National Natural Science Foundation of China(31971854);National Natural Science Foundation of China(31901574);Modern Agricultural Industry Technical System of Shandong Province(SDAIT-04-06);Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018B05)


To characterize the peanut rhizosphere bacteria community in response to salt stress, a pot experiment was performed with different salt concentrations. The peanut rhizosphere soils at flowering and mature stages were sampled to extract DNA for constructing bacterial 16S rRNA gene library, and then high-throughput sequencing was performed for sequencing and bioinformatics analysis. The results showed that Proteobacteria, Actinobacteria, Patescibacteria, Acidobacteria, and Chloroflexi were the dominant phyla, and the orders Saccharimonadales, Betaproteobacteria, Sphingomonadales, Gemmatimonadales, and Rhizobiales were dominated in the peanut rhizosphere soils. Comparisons of the bacterial community structure of peanuts revealed that the relative abundance of Proteobacteria dramatically increased, while that of Actinobacteria decreased in salt-treated soils, and the fluctuation increased with the increase of the salt concentration. Moreover, applying calcium fertilizer under salt stress increased the abundance of Betaproteobacteria, Gemmatimonadales, and Sphingomonadales, which were affected by salt stress, growth stages, and exogenous calcium application. Cluster analysis revealed that the dominant bacteria of soil groups with high salt concentration were similar and clustered together, while the soil samples of the same growth period were similar and clustered together according to the bacterial structure at the genus level under non-salt stress conditions. Bacterial community structure differed in the growth stages and soil salt concentrations, whereas the differences of soil groups with or without calcium application were relatively small. Function prediction analysis indicated that the sequences related to secondary metabolites, glycan biosynthesis and metabolism, and amino acid and lipid metabolism were enriched in high salt-treated soils. The functional groups increased significantly during the fast-growth period, low salt stress, and basal calcium fertilizer treatments, which may play an important role on the growth and stress response in peanut. This study of microbial communities could lay the foundation for future improvement of stress tolerance of peanuts via modification of the soil microbes.

Key words: peanut (Arachis hypogaea), salt stress, rhizosphere, soil microbial community, 16S rRNA gene

Table 1

Effects of calcium fertilizer application on peanut yield and its components under salt stress"

Kernel rate to pod (%)
100-pod mass (g)
100-kernel mass (g)
Yield (kg hm-2)
CK-HCK 64.70 a 164.67 b 88.78 a 5681.1 b
CY0-HCY0 65.42 a 180.19 a 89.59 a 7189.5 a
CY1-HCY1 65.52 a 143.36 c 72.88 b 3870.6 c
CY2-HCY2 61.15 b 100.95 d 53.09 c 2904.6 d

Table 2

Sequencing quantity of each sample after removing doubtful sequences"

有效序列数目Seq_num 碱基数
最短序列长度Min_length 最长序列长度Max_length
CK 118,642.0 52,865,549 445.7210 222.00 482.00
CY0 174,409.0 78,663,396 451.0489 219.00 482.00
CY1 157,500.0 71,203,933 452.0910 201.50 482.00
CY2 168,392.0 75,848,924 450.3773 138.00 482.00
HCK 133,998.0 60,111,521 448.5154 200.00 482.00
HCY0 154,447.5 69,251,925 448.3878 182.00 482.00
HCY1 152,938.5 68,605,609 448.5900 215.50 482.00
HCY2 127,455.5 57,443,681 450.6802 190.50 482.00

Fig. 1

Venn diagram of OTUs in peanuts soil samples of under different treatments Treatments are the same as those given in Table 1."

Fig. 2

Rarefaction curves Treatments are the same as those given in Table 1."

Table 3

Alpha diversity index of rhizosphere soil samples in each treatment"

Richness index
Sequencing depth
Diversity index
ACE chao coverage Shannon Simpson sobs
CK 3448.5655 3522.3969 0.9894 6.9797 0.002,170 3113.00
CY0 3661.0442 3715.9220 0.9943 7.1144 0.001,946 3428.50
CY1 3599.9666 3662.6245 0.9955 6.9930 0.002,021 3358.00
CY2 3684.9950 3762.5793 0.9930 6.9466 0.002,337 3364.00
HCK 3548.6551 3594.1464 0.9895 6.5863 0.005,682 3170.50
HCY0 3581.6755 3618.1750 0.9924 6.5738 0.005,456 3246.50
HCY1 3658.1430 3695.8227 0.9917 6.8209 0.003,160 3305.00
HCY2 3562.4287 3633.2745 0.9890 6.9478 0.002,281 3182.50

Fig. 3

Microflora structure from all samples at the phylum level and the differences of dominant bacteria groups Treatments are the same as those given in Table 1. *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 levels, respectively."

Fig. 4

Histogram and heatmap of microflora structure from samples at the level of order and the differences of dominant bacteria groups Treatments are the same as those given in Table 1. *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 levels, respectively."

Fig. 5

Histogram and heatmap of microflora structure from ten samples at the level of genus Treatments are the same as those given in Table 1."

Fig. 6

Beta diversity analysis Treatments are the same as those given in Table 1."

Fig. 7

KEGG analysis of microbial functional in soil microbial flora Treatments are the same as those given in Table 1."

[1] Jamil A, Riaz S, Ashraf M, Foolad M R. Gene expression profiling of plants under salts tress. Crit Rev Plant Sci, 2011,30:435-458.
doi: 10.1080/07352689.2011.605739
[2] 贾敬敦, 张富. 依靠科技创新推进我国盐碱地资源可持续利用. 中国农业科技导报, 2014,16(5):1-7.
Jia J D, Zhang F. Sustainable utilization of saline-alkali land resources through scientific and technological innovation in China. J Agric Sci Technol, 2014,16(5):1-7 (in Chinese with English abstract).
[3] 姜焕焕. 耐盐碱解磷菌与磷石膏联用改良盐碱土的效果与机制. 哈尔滨工业大学博士学位论文, 黑龙江哈尔滨, 2019.
Jiang H H. Saline-alkali Soil Remediation by the Combined Application of Halotolerant Phosphate Solubilizing Microorganism and Rock Phosphate. PhD Dissertation of Harbin Institute of Technology, Harbin, Heilongjiang, China, 2019 (in Chinese with English abstract).
[4] 张旭龙, 马淼, 吴振振, 张志政, 高睿, 石灵玉. 不同油葵品种对盐碱地根际土壤酶活性及微生物群落功能多样性的影响. 生态学报, 2017,37:1659-1666.
Zhang X L, Ma M, Wu Z Z, Zhang Z Z, Gao R, Shi L Y. Effects of Helianthus annuus varieties on rhizosphere soil enzyme activities and microbial community functional diversity of saline-alkali land in Xinjiang. Acta Ecol Sin, 2017,37:1659-1666 (in Chinese with English abstract).
[5] Zhang Q, Yu X. Allelopathy in replant problem in forest soil. Allelopathy J, 2001,8:51-64.
[6] Kielak A, Pijl A S, Veen J A, Kowalchuk G A. Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbiol Ecol, 2008,63:372-382.
doi: 10.1111/j.1574-6941.2007.00428.x pmid: 18205817
[7] Nelson E B. Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol, 2004,42:271-309.
pmid: 15283668
[8] Buyer J S, Roberts D P, Russek-Cohen E. Microbial community structure and function in the spermosphere as affected by soil and seed type. Can J Microbiol, 1999,45:138-144.
doi: 10.1139/w98-227
[9] 叶淑红, 王艳, 万惠萍, 吉云秀, 林学政, 丁德文. 辽东湾湿地微生物量与土壤酶的研究. 土壤通报, 2006,37:897-900.
Ye S H, Wang Y, Wan H P, Ji Y X, Lin X Z, Ding D W. Wetland microbial biomass and soil enzyme activities in Liaodong bay. Chin J Soil Sci, 2006,37:897-900 (in Chinese with English abstract).
[10] 李凤霞, 王学琴, 郭永忠, 许兴, 杨建国, 季艳清. 宁夏不同类型盐渍化土壤微生物区系及多样性. 水土保持学报, 2011,25(5):107-111.
Li F X, Wang X Q, Guo Y Z, Xu X, Yang J G, Ji Y Q. Microbial flora and diversity in different types of saline-alkali soilin Ningxia. J Soil Water Conserv, 2011,25(5):107-111 (in Chinese with English abstract).
[11] 田家怡, 李甲亮, 陈印平, 李建庆, 于祥. 黄河三角洲外来入侵物种米草对底泥微生物群落的影响. 海洋湖沼通报, 2009, (4):157-162.
Tian J Y, Li J L, Chen Y P, Li J Q, Yu X. Effect on the sludge microbial communities by alien invasive species Spartina spp. in yellow river delta. Trans Oceanol Limnol, 2009, (4):157-162 (in Chinese with English abstract).
[12] 王震宇, 辛远征, 李锋民, 高冬梅. 黄河三角洲退化湿地微生物特性的研究. 中国海洋大学学报, 2009,39:1005-1012.
Wang Z Y, Xin Y Z, Li F M, Gao D M. Microbial community characteristics in a degraded wetland of the Yellow River Delta. Period Ocean Univ China, 2009,39:1005-1012 (in Chinese with English abstract).
[13] 王文铜. 花生根际土壤细菌群落结构分析. 山东农业大学博士学位论文, 山东泰安, 2012.
Wang W T. Analysis of Bacterial Community Structure in Rhizosphere Soil of Peanut. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2012 (in Chinese with English abstract).
[14] 吴凤芝, 包静, 刘淑芹. 盐胁迫对黄瓜根际土壤细菌群落结构和生长发育的影响. 园艺学报, 2010,37:741-748.
Wu F Z, Bao J, Liu S Q. Effects of salt stress on rhizospheric soil bacterial community structure and cucumber yield. Acta Hortic Sin, 2010,37:741-748 (in Chinese with English abstract).
[15] 朱泓, 王小敏, 黄涛, 吴文龙, 李维林. NaCl胁迫对滨梅根际细菌群落多样性及优势菌群的影响. 南京林业大学学报(自然科学版), 2017,41(4):49-54.
Zhu H, Wang X M, Huang T, Wu W L, Li W L. Effect of NaCl stress on bacterial community diversity and core microbiome in rhizosphere and bulk soil of beach plum (Prunus maritima Marshall). J Nanjing For Univ (Nat Sci Edn), 2017,41(4):49-54 (in Chinese with English abstract).
[16] Baumann K, Dignac M F, Rumpel C, Bardoux G, Sarr A, Steffens M, Maron P A. Soil microbial diversity affects soil organic matter decomposition in a silty grass land soil. Biogeochemistry, 2013,114:201-212.
doi: 10.1007/s10533-012-9800-6
[17] Philippot L, Spor A, Hénaul T C, Bru D, Bizouard F, Jones C M, Sarr A, Maron P. Loss in microbial diversity affects nitrogen cycling in soil. ISME J, 2013,7:1609-1619.
doi: 10.1038/ismej.2013.34 pmid: 23466702
[18] 马晓梅, 尹林克, 陈理. 塔里木河干流胡杨和柽柳根际土壤微生物及其垂直分布. 干旱区研究, 2008,25(2):183-189.
Ma X M, Yin L K, Chen L. Study on vertical distribution of microorganiss in rhizosphere of Populous euphratica and Tamarix sp. in the lower reaches of the Tarim river, Xinjiang. Arid Zone Res, 2008,25(2):183-189 (in Chinese with English abstract).
[19] 林学政, 陈靠山, 何培青, 沈继红, 黄晓航. 种植盐地碱蓬改良滨海盐渍土对土壤微生物区系的影响. 生态学报, 2006,26:801-807.
Lin X Z, Chen K S, He P Q, Shen J H, Huang X H. The effects of Suaeda salsa L. planting on the soil microflora in coastal saline soil. Acta Ecol Sin, 2006,26:801-807 (in Chinese with English abstract).
[20] 张智猛, 慈敦伟, 张冠初, 丁红, 杨吉顺, 戴良香, 张岱. 山东地区盐碱土花生种子际土壤微生物群落结构的研究. 微生物学报, 2017,57:582-596.
Zhang Z M, Ci D W, Zhang G C, Ding H, Yang J S, Dai L X, Zhang D. Diversity of microbial community structure in the spermosphere of saline-alkali soil in Shandong area. Acta Microbiol Sin, 2017,57:582-596 (in Chinese with English abstract)
[21] 戴良香, 康涛, 慈敦伟, 丁红, 徐扬, 张智猛, 张岱, 李文金. 黄河三角洲盐碱地花生根层土壤菌群结构多样性. 生态学报, 2019,39:7169-7178.
Dai L X, Kang T, Ci D W, Ding H, Xu Y, Zhang Z M, Zhang D, Li W J. Comparison of the microbial community in the rhizosphere of peanuts between salinealkali and non-saline soil at different soil depths and intercropping cultivation in the Yellow River Delta. Acta Ecol Sin, 2019,39:7169-7178.
[22] Yongge Y, Brune C, Kleunen M, Li J M, Jin Z X. Salinity-induced changes in the rhizosphere microbiome improve salt tolerance of Hibiscus hamabo. Plant Soil, 2019,443:525-537.
doi: 10.1007/s11104-019-04258-9
[23] 赵娇, 谢慧君, 张建. 黄河三角洲盐碱土根际微环境的微生物多样性及理化性质分析. 环境科学, 2020,41:1449-1455.
Zhao J, Xie H J, Zhang J. Microbial diversity and physicochemical properties of rhizosphere microenvironment in saline-alkali soils of the Yellow River Delta. Environ Sci, 2020,41:1449-1455 (in Chinese with English abstract).
[24] 郑微. 天津不同盐度土壤微生物群落结构特征及其适应机理研究. 天津师范大学博士学位论文, 天津, 2018.
Zheng W. Study on the Structural Characteristics and Adaptation Mechanism of Microbial Community in Different Salinity Soils in Tianjin. PhD Dissertation of Tianjin Normal University, Tianjin, China, 2018 (in Chinese with English abstract).
[25] 涂勇, 杨文钰, 刘卫国, 雍太文, 江连强, 王小春. 大豆与烤烟不同套作年限对根际土壤微生物数量的影响. 作物学报, 2015,41:733-742.
Tu Y, Yang W Y, Liu W G, Yong T W, Jiang L Q, Wang X C. Effects of relay strip intercropping years between flue-cured tobacco and soybean on rhizospheric microbes quantities. Acta Agron Sin, 2015,41:733-742 (in Chinese with English abstract).
[26] Cui J, Li Y, Wang C, Kim K S, Wang T, Liu S. Characteristics of the rhizosphere bacterial community across different cultivation years in saline-alkaline paddy soils of Songnen Plain of China. Can J Microbiol, 2018,64:925-936.
doi: 10.1139/cjm-2017-0752
[27] Yu H, Si P, Shao W, Qiao X, Yang X, Gao D, Wang Z. Response of enzyme activities and microbial communities to soil amendment with sugar alcohols. Microbiologyopen, 2016,5:604-615.
doi: 10.1002/mbo3.2016.5.issue-4
[28] Kragelund C, Levantesi C, Borger A. Identity abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiol Ecol, 2007,59:671-682.
pmid: 17381520
[29] Hill V R, Kahler A M, Jothikumar N, Johnson T B, Hahn D, Cromeans T L. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water sample. Appl Environ Microbiol, 2007,73:4218-4225.
doi: 10.1128/AEM.02713-06
[30] 葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征. 生态环境学报, 2020,29:141-148.
Ge Y L, Sun T. Soil microbial community structure and diversity of potato in rhizosphere and non-rhizosphere soil. Ecol Environ Sci, 2020,29:141-148 (in Chinese with English abstract).
[31] 覃潇敏, 郑毅, 汤利, 龙光强. 玉米与马铃薯间作对根际微生物群落结构和多样性的影响. 作物学报, 2015,41:919-928.
Qin X M, Zheng Y, Tang L, Long G Q. Effects of maize and potato intercropping on rhizosphere microbial community structure and diversity. Acta Agron Sin, 2015,41:919-928 (in Chinese with English abstract).
[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[3] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
[4] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[5] LIU Ya-Wen, ZHANG Hong-Yan, CAO Dan, LI Lan-Zhi. Prediction of drought and salt stress-related genes in rice based on multi-platform gene expression data [J]. Acta Agronomica Sinica, 2021, 47(12): 2423-2439.
[6] Hui LI, De-Fang LI, Yong DENG, Gen PAN, An-Guo CHEN, Li-Ning ZHAO, Hui-Juan TANG. Cloning of the key enzyme gene HcTPPJ in trehalose biosynthesis of kenaf and its expression in response to abiotic stress in kenaf [J]. Acta Agronomica Sinica, 2020, 46(12): 1914-1922.
[7] LI Run-Zhi, JIN Qing, LI Zhao-Hu, WANG Ye, PENG Zhen, DUAN Liu-Sheng. Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis Fisch during seed germination and seedling growth stages [J]. Acta Agronomica Sinica, 2020, 46(11): 1810-1816.
[8] CHEN Xiao-Jing,LIU Jing-Hui,YANG Yan-Ming,ZHAO Zhou,XU Zhong-Shan,HAI Xia,HAN Yu-Ting. Effects of salt stress on physiological indexes and differential proteomics of oat leaf [J]. Acta Agronomica Sinica, 2019, 45(9): 1431-1439.
[9] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
[10] TIAN Wen-Gang,ZHU Xue-Feng,SONG Wen,CHENG Wen-Han,XUE Fei,ZHU Hua-Guo. Ectopic expression of S-adenosylmethionine decarboxylase (GhSAMDC1) in cotton enhances salt tolerance in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2019, 45(7): 1017-1028.
[11] Hua-Ying MAO,Feng LIU,Wei-Hua SU,Ning HUANG,Hui LING,Xu ZHANG,Wen-Ju WANG,Cong-Na LI,Han-Chen TANG,Ya-Chun SU,You-Xiong QUE. A Sugarcane Phosphatidylinositol Transfer Protein Gene ScSEC14 Responds to Drought and Salt Stresses [J]. Acta Agronomica Sinica, 2018, 44(6): 824-835.
[12] Guang-Long ZHU,Cheng-Yu SONG,Lin-Lin YU,Xu-Bing CHEN,Wen-Fang ZHI,Jia-Wei LIU,Xiu-Rong JIAO,Gui-Sheng ZHOU. Alleviation Effects of Exogenous Growth Regulators on Seed Germination of Sweet Sorghum under Salt Stress and Its Physiological Basis [J]. Acta Agronomica Sinica, 2018, 44(11): 1713-1724.
[13] SHA Han-Jing, HU Wen-Cheng, JIA Yan, WANG Xin-Peng, TIAN Xue-Fei, YU Mei-Fang, and ZHAO Hong-Wei*. Effect of Exogenous Salicylic Acid, Proline and γ-Aminobutyric Acid on Yield of Rice under Salt Stress [J]. Acta Agron Sin, 2017, 43(11): 1677-1688.
[14] WANG Cui-Ping,HUA Xue-Jun,LIN Bin,LIU Ai-Hua. Evolutionary Fate and Expression Pattern of Genes Related to Proline Biosynthesis in Brassica napus [J]. Acta Agron Sin, 2017, 43(10): 1480-1488.
[15] CHEN Hong-Fei, PANG Xiao-Min, ZHANG Ren, ZHANG Zhi-Xing, XU Qian-Hua, FANG Chang-Xun, LI Jing-Yong, LIN Wen-Xiong . Effects of Different Irrigation and Fertilizer Application Regimes on Soil Enzyme Activities and Microbial Functional Diversity in Rhizosphere of Ratooning Rice [J]. Acta Agron Sin, 2017, 43(10): 1507-1517.
Full text



No Suggested Reading articles found!