Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (8): 1563-1580.doi: 10.3724/SP.J.1006.2021.02063

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Application of continuous wavelet analysis to laboratory reflectance spectra for the prediction of grain amylose content in rice

ZHANG Xiao1(), YAN Yan1, WANG Wen-Hui1, ZHENG Heng-Biao1, YAO Xia1,2, ZHU Yan1, CHENG Tao1,2,*()   

  1. 1National Engineering and Technology Center for Information Agriculture (NETCIA), Nanjing Agricultural University/Jiangsu Key Laboratory for Information Agriculture/Key Laboratory of Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs/Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing 210095, Jiangsu, China
    2Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, Jiangsu, China
  • Received:2020-09-01 Accepted:2021-01-13 Online:2021-08-12 Published:2021-02-25
  • Contact: CHENG Tao E-mail:13675139398@163.com;tcheng@njau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300601);National Natural Science Foundation of China(41871259)

Abstract:

Grain amylose content (GAC) is a critical factor affecting the cooking and eating quality of rice. Remote sensing technology can be used to obtain amylose content timely and accurately, which are useful for the establishment and implementation of corresponding cultivation to improve the quality of rice taste. As an effective method for spectral feature extraction, continuous wavelet analysis (CWA) has been widely used to estimate crop physiological and biochemical parameters. However, none of previous studies have used CWA for crop quality estimation and investigated the application of CWA to dried grain powder reflectance spectra acquired in the laboratory for absorption feature extraction. The method was conducted in four steps as below: continuous wavelet transforms, extraction of sensitive wavelet features, analysis of common features, and construction of predictive models. Finally, we estimated GAC on grain scale and compared the performance of different spectral features. The results were as follows: (1) The performance of sensitive wavelet features was better vegetation indices and the independent validation confirmed this superiority; (2) The GAC could be estimated from WF2037,6 with a high R2= 0.59 and the accuracy assessed with validation data from an independent year was RMSE = 1.51%, Bias = 0.44%, RRMSE = 23.50%. The results derived from dried grain powder could be applied to dried panicles (R2= 0.62, RMSE = 1.49%, Bias = -0.17%, RRMSE = 25.76%). This study determined the optimal amylose-sensitive wavelet feature WF2037,6. It can provide new insight into GAC estimation with hyperspectral remote sensing and this method would advance the understanding of rice quality estimation from reflectance spectra at grain and canopy levels.

Key words: rice powder, rice panicle, reflectance spectra, grain amylose content, spectral index, continuous wavelet analysis

Table 1

Number of samples for the spectral measurements of dried grain powder and panicles"

数据集
Data set
年份
Year
样本数量
Number of samples
目的
Objective
米粉光谱Dried grain powder spectra 2018 48 建模集Modeling set
米粉光谱Dried grain powder spectra 2017 16 验证集Validation set
干穗光谱Dried panicle spectra 2018 29 建模集Modeling set
干穗光谱Dried panicle spectra 2018 19 验证集Validation set

Fig. 1

Laboratory measurements of spectral reflectance over dried grain powder A: testing system; B: visual field of sensor."

Fig. 2

Laboratory measurements of spectral reflectance over dried rice panicles A: testing system; B: visual field of sensor."

Fig. 3

Dried grain powder reflectance spectra (A), wavelet coefficient spectra at different scales (B), and correlation scalogram for the identification of significant wavelet features related to GAC (C)"

Fig. 4

Change trend of nitrogen content in leaf (A), stem (B), and panicle (C) during multiple growth stages N0: 0 kg hm-2 of N fertilizer; N1: 210 kg hm-2 of N fertilizer; N2: 300 kg hm-2 of N fertilizer; N3: 390 kg hm-2 of N fertilizer."

Table 2

Statistical characteristics of GAC in rice"

年份
Year
样本数
No. of samples
最小值
Min. (%)
最大值
Max. (%)
平均值
Mean (%)
标准差
SD (%)
2017 48 3.13 11.21 6.27 2.19
2018 48 2.10 9.81 5.65 2.21

Fig. 5

Effects of different nitrogen application rates, planting techniques, and rice varieties on grain amylose content in rice N0: 0 kg hm-2 of N fertilizer; N1: 210 kg hm-2 of N fertilizer; N2: 300 kg hm-2 of N fertilizer; N3: 390 kg hm-2 of N fertilizer. T1: blanket seedling transplanting; T2: tray seedling transplanting. V1: Nanjing 9108; V2: Yongyou 2640."

Fig. 6

Reflectance spectra of rice organs under the same treatment at full ripening stage The black arrows downward indicate the wavelength locations of absorption features for dry matter constituents."

Table 3

Absorption features that have been related to particular chemical constituents in the shortwave infrared region [28]"

波长
Wavelength (nm)
干物质
Dry matter constituent
波长
Wavelength (nm)
干物质
Dry matter constituent
1690 木质素、蛋白质 Lignin, protein 2060 蛋白质、氮 Protein, nitrogen
1820 纤维素 Cellulose 2130 蛋白质 Protein
1900 淀粉 Starch 2180 蛋白质、氮 Protein, nitrogen
1980 蛋白质 Protein 2240 蛋白质 Protein
2000 淀粉 Starch 2300 蛋白质、氮Protein, nitrogen

Table 4

Coefficient of determination (R2) values for the relationships of NDAI with GAC at post-heading stages in rice"

生育时期
Growth stage
米粉Dried grain powder 干穗Dried panicle
光谱参数
Spectral feature
决定系数
R2
光谱参数
Spectral feature
决定系数
R2
乳熟期Milk stage NDAI1760,1585 0.59**
蜡熟期Dough ripening stage NDAI1505,1455 0.61** NDAI1835,1810 0.60**
黄熟期Yellow ripening stage NDAI1345,1210 0.39** NDAI2265,2135 0.70**
完熟期Full ripening stage NDAI1600,1430 0.49** NDAI1290,1175 0.64**

Fig. 7

Contour maps of R2 for the linear relationships between NDAI and GAC A: dried grain powder; B: dried panicle."

Fig. 8

Relationships between GAC and NDAI determined from (A) dried grain powder at dough ripening stage and (B) dry panicles at yellow ripening stage"

Fig. 9

Correlations scalograms for the identification of significant wavelet features of dried grain powder related to GAC A: dough ripening stage; B: yellow ripening stage; C: full ripening stage; D: reflectance spectra of dried grain powder. The blue box represents the same sensitive wavelet features at different growth stages, while the blue dashed lines represent the corresponding wavelengths. The black downward arrows on the top of the figure indicate the wavelength locations of absorption features for starch."

Table 5

Coefficient of determination (R2) values for the relationships of wavelet features determined from dried grain powder spectra with GAC at post-filling stages"

生育时期
Growth stage
小波系数
Wavelet feature
决定系数
R2
蜡熟期 WF1380,3 0.62**
Dough ripening stage WF2037,6 0.59**
黄熟期 WF1812,3 0.43**
Yellow ripening stage WF1550,3 0.36**
完熟期 WF1600,3 0.45**
Full ripening stage WF1375,3 0.30*

Fig. 10

Relationships between GAC and the wavelet features (A: WF1380,3; B: WF2037,6) determined from dried grain powder spectra"

Table 6

Coefficient of determination values (R2) for the relationships of wavelet features determined from dry panicle spectra with GAC of rice at post-heading stages"

生育期Growth stage 小波系数Wavelet feature 决定系数R2
乳熟期 WF1155,6 0.49**
Milk stage WF1895,4 0.49**
蜡熟期 WF1835,3 0.74**
Dough ripening stage WF2350,3 0.64**
黄熟期 WF1692,4 0.67**
Yellow ripening stage WF2030,5 0.65**
完熟期 WF2250,6 0.60**
Full ripening stage WF2050,6 0.55**

Fig. 11

Correlation scalograms for the identification of significant wavelet features of dried panicle related to GAC A: milking stage; B: dough ripening stage; C: yellow ripening stage; D: full ripening stage; E: reflectance spectra of rice panicles. The blue boxes represent the same sensitive wavelet features at different growth stages, while the blue dashed lines represent the corresponding wavelengths. The yellow box represents GAC sensitive wavelet coefficient determined at powder level. The black downward arrows on the top of the figure indicate the wavelength locations of absorption features for starch."

Fig. 12

Relationships between GAC and wavelet features (A: WF1835,3; B: WF2350,3) determined from dried panicle spectra"

Fig. 13

Spectral responses of dried grain powder and dried panicle to GAC in reflectance and wavelet power A-B: reflectance of dried grain powder and dried panicle with different GAC values; C-F: wavelet features of dried grain powder and dried panicles with different GAC values. The blue arrows represent the wavelength locations corresponding to the sensitive wavelet features of amylose."

Fig. 14

Correlation scalograms for the identification of significant wavelet features related to GAC A: dried grain powder; B: dried panicle."

Table 7

Assessment of prediction accuracies for rice GAC with determined spectral indexes and wavelet features"

测试器官
Organ of
measurements
最佳时期
Optimal growth stage
光谱参数
Spectral feature
均方根误差
RMSE (%)
偏移值
Bias (%)
相对均方根误差
RRMSE (%)
米粉
Dried grain
powder
蜡熟期
Dough ripening stage
NDAI1505,1455 3.96 3.30 61.63
WF1380,3 7.73 7.32 120.31
WF2037,6 1.51 0.44 23.50
WF2037,5 3.40 2.14 52.92
干穗
Dried panicle
NDAI2265,2135 2.17 0.61 37.52
WF1835,3 1.91 -0.84 56.17
WF2037,6 1.49 -0.17 25.76
WF2037,5 2.77 -1.01 81.74

Fig. 15

Relationship between the wavelet feature WF2037,6 and GAC in rice at dry panicle level"

Fig. 16

Relationships between predicted and measured GAC based on NDAI or wavelet features A-B: dried grain powder NDAI1505,1455, WF2037,6-GAC; C-D: dried panicle NDAI2265,2135, WF2037,6-GAC. GAC: grain amylose content."

Fig. 17

Correlation scalograms for the identification of significant wavelet features related to GAC and reflectance spectra of rice organs Dried grain powder A-C: dough ripening stage, yellow ripening stage, full ripening stage; dry panicle D-G: milking stage, dough ripening stage, yellow ripening stage, full ripening stage. The blue boxes represent the same sensitive wavelet features at different growth stages, while the blue dashed lines represent the corresponding wavelengths. The black downward arrows on the top of the figure indicate the wavelength locations of absorption features for starch."

[1] Thomas R, Wan-Nadiah W A, Bhat R. Physiochemical properties, proximate composition, and cooking qualities of locally grown and imported rice varieties marketed in Penang, Malaysia. Int Food Res, 2013,20:1679-1685.
[2] Umemoto T, Nakamura Y, Ishikura N. Activity of starch synthase and the amylose content in rice endosperm. Phytochemistry, 1995,40:1613-1616.
doi: 10.1016/0031-9422(95)00380-P
[3] Zhou Z, Robards K, Helliwell S, Blanchard C. Ageing of stored rice: changes in chemical and physical attributes. J Cereal Sci, 2002,35:65-78.
doi: 10.1006/jcrs.2001.0418
[4] Ata-UI-Karim S T, Zhu Y, Cao Q, Rehmani M I A, Cao W X, Tang L. In-season assessment of grain protein and amylose content in rice using critical nitrogen dilution curve. Eur J Agron, 2017,90:139-151.
doi: 10.1016/j.eja.2017.08.001
[5] 韩天富, 马常宝, 黄晶, 柳开楼, 薛彦东, 李冬初, 刘立生, 张璐, 刘淑军, 张会民. 基于Meta分析中国水稻产量对施肥的响应特征. 中国农业科学, 2019,52:1918-1929.
Han T F, Ma C B, Huang J, Liu K L, Xue Y D, Li D C, Liu L S, Zhang L, Liu S J, Zhang H M. Variation in rice yield response to fertilization in China: Meta-analysis. Sci Agric Sin, 2019,52:1918-1929 (in Chinese with English abstract).
[6] Duan S H, Fang R S, Zhu R S, Xian T. Remote estimation of rice yield with unmanned aerial vehicle (UAV) data and spectral mixture analysis. Front Plant Sci, 2019,10:169-178.
doi: 10.3389/fpls.2019.00169
[7] Raquel A O, Roope N, Oiva N, Laura N, Katja A, Jere K, Lauri J, Niko V, Somayeh N, Lauri M, Teemu H, Eija H. Machine learning estimators for the quality and quality of grass swards used for silage production using drone-based imaging spectrometry and photogrammetry. Remote Sens Environ, 2020,246:111830.
doi: 10.1016/j.rse.2020.111830
[8] Berger K, Verrelst J, Fret J, Wang Z, Hank T. Crop nitrogen monitoring: recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sens Environ, 2020,242:111758.
doi: 10.1016/j.rse.2020.111758
[9] Basnet B B, Apan A A, Kelly R M, Jensen T A, Strong W M, Butler D G. Relating satellite imagery with grain protein content. J Spat Sci, 2003,80:22-27.
[10] Mutanga O, Skidmore A K. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa. Remote Sens Environ, 2004,90:104-115.
doi: 10.1016/j.rse.2003.12.004
[11] Zhao C, Liu L, Wang J, Huang W, Song X, Li C. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress. Int J Appl Earth Observ Geoinf, 2005,7:1-9.
doi: 10.1016/j.jag.2004.10.002
[12] 宋晓宇, 黄文江, 王纪华, 刘良云, 李存军. ASTER卫星遥感影像在冬小麦品质监测方面的初步应用. 农业工程学报, 2006,22(9):148-153.
Song X Y, Huang W J, Wang J H, Liu L Y, Li C J. Preliminary application of ASTER images in winter wheat quality monitoring. Trans CSAE, 2006,22(9):148-153 (in Chinese with English abstract).
[13] 谭昌伟, 王纪华, 黄文江, 王君婵, 朱新开, 郭文善. 基于TM和PLS的冬小麦籽粒蛋白质含量预测. 农业工程学报, 2011,27(3):388-392.
Tan C W, Wang J H, Huang W J, Wang J C, Zhu X K, Guo W S. Predicting grain protein content in winter wheat based on TM images and partial least squares regression. Trans CSAE, 2011, 27(3):388-392 (in Chinese with English abstract).
[14] 王利民, 刘佳, 杨福刚, 杨玲波, 姚保民, 王小龙. 基于GF-1卫星遥感数据识别京津冀冬小麦面积. 作物学报, 2018,44:762-773.
Wang L M, Liu J, Yang F G, Yang L B, Yao B M, Wang X L. Acguisition of winter wheat area in the Beijing-Tianjin-Hebei region with GF-1 satellite data. Acta Agron Sin, 2018,44:762-773 (in Chinese with English abstract).
[15] 李卫国, 王纪华, 赵春江, 刘良云, 宋晓宇, 童庆禧. 基于NDVI和氮素积累的冬小麦籽粒蛋白质含量预测模型. 遥感学报, 2008,3:506-514.
Li W G, Wang G H, Zhao C J, Liu L Y, Song X Y, Tong Q X. A model for predicting content in winter wheat grain based on Land-Sat TM image and nitrogen accumulation. J Remote Sens, 2008,3:506-514 (in Chinese with English abstract).
[16] 王大成, 张东彦, 李宇飞, 秦其明, 王纪华, 范闻捷, 陈诗琳. 结合HJ1A/B卫星数据和生态因子的籽粒品质监测. 红外与激光工程, 2013,42:780-786.
Wang D C, Zhang D Y, Li Y M, Qin Q M, Wang J H, Fan W J, Chen S L. Monitoring wheat quality based on HJ1A/B remote sensing data and ecological factors. Infrar Laser Eng, 2013,42:780-786 (in Chinese with English abstract).
[17] 田永超, 朱艳, 曹卫星, 范雪梅, 刘小军. 利用冠层反射光谱和叶片SPAD值预测小麦籽粒蛋白质和淀粉的积累. 中国农业科学, 2004,37:808-813.
Tian Y C, Zhu Y, Cao W X, Fan X M, Liu X J. Monitoring protein and starch accumulation in wheat grains with Leaf SPAD and canopy spectral reflectance. Sci Agric Sin, 37:808-813 (in Chinese with English abstract).
[18] 薛利红, 朱艳, 张宪, 曹卫星. 利用冠层反射光谱预测小麦籽粒品质指标的研究. 作物学报, 2004,30:1036-1041.
Xue L H, Zhu Y, Zhang X, Cao W X. Predicting wheat grain quality with canopy reflectance spectra. Acta Agron Sin, 2004,30:1036-1041 (in Chinese with English abstract).
[19] Pettersson C G, Eckersten H. Prediction of grain protein in spring malting barley grown in northern Europe. Eur J Agron, 2007,27:205-214.
doi: 10.1016/j.eja.2007.04.002
[20] Wang Z J, Wang J H, Liu L Y, Huang W J, Zhao C J, Wang C Z. Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR). Field Crops Res, 2004,90:311-321.
doi: 10.1016/j.fcr.2004.04.004
[21] 宋晓宇, 王纪华, 杨贵军, 崔贝, 常红. 基于叶片及冠层叶绿素参数的冬小麦籽粒蛋白质含量预测研究. 光谱学与光谱分析, 2014,34:1917-1921.
Song X Y, Wang J H, Yang G J, Cui B, Chang H. Winter wheat GPC estimation based on leaf and canopy chlorophyll parameters. Spectr Spect Anal, 2014,34:1917-1921 (in Chinese with English abstract).
[22] 谢晓金, 李秉柏, 朱红霞. 利用高光谱数据估测不同温度胁迫下的水稻籽粒中粗蛋白和直链淀粉含量. 农业现代化研究, 2012,33:481-484.
Xie X J, Li B B, Zhu H X. Estimating contents of crude protein and amylose content in rice grain by hyper-spectral under different high temperature stress. Res Agric Modern, 2012,33:481-484 (in Chinese with English abstract).
[23] 刘冰峰. 夏玉米不同生育时期生理生态参数的高光谱遥感监测模型. 西北农林科技大学博士学位论文, 陕西杨凌, 2016.
Liu B F. Monitoring Models of Physiological and Ecological Parameters of Summer Maize Based on Hyperspectral Remote Sensing at Different Growth Stages. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract).
[24] 田容才, 高志强, 卢俊玮. 基于冠层光谱的早籼稻籽粒粗蛋白含量估测. 作物杂志, 2020, (4):188-194.
Tian R C, Gao Z Q, Lu J Q. Estimation of crude protein content in grain of early indica rice based on canopy spectrum. Crops, 2020, (4):188-194 (in Chinese with English abstract).
[25] 谢莉莉, 王福民, 张垚, 黄敬峰, 胡景辉, 王飞龙, 姚晓萍. 基于多生育期光谱变量的水稻直链淀粉含量监测. 农业工程学报, 2020,36(8):173-181.
Xie L L, Wang F M, Zhang Y, Huang J F, Hu J H, Wang F L, Yao X P. Monitoring of amylose content in rice based on spectral variables at the multiple growth stages. Trans CSAE, 2020,36(8):173-181 (in Chinese with English abstract).
[26] 黄文江, 王纪华, 刘良云, 赵春江, 宋晓宇, 马智宏. 冬小麦品质的影响因素及高光谱遥感监测方法. 遥感技术与应用, 2004,10:143-148.
Huang W J, Wang J H, Liu L Y, Zhao C J, Song X Y, Ma Z H. Study on grain quality effecting factors and monitoring methods by using hyperspectral data in winter wheat. Remote Sens Technol Appl, 2004,10:143-148 (in Chinese with English abstract).
[27] 王纪华, 黄文江, 赵春江, 杨敏华, 王之杰. 利用光谱反射率估算叶片生化组分和籽粒品质指标研究. 遥感学报, 2003,7:277-284.
Wang J H, Huang W J, Zhao C J, Yang M H, Wang Z J. The inversion of leaf biochemical components and grain quality indicators of winter wheat with spectral reflectance. J Remote Sens, 2003,7:277-284 (in Chinese with English abstract).
[28] Curran P. Remote sensing of foliar chemistry. Remote Sens Environ, 1990,30:271-278.
doi: 10.1016/0034-4257(89)90069-2
[29] 何理. 水稻叶片氮素含量及产量、相关品质高光谱预测模型的初步研究. 扬州大学硕士学位论文, 江苏扬州, 2014.
He L. Preliminary Study on Hyperspectral Prediction Model of Leaf Nitrogen Content, Yield and Related Quality in Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2014 (in Chinese with English abstract).
[30] Curran P J, Dungan J L, Peterson D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies. Remote Sens Environ, 2001,76:349-359.
doi: 10.1016/S0034-4257(01)00182-1
[31] Grossman Y L, Ustin S L, Jacquemoud S, Sanderson E W, Schmuck G, Verdebout J. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sens Environ, 1996,56:182-193.
doi: 10.1016/0034-4257(95)00235-9
[32] Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using Band-Depth analysis of absorption features and stepwise multiple linear regression. Remote Sens Environ, 1999,67:267-287.
doi: 10.1016/S0034-4257(98)00084-4
[33] 唐延林, 黄敬峰, 王人潮. 利用高光谱法估测稻穗稻谷的粗蛋白质和粗淀粉含量. 中国农业科学, 2004,37:1282-1287.
Tang Y L, Huang J F, Wang R C. Study on estimating the contents of crude protein and crude starch in rice panicle and paddy by hyperspectra. Sci Agric Sin, 2004,37:1282-1287 (in Chinese with English abstract).
[34] 刘芸, 唐延林, 黄敬峰, 蔡绍洪, 楼佳. 利用高光谱数据估测水稻米粉中粗蛋白粗淀粉和直链淀粉含量. 中国农业科学, 2008,41:62-68.
Liu L, Tang Y L, Huang J F, Cai S H, Lou J. Contents of crude protein, crude starch and amylose in rice flour by hyperspectral data. Sci Agric Sin, 2008,41:62-68 (in Chinese with English abstract).
[35] 颜士博. 基于高分数据的水稻品质监测方法的研究. 杭州师范大学硕士学位论文, 浙江杭州, 2017.
Yan S B. Study on Rice Quality Monitoring Method Based on High Resolution Data. MS Thesis of Hangzhou Normal University, Hangzhou, Zhejiang, China, 2017 (in Chinese with English abstract).
[36] Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves. Int J Remote Sens, 1997,18:2691-2697.
doi: 10.1080/014311697217558
[37] 姚霞, 朱艳, 田永超, 冯伟, 曹卫星. 小麦叶层氮含量估测的最佳高光谱参数研究. 中国农业科学, 2009,42:2716-2725.
Yao X, Zhu Y, Tian Y C, Feng W, Cao W X. Research of the optimum hyperspectral vegetation indices on monitoring the nitrogen content in wheat leaves. Sci Agric Sin, 2009,42:2716-2725 (in Chinese with English abstract).
[38] Blackburn G, Ferwerda J. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote Sens Environ, 2008,112:1614-1632.
doi: 10.1016/j.rse.2007.08.005
[39] 汤旭光, 宋开山, 刘殿伟, 王宗明, 张柏, 杜嘉, 曾丽红, 姜广甲, 王远东. 基于可见/近红外反射光谱的大豆叶绿素含量估算方法比较. 光谱学与光谱分析, 2011,31:371-374.
Tang X G, Song K S, Liu D W, Wang Z M, Zhang B, Du J, Zeng L H, Jiang G J, Wang Y D. Comparison of methods for estimating chlorophyll content based on visual/near infrared reflection spectra. Spectr Spect Anal, 2011,31:371-374 (in Chinese with English abstract).
[40] Rivard B, Feng J, Gallie A, Sanchez-Azofeifa A G. Continuous wavelets for the improved use of spectral libraries and hyperspectral data. Remote Sens Environ, 2008,112:2850-2862.
doi: 10.1016/j.rse.2008.01.016
[41] 方美红, 刘湘南. 小波分析用于水稻叶片氮含量高光谱反演. 应用科学学报, 2010,28:387-393.
Fang M H, Liu X N. Estimation of nitrogen content in rice leaves with hyperspectral reflectance measurements using wavelet analysis. J Appl Sci, 2010,28:387-393 (in Chinese with English abstract).
[42] Li D, Cheng T, Jia M, Zhou K, Lu N, Yao X, Tian Y, Zhu Y, Cao W X. PROCWT: Coupling PROSPECT with continuous wavelet transform to improve the retrieval of foliar chemistry from leaf bidirectional reflectance spectra. Remote Sens Environ, 2018,206:1-14.
doi: 10.1016/j.rse.2017.12.013
[43] Li D, Wang X, Zheng H B, Zhou K, Yao X, Tian Y C, Zhu Y, Cao W X, Cheng T. Estimation of area- and mass-based leaf nitrogen contents of wheat and rice crops from water-removed spectra using continuous wavelet analysis. Plant Methods, 2018,14:1-20.
doi: 10.1186/s13007-017-0271-6
[44] Cheng T, Riaño D, Ustin S L. Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis. Remote Sens Environ, 2014,143:39-53.
doi: 10.1016/j.rse.2013.11.018
[45] 中国科学院上海植物生理研究所. 现代植物生理学实验指南. 北京, 科学出版社. 1999. pp 79-85.
Shanghai Institute of Plant Physiology, Chinese Academy of Sciences. Guidelines for Modern Plant Physiology Experiments. Beijing: Science Press, 1999. pp 79-85(in Chinese).
[46] Cheng T, Rivard B, Sánchez-Azofeifa A G, Féret J B, Jacquemoud S, Ustin S L. Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis. ISPRS J Photogramm Remote Sens, 2014,87:28-38.
doi: 10.1016/j.isprsjprs.2013.10.009
[47] Cheng T, Rivard B, Sanchez-Azofeifa A G, Feret J B, Jacquemoud S, Ustin S L. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis. J Plant Physiol, 2012,169:1134-1142.
doi: 10.1016/j.jplph.2012.04.006
[48] 苗茜. 基于小波变换的芦苇叶绿素含量的地物高光谱反演研究. 首都师范大学硕士学位论文, 北京, 2013.
Miao Q. Hyperspectral Inversion of Chlorophyll Content in Phragmites Australis based on Wavelet Transform. MS Thesis of Capital Normal University, Beijing, China, 2013 (in Chinese with English abstract).
[49] 郭洋洋, 张连蓬, 王德高, 马维维. 小波分析在植物叶绿素高光谱遥感反演中的应用. 测绘通报, 2010, (8):31-33.
Guo Y Y, Zhang L P, Wang D G, Ma W W. Application of wavelet analysis for determining chlorophyll concentration in vegetation by hyperspectral reflectance. Bull Surv Map, 2010, (8):31-33 (in Chinese with English abstract).
[50] 谢巧云, 黄文江, 蔡淑红, 梁栋, 彭代亮, 张清, 黄林生, 杨贵军, 张东彦. 冬小麦叶面积指数遥感反演方法比较研究. 光谱学与光谱分析, 2014,34:1352-1356.
Xie Q Y, Huang W J, Cai S H, Liang D, Peng D L, Zhang Q, Huang L S, Yang G J, Zhang D J. Comparative study on remote sensing inversion methods for estimation winter wheat leaf area index. Spect Spect Anal, 2014,34:1352-1356 (in Chinese with English abstract).
[51] Ghoshal A, Martin W N, Schulz M J, Chattopadhyay A, Prosser W H, Kim H S. Health monitoring of composite plates using acoustic wave propagation, continuous sensors and wavelet analysis. J Reinf Comp, 2015,26:95-112.
[52] Huang G, Newchurch M J, Kuang S, Buckley P I, Cantrell W, Wang L. Definition and determination of ozone laminae using continuous wavelet transform (CWT) analysis. Atmos Environ, 2015,104:125-131.
doi: 10.1016/j.atmosenv.2014.12.027
[53] Hsu Y C, Tseng M C, Wu Y P, Lin M Y, Wei F J, Hwu K K. Genetic factors responsible for eating and cooking qualities of rice grains in a recombinant inbred population of an inter-subspecific cross. Mol Breed, 2014,34:655-673.
doi: 10.1007/s11032-014-0065-8
[54] Yang F, Chen Y, Tong C, Huang Y, Xu F, Li K. Association mapping of starch physicochemical properties with starch synthesis-related gene markers in nonwaxy rice (Oryza sativa L.). Mol Breed, 2014,34:1747-1763.
doi: 10.1007/s11032-014-0135-y
[55] Hirano H Y, Sano Y. Molecular characterization of the waxy locus of rice (Oryza sativa). Plant Cell Physiol, 1991,32:989-997.
doi: 10.1093/oxfordjournals.pcp.a078186
[56] Furon A C, Warland J S, Wagner-Riddle C. Analysis of scaling-up resistances from leaf to canopy using numerical simulations. Agron J, 2007,99:135-141.
[57] Read C, Wright I J, Westoby M. Scaling-up from leaf to canopy-aggregate properties in sclerophyll shrub species. Austr Entomol, 2010,31:310-316.
[58] 魏友华, 王瑶, 何雪梅, 郭科, 常睿春. 基于“高分五号”遥感图像的地物分类方法. 现代电子技术, 2020, (3):85-88.
Wei Y H, Wang Y, He X M, Guo K, Chang R C. Classification method of ground objects based on the remote sensing image of GF-5. Modern Electron Technol, 2020, (3):85-88 (in Chinese with English abstract).
[59] 赵瑞, 崔希民, 刘超. GF-5高光谱遥感影像的土壤有机质含量反演估算研究. 中国环境科学, 2020,40:3539-3545.
Zhao R, Cui X M, Liu C. Inversion estimation of soil organic matter content based on GF-5 hyperspectral remote sensing image. China Environ Sci, 2020,40:3539-3545 (in Chinese with English abstract).
[60] 李小朋, 王术, 黄元财, 贾宝艳, 王岩, 曾群云. 株行距配置对齐穗期粳稻冠层结构及产量的影响. 应用生态学报, 2015,26:3329-3336.
Li X P, Wang S, Huang Y C, Jia B Y, Wang Y, Zeng Q Y. Effects of spacing on the yields and canopy structure of japonica rice at full heading stage. China J Appl Ecol, 2015,26:3329-3336 (in Chinese with English abstract).
[61] 方雨晨, 田庆久. 归一化植被指数的土壤背景影响去除. 遥感信息, 2017, (6):8-13.
Fang Y C, Tian Q J. Soil effect removal of NDVI in farmland based on theory of mixing spectral. Remote Sens Inf, 2017, (6):8-13 (in Chinese with English abstract).
[62] 褚旭. 不同覆盖度条件下水稻叶层氮素营养的高光谱监测研究. 南京农业大学硕士学位论文, 江苏南京, 2013.
Chu X. Monitoring Leaf Nitrogen Nutrition under Different Vegetation Coverage Conditions Using Hyperspectrum Data in Rice. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013 (in Chinese with English abstract).
[1] HAN Kang, YU Jing, SHI Xiao-Hua, CUI Shi-Xin, FAN Ming-Shou. Inversion of nitrogen accumulation in potato leaf with different spectral indices [J]. Acta Agronomica Sinica, 2020, 46(12): 1979-1990.
[2] WU Qiong,QI Bo,ZHAO Tuan-Jie,YAO Xin-Feng,ZHU Yan,GAI Jun-Yi. A Tentative Study on Utilization of Canopy Hyperspectral Reflectance to Esti-mate Canopy Growth and Seed Yield in Soybean [J]. Acta Agron Sin, 2013, 39(02): 309-318.
[3] WANG Fang-Yong, WANG Ke-Ru, LI Shao-Hun, GAO Shi-Ju, XIAO Chun-Hua, CHEN Bing, CHEN Jiang-Lu, LV Yin-Liang, DIAO Mo-Yang. Estimation of Canopy Leaf Nitrogen Status Using Imaging Spectrometer and Digital Camera in Cotton [J]. Acta Agron Sin, 2011, 37(06): 1039-1048.
[4] WANG Fang-Yong, WANG Ke-Ru, LI Shao-Hun, CHEN Bing, CHEN Jiang-Lu. Estimation of Chlorophyll and Nitrogen Contents in Cotton Leaves Using Digital Camera and Imaging Spectrometer [J]. Acta Agron Sin, 2010, 36(11): 1981-1989.
[5] ZHU Yan;TIAN Yong-Chao;MA Ji-Feng;YAO Xia;LIU Xiao-Jun;CAO Wei-Xing. Relationship between Chlorophyll Fluorescence Parameters and Spectral Reflectance Characteristics in Wheat Leaves [J]. Acta Agron Sin, 2007, 33(08): 1286-1292.
[6] ZHOU Dong-Qin;ZHU Yan;YAO Xia;TIAN Yong-Chao;CAO Wei-Xing. Estimating Grain Protein Content with Canopy Spectral Reflectance in Rice [J]. Acta Agron Sin, 2007, 33(08): 1219-1225.
[7]

ZHOU Dong-Qin;ZHU Yan;TIAN Yong-Chao;YAO Xia;CAO Wei-Xing

. Monitoring Leaf Nitrogen Accumulation with Canopy Spectral Reflectance in Rice

[J]. Acta Agron Sin, 2006, 32(09): 1316-1322.
[8] XUE Li-Hong;YANG Lin-Zhang and FAN Xiao-Hui. Estimation of Nitrogen Content and C/N in Rice Leaves and Plant with Canopy Reflectance Spectra [J]. Acta Agron Sin, 2006, 32(03): 430-435.
[9] LI Ying-Xue; ZHU Yan; TIAN Yong-Chao; YAO Xia; QIN Xiao-Dong and CAO Wei-Xing. Quantitative Relationship between Leaf Nitrogen Concentration and Canopy Reflectance Spectra [J]. Acta Agron Sin, 2006, 32(03): 358-362.
[10] LI Ying-Xue; ZHU Yan; TIAN Yong-Chao; YAO Xia; QIN Xiao-Dong and CAO Wei-Xing. Relationship of Leaf Nitrogen Status to Canopy Reflectance Spectra in Wheat [J]. Acta Agron Sin, 2006, 32(02): 203-209.
[11] XUE Li-Hong;CAO Wei-Xing;ZHANG Xian;ZHU Yan. Predicting Wheat Grain Quality with Canopy Reflectance Spectra [J]. Acta Agron Sin, 2004, 30(10): 1036-1041.
[12] Yang Jinhua;Bi Chenguang;Song Wencang. A Half-Grain Method for Analyzing the Amylose Content in Rice Grains and Its Application [J]. Acta Agron Sin, 1992, 18(05): 366-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!