Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (02): 309-318.doi: 10.3724/SP.J.1006.2013.00309
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
WU Qiong1,**,QI Bo1,**,ZHAO Tuan-Jie1,YAO Xin-Feng2,ZHU Yan2,GAI Jun-Yi1,*
[1]Ma B L, Morrison M J, Dwyer L M. Canopy Light reflectance and field greenness to assess nitrogen fertilization and yield of Maize. Agron J, 1996, 88: 915–920[2]Clevers J G P W. A simplified approach for yield prediction of sugar beet based on optical remote sensing data. Remote Sens Environ, 1997, 61: 221–228[3]Clevers J G P W, Büker C, van Leeuwen H J C, Bouman B A M. A framework for monitoring crop growth by combining directional and spectral remote sensing information. Remote Sens Environ, 1994, 50: 161–170[4]Vaesen K, Gilliams S, Nackaerts K, Coppin P. Ground-measured spectral signatures as indicators of ground cover and leaf area index: the case of paddy rice. Field Crops Res, 2001, 69: 13–25[5]Slafer G A, Molina-Cano J L, Savin R, Araus J L, Romagosa I. Barley Science: Recent Advances from Molecular Biology to Agronomy of Yield and Quality. Binghamton, NH: Haworth Press, 2002. pp 387–412[6]Filella I, Serrano L, Serra J, Penuelas J. Evaluating wheat nitrogen status with canopy re?ectance indices and discriminant analysis. Crop Sci, 1995, 35: 1400–1405[7]Aparicio N, Villegas D, Araus J L, Casadesus J, Royo C. Relationship between growth traits and spectral vegetation indices in durum wheat. Crop Sci, 2002, 42: 1547–1555[8]Aparicio N, Villegas D, Casadesus J, Araus J L, Royo C. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron J, 2000, 92: 83–91[9]Aparicio N, Villegas D, Royo C, Casadesus J, Araus J L. Effect of sensor view angle on the assessment of agronomic traits by ground level hyper-spectral re?ectance measurements in durum wheat under contrasting Mediterranean conditions. Int J Remote Sens, 2004, 25: 1131–1152[10]Royo C, Aparicio N, Villegas D, Casadesus J, Monneveux P, Araus J L. Usefulness of spectral re?ectance indices as durum wheat yield predictors under contrasting Mediterranean environments. Int J Remote Sens, 2003, 24: 4403–4419[11]Shibayama M, Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sens Environ, 1989, 27: 119–127[12]Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ, 2003, 86: 542–553[13]Wang X-Z(王秀珍), Huang J-F(黄敬峰), Li Y-M(李云梅), Wang R-C(王人潮). Study on hperspectral remote sensing estimation models for the ground fresh biomass of rice. Acta Agron Sin (作物学报), 2003, 29(6): 815–821 (in Chinese with English abstract)[14]Liu L-Y(刘良云), Wang J-H(王纪华), Huang W-J(黄文江), Zhao C-J(赵春江), Zhang B(张兵), Tong Q-X(童庆禧). Improving winter wheat yield prediction by novel spectral index. Trans Chin Soc Agric Eng (农业工程学报), 2004, 20(1): 172–175 (in Chinese with English abstract)[15]Tang Y-L(唐延林), Huang J-F(黄敬峰), Wang R-C(王人潮), Wang F-M(王福民). Comparison of yield estimation simulated models of rice by remote sensing. Trans CSAE (农业工程学报), 2004, 20(1): 166–171 (in Chinese with English abstract)[16]Xue L-H(薛利红), Cao W-X(曹卫星), Luo W-H(罗卫红). Rice yield forecasting model with canopy reflectance spectra. J Remote Sens (遥感学报), 2005, 9(1): 100–105 (in Chinese with English abstract)[17]Moran M S, Inoue Y, Barnes E M. Opportunities and limitations for image based remote sensing in precision crop management. Remote Sens Environ, 1997, 61: 319–346[18]Curran P J, Dungan J L, Gholz H L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol, 1990, 7: 33–48[19]Pu R-L(浦瑞良), Gong P(宫鹏). Hyperspectral Remote Sensing and Its Applications (高光谱遥感及其应用). Beijing: Higher Education Press, 2000 (in Chinese)[20]Miller J R, Wu J Y, Boyer M G, Belanger M, Hare E W. Season patterns in leaf reflectance red edge characteristics. Intl J Remote Sens, 1991, 12: 1509–1523[21]Demetriades-Shah T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing. Remote Sens Environ, 1990, 33: 55–64[22]Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens Environ, 1999, 67: 267–287[23]Clark R N, Roush T L. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J Geophys Res, 1984, 89: 6329–6340[24]Gamon J A, Surfus J S. Assessing leaf pigment content and activity with a reflectometer. New Phytol, 1999, 143: 105–117[25]Gitelson A A, Kaufman Y J, Stark R, Rundquist D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ, 2002, 80: 76–87[26]Metternicht G. Vegetation indices derived from high-resolution airborne videography for precision crop management, Int J Remote Sens, 2003, 24: 2855–2877[27]Curran P J, Dungan J L, Peterson D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: testing the Kokaly and Clark methodologies. Remote Sens Environ, 2001, 76: 349–359[28]Mutanga O, Skidmore A K, Prins H H T. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sens Environ, 2004, 89: 393–408[29]Feng W(冯伟). Mmonitoring nitrogen status and growth characters with canopy hyperspectral remote sensing in wheat. PhD Dissertation of Nanjing Agricultural University, 2007. p 31 (in Chinese with English abstract)[30]Haboudane D, Miller J R, Pattey E, Zarco-Tejada P J, Strachan I B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ, 2004, 90: 337–352[31]Yang F(杨飞), Zhang B (张柏), Song K-S(宋开山), Wang Z-M(王宗明), Liu D-W(刘殿伟), Liu H-J(刘焕军), Li F(李方), Li F-X(李凤秀), Guo Z-X(国志兴), Jin H-A(靳华安). Comparison of methods for estimating soybean leaf area index. Spectroscopy Spectral Anal (光谱学与光谱分析), 2008, 28(12): 2951–2955 (in Chinese with English abstract) |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[3] | WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462. |
[4] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[5] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[6] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[7] | LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545. |
[8] | SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297. |
[9] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[10] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[11] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[12] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[13] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[14] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[15] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
|