Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1800-1812.doi: 10.3724/SP.J.1006.2022.14085

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Screening of low nitrogen tolerant cultivars based on low nitrogen tolerance comprehensive index at seeding stage in cotton

ZHU Ling-Xiao1(), SONG Shi-Jia2, LI Hao-Ran1, SUN Hong-Chun1, ZHANG Yong-Jiang1, BAI Zhi-Ying1, ZHANG Ke1, LI An-Chang1, LIU Lian-Tao1,*(), LI Cun-Dong1,*()   

  1. 1College of Agronomy, Hebei Agricultural University / State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071001, Hebei, China
    2Hebei Academy of Agriculture and Forestry Science, Shijiazhuang 050031, Hebei, China
  • Received:2021-05-12 Accepted:2021-09-09 Online:2022-07-12 Published:2021-10-19
  • Contact: LIU Lian-Tao,LI Cun-Dong E-mail:574740516@qq.com;nxylcd@hebau.edu.cn;liultday@126.com
  • Supported by:
    State Key Laboratory of North China Crop Improvement and Regulation, and the National Natural Science Foundation of China(31871569)

Abstract:

In cotton production, excessive application of nitrogen fertilizers leads to the increasing cost of agricultural production and a large amount of nitrogen loss, causing damage to the environment. Screening cotton cultivars with low nitrogen tolerance is one of the most effective approaches to solve this problem. In this study, 21 cotton cultivars mainly planted in cotton regions were used as the experimental materials, and 23 agronomic traits were measured. The low nitrogen tolerance was evaluated by means of principal component analysis, the fuzzy membership function, cluster analysis, and correlation analysis under normal nitrogen treatment (N 138 mg kg-1) and low nitrogen treatment (N 0 g kg-1) using soil culture experiment at seeding stage. The results showed that the coefficient variation of most indexes were greater than 10%, which indicated that the selected varieties had good representativeness. Based on principal component analysis and correlation analysis, seven traits including root length, root surface area, root volume, shoot dry weight, total dry weight, actual photochemical efficiency, and maximum photochemical efficiency were used as evaluating indices for low nitrogen tolerance of cotton cultivars. Based on the low nitrogen tolerance comprehensive index, four low nitrogen tolerance cultivars (Luwu 403, Xinhai 12, Zhongmiansuo 64, and Xinluzao 23) and five low nitrogen sensitive cultivars (Fengkangmian 1, TM-1, Nongda 601, Zhongmiansuo 35, and Xinluzao 53) were screened out. The low nitrogen tolerance comprehensive index of the four low nitrogen tolerance cultivars ranged from 0.5723 to 0.6817, while the low nitrogen tolerance comprehensive index of five low nitrogen sensitive cultivars ranged from 0.2914 to 0.3962. In summary, the screening method based on the low nitrogen tolerance comprehensive index provided a new reference for the selection of crop cultivars with low nitrogen tolerance.

Key words: cotton, low nitrogen tolerance, evaluating indices, comprehensive evaluation, low nitrogen tolerance comprehensive index, screening

Table 1

Cotton traits and coefficients of low nitrogen tolerance under two nitrogen treatments"

性状
Trait
正常氮处理
Normal N
低氮处理
Low N
耐低氮系数
Low N tolerance coefficient
平均值 Mean 标准差 SD 变异系数
CV (%)
平均值 Mean 标准差 SD 变异系数 CV (%) 平均值 Mean 标准差 SD 变异系数 CV (%)
PH 9.50 A 2.26 23.74 7.40 B 2.06 27.79 0.79 0.20 24.77
SD 2.23 A 0.25 11.32 2.04 B 0.21 10.05 0.92 0.07 7.76
LA 109.45 A 41.82 38.21 60.19 B 16.23 26.97 0.59 0.02 34.11
SPAD 34.30 A 4.61 13.43 31.04 B 4.65 14.98 0.91 0.06 6.31
Pn 8.33 A 2.19 26.35 4.05 B 2.43 59.98 0.50 0.02 38.18
Gs 0.17 A 0.08 50.06 0.07 B 0.05 74.10 0.50 0.03 66.09
Ci 285.46 A 67.07 23.50 291.29 A 73.34 25.18 1.02 0.01 14.43
Tr 2.95 A 1.27 43.05 1.37 B 0.95 69.53 0.52 0.03 48.69
性状
Trait
正常氮处理
Normal N
低氮处理
Low N
耐低氮系数
Low N tolerance coefficient
平均值 Mean 标准差 SD 变异系数
CV (%)
平均值 Mean 标准差 SD 变异系数 CV (%) 平均值 Mean 标准差 SD 变异系数 CV (%)
WUE 3.18 A 1.48 46.64 2.73 B 1.26 45.99 0.90 0.03 29.25
ΦPSII 0.73 A 0.05 6.59 0.63 B 0.14 22.23 0.86 0.16 18.12
Fv/Fm 0.78 A 0.04 5.71 0.69 B 0.12 17.43 0.89 0.13 14.77
RL 1886.90 A 547.42 29.01 1197.54 B 229.34 19.15 0.69 0.24 34.67
RPA 76.74 A 22.93 29.88 49.23 B 9.96 20.23 0.70 0.24 34.60
RSA 241.07 A 72.04 29.88 154.66 B 31.30 20.23 0.70 0.24 34.60
RD 0.40 A 0.02 4.76 0.39 A 0.02 5.22 0.99 0.04 4.39
RV 2.47 A 0.83 33.46 1.59 B 0.38 23.76 0.71 0.25 35.98
SDW 0.96 A 0.22 22.77 0.68 B 0.08 12.52 0.74 0.21 28.78
RDW 0.28 A 0.06 21.15 0.26 B 0.04 16.06 0.97 0.23 23.62
TDW 1.25 A 0.27 21.87 0.94 B 0.10 11.03 0.79 0.21 26.07
RSR 0.30 B 0.04 12.22 0.40 A 0.07 18.08 1.34 0.24 17.59
NC 21.86 A 2.39 10.95 11.71 B 1.32 11.28 0.54 0.09 17.48
NA 27.32 A 6.64 24.30 11.00 B 1.41 12.85 0.43 0.14 32.54
NUE 46.33 B 5.40 11.66 86.45 A 9.58 11.08 1.89 0.30 15.87

Fig. 1

Hierarchy cluster heat-map of the low nitrogen tolerance coefficient of phenotypic traits for 21 cotton cultivars Abbreviations are the same as those given in Table 1. 1: Xinluzao 20; 2: Xinhai 21; 3: Zhongmiansuo 16; 4: Zhongmiansuo 35; 5: Xinluzao 12; 6: Xinluzao 23; 7: Zhongmiansuo 69; 8: Fengkangmian 1; 9: Luwu 403; 10: Xinhai 12; 11: Nongda 601; 12: K837; 13: K836; 14: Guoxinmian 9; 15: Xinluzhong 15; 16: Nongda 23; 17: Xinluzao 53; 18: TM-1; 19: Jimian 958; 20: Zhongmiansuo 64; 21: Xinhai 20."

Table 2

Component matrix and cumulative contribution"

性状
Trait
因子1
Factor 1
因子2
Factor 2
因子3
Factor 3
因子4
Factor 4
因子5
Factor 5
PH 0.6016 0.5188 0.1885 -0.0533 -0.1670
SD 0.7346 0.2687 -0.2699 0.1351 -0.2524
LA 0.8487 0.2417 0.2264 0.3237 -0.0836
SPAD 0.0801 -0.0215 -0.5582 0.4065 0.0760
Pn 0.1505 0.7097 0.6004 0.1444 0.0625
Gs 0.1771 0.7399 0.4081 0.2034 -0.2743
Ci -0.3702 0.0309 -0.2280 0.0511 -0.8427
Tr 0.2441 0.7653 0.4531 -0.0468 0.0400
WUE 0.6152 0.2309 -0.0267 0.2765 0.5526
ΦPSII 0.2661 0.1531 0.8713 0.0969 0.1768
Fv/Fm 0.2643 0.1092 0.8892 0.1371 0.1712
RL 0.9462 0.0295 0.0974 0.0873 0.2154
RSA 0.9603 0.0558 0.1561 0.0347 0.1781
RD 0.3938 -0.1375 0.4252 -0.1770 -0.2911
RV 0.9440 0.0978 0.1715 0.0483 0.1483
性状
Trait
因子1
Factor 1
因子2
Factor 2
因子3
Factor 3
因子4
Factor 4
因子5
Factor 5
SDW 0.9364 0.0592 0.1770 0.2315 0.1205
RDW 0.8415 0.0501 0.1518 -0.4670 0.0889
TDW 0.9635 0.0485 0.1942 0.0631 0.1072
RSR -0.2077 0.0314 -0.0657 -0.9154 -0.0182
NC 0.0384 -0.9336 0.1041 0.0729 -0.0729
NA 0.8340 -0.4650 0.2276 0.0740 0.0453
NUE -0.0369 0.9310 -0.1122 -0.0371 0.1065
累计贡献率
Cumulative contribution (%)
47.031 64.705 74.562 81.152 86.844

Table 3

Correlation of the D-value with low nitrogen tolerance coefficient of phenotypic traits"

性状
Trait
相关系数
Correlation coefficient
P
P-value
性状
Trait
相关系数
Correlation coefficient
P
P-value
PH 0.724 0.000 RL 0.726 0.000
SD 0.478 0.028 RSA 0.743 0.000
LA 0.788 0.000 RD 0.299 0.188
SPAD 0.091 0.694 RV 0.742 0.000
Pn 0.619 0.003 SDW 0.730 0.000
Gs 0.462 0.003 RDW 0.551 0.010
Ci -0.545 0.011 TDW 0.720 0.000
Tr 0.564 0.008 RSR -0.269 0.239
WUE 0.746 0.000 NC -0.373 0.096
ΦPSII 0.538 0.012 NA 0.418 0.059
Fv/Fm 0.559 0.008 NUE 0.388 0.083

Table 4

Principle component values weight, D-value, and comprehensive index of low nitrogen tolerance of different cultivars"

品种
Cultivar
因子1
Factor 1
因子2
Factor 2
因子3
Factor 3
因子4
Factor 4
因子5
Factor 5
D
D-value
排序
Rank
新陆早20号 Xinluzao 20 -0.9564 0.3077 1.5239 -0.4691 0.0916 0.3852 11
新海21号 Xinhai 21 -1.0092 2.4066 1.1253 -2.4847 -1.3845 0.3961 10
中棉所16 Zhongmiansuo 16 -4.3197 -3.4555 -3.1731 -1.1166 -1.1868 0.1118 20
中棉所35 Zhongmiansuo 35 0.5350 -0.5879 1.8340 -0.8934 -0.6888 0.4085 9
新陆早12号 Xinluzao 12 -2.1007 0.6503 0.4105 -0.5769 -0.9120 0.3344 17
新陆早23号 Xinluzao 23 1.2706 2.1269 0.4159 2.2817 0.8221 0.5428 6
中棉所69 Zhongmiansuo 69 -1.2036 0.7515 -1.5538 -0.3693 0.7294 0.3670 13
丰抗棉1号 Fengkangmian 1 0.1170 -1.1065 -0.5612 -0.3528 -0.5557 0.3679 12
鲁无403 Luwu 403 -0.8602 1.5783 -0.4994 -0.1377 0.7774 0.8391 2
新海12号 Xinhai 12 1.5487 3.3288 1.5858 -0.9922 0.2796 0.5468 5
农大601 Nongda 601 -0.5588 -4.5430 -1.3566 0.8227 0.5991 0.2739 19
K837 0.3977 -0.6372 -3.1372 -1.5791 0.5061 0.3596 15
K836 10.4976 1.6463 5.6370 3.3847 4.7610 0.9515 1
国欣棉9号 Guoxinmian 9 2.7775 2.4231 2.3144 2.6178 2.3349 0.6359 3
新陆中15号 Xinluzhong 15 -1.4136 -0.8155 -2.3434 -1.2135 -0.3324 0.2950 18
农大23 Nongda 23 -1.7046 -0.4832 1.0049 -0.1880 0.4743 0.3402 16
新陆早53号 Xinluzao 53 -0.5483 -1.0800 0.7267 -0.5284 0.3915 0.3598 14
TM-1 -4.4425 -2.9849 -7.7051 -0.1541 -4.5841 0.0692 21
冀棉958 Jimian 958 -0.9118 -1.3400 -1.1111 0.3833 0.8979 0.4939 7
中棉所64 Zhongmiansuo 64 0.5484 3.5817 2.4610 2.7213 -2.2305 0.5547 4
新海20号 Xinhai 20 2.3369 -1.7673 2.4015 -1.1556 -0.7902 0.4450 8
权重 Weight 0.5416 0.2035 0.1135 0.0759 0.0655

Fig. 2

Distribution and correlations of the low nitrogen tolerance coefficient of phenotypic traits Abbreviations are the same as those given in Table 1. *, **, and *** mean significant correlation at the 0.05, 0.01, and 0.001 probability levels, respectively."

Fig. 3

Dendrogram of 21 cotton cultivars based on D-value 1-21 are the same as those given in Fig. 1."

Table 5

Nitrogen efficiency comprehensive value under different nitrogen treatment of 21 cotton cultivars"

品种
Cultivar
N效率综合值
N efficiency comprehensive value
品种
Cultivar
N效率综合值
N efficiency comprehensive value
低氮处理
Low N
正常氮处理
Normal N
低氮处理
Low N
正常氮处理
Normal N
新陆早20号 Xinluzao 20 0.58 0.62 K837 0.54 0.59
新海21号 Xinhai 21 0.49 0.49 K836 0.33 0.19
中棉所16 Zhongmiansuo 16 0.37 0.86 国欣棉9号 Guoxinmian 9 0.46 0.34
中棉所35 Zhongmiansuo 35 0.32 0.39 新陆中15号 Xinluzhong 15 0.56 0.73
新陆早12号 Xinluzao 12 0.43 0.62 农大23 Nongda 23 0.56 0.63
品种
Cultivar
N效率综合值
N efficiency comprehensive value
品种
Cultivar
N效率综合值
N efficiency comprehensive value
低氮处理
Low N
正常氮处理
Normal N
低氮处理
Low N
正常氮处理
Normal N
新陆早23号 Xinluzao 23 0.64 0.54 新陆早53号 Xinluzao 53 0.30 0.53
中棉所69 Zhongmiansuo 69 0.52 0.66 TM-1 0.10 0.71
丰抗棉1号 Fengkangmian 1 0.23 0.49 冀棉958 Jimian 958 0.37 0.56
鲁无403 Luwu 403 0.57 0.64 中棉所64 Zhongmiansuo 64 0.72 0.55
新海12号 Xinhai 12 0.82 0.57 新海20号 Xinhai 20 0.49 0.51
农大601 Nongda 601 0.28 0.55

Fig. 4

Scatter map of nitrogen efficiency comprehensive value under different nitrogen treatment of 21 cotton cultivars 1-21 are the same as those given in Fig. 1."

Fig. 5

Principal components analysis (PCA) a: low nitrogen coefficient; b: low nitrogen treatment; c: normal nitrogen treatment. 1-21 are the same as those given in Fig. 1."

Table 6

Low nitrogen tolerance comprehensive index of 21 cotton cultivars"

品种
Cultivar
耐低氮综合指数
Low nitrogen tolerance
comprehensive index
品种
Cultivar
耐低氮综合指数
Low nitrogen tolerance
comprehensive index
新陆早20号Xinluzao 20 0.5286 K837 0.4952
新海21号Xinhai 21 0.4597 K836 0.4913
中棉所16 Zhongmiansuo 16 0.4472 国欣棉9号Guoxinmian 9 0.4784
中棉所35 Zhongmiansuo 35 0.3734 新陆中15号Xinluzhong 15 0.5292
新陆早12号Xinluzao 12 0.4623 农大23 Nongda 23 0.5112
新陆早23号Xinluzao 23 0.5723 新陆早53号Xinluzao 53 0.3962
中棉所69 Zhongmiansuo 69 0.5169 TM-1 0.2914
丰抗棉1号Fengkangmian 1 0.3629 冀棉958 Jimian 958 0.4760
鲁无403 Luwu 403 0.6818 中棉所64 Zhongmiansuo 64 0.6097
新海12号Xinhai 12 0.6437 新海20号Xinhai 20 0.4817
农大601 Nongda 601 0.3670

Fig. 6

Dendrogram of 21 cotton cultivars based on low nitrogen tolerance comprehensive index 1-21 are the same as those given in Fig. 1."

Fig. 7

Correlation analysis between the total dry weight and root dry weight"

Fig. 8

Correlation analysis between the N accumulation and root length, root area, and root volume a、c、e: 低氮处理; b、d、f: 正常氮处理。a, c, e: low nitrogen treatment; b, d, f: normal nitrogen treatment."

Fig. 9

Phenotypes of different cotton cultivars under low N and normal N treatment"

[1] Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, Wu L, Li Z, Liu Z, Sun G. Resequencing a core ppub of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet, 2018, 50: 803-813.
[2] 国家统计局. 中国统计年鉴. 2019. http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm.
National Bureau of Statistics.China Statistical Yearbook. 2019. http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm. (in Chinese)
[3] Zhang H H, Fu X Q, Wang X R, Gui H P, Dong Q. Identification and screening of nitrogen efficient cotton genotypes under low and normal nitrogen environments at the seedling stage. J Cotton Res, 2018, 1: 6.
[4] Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agron J, 1999, 91: 357-363.
[5] Tilman D, Balzer C, Befort H B L. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011, 108: 20260-20264.
[6] Giles J. Nitrogen study fertilizes fears of pollution. Nature, 2005, 433: 791.
[7] Xia G M, Wang Y J, Hu J Q, Wang S J, Zhang Y, Wu Q, Chi D C. Effects of supplemental irrigation on water and nitrogen use, yield, and kernel quality of peanut under nitrogen-supplied conditions. Agric Water Manage, 2020, 243: 106518.
[8] 贵会平, 张西岭, 宋美珍, 董强, 张恒恒, 王香茹, 庞念厂, 王准, 刘记, 郑苍松. 棉花苗期耐低氮基因型初步筛选. 棉花学报, 2018, 30: 326-337.
Gui H P, Zhang X L, Song M Z, Dong Q, Zhang H H, Wang X R, Pang N G, Wang Z, Liu J, Zheng C S. Preliminary screening of low nitrogen-tolerant cotton genotypes at seeding stage. Cotton Sci, 2018, 30: 326-337. (in Chinese with English abstract)
[9] 王准, 张恒恒, 董强, 贵会平, 王香茹, 庞念广, 李永年, 牛静, 靳丁沙, 汪苏洁, 张西岭, 宋美珍. 棉花苗期耐低氮基因型初步筛选. 棉花学报, 2020, 32: 60-73.
Wang Z, Zhang H H, Dong Q, Gui H P, Wang X R, Pang N G, Li Y N, Niu J, Jin D S, Wang S J, Zhang X L, Song M Z. Screening and verification of low nitrogen tolerant and nitrogen sensitive cotton germplasm. Cotton Sci, 2020, 32: 60-73. (in Chinese with English abstract)
[10] 韩璐, 张薇. 棉花苗期氮营养高效品种筛选. 中国农学通报, 2011, 27(1): 84-88.
Han L, Zhang W. Screening of cotton varieties with high nitrogen efficiency at seeding stage. Chin Agric Sci Bull, 2011, 27(1): 84-88. (in Chinese with English abstract)
[11] 李春艳, 张宏, 马龙, 李诚. 冬小麦苗期氮素吸收利用生理指标的综合评价. 植物营养与肥料学报, 2012, 18: 523-530.
Li C Y, Zhang H, Ma L, Li C. Comprehensive evaluation on physiological indices of nitrogen absorption and utilization in winter wheat at the seedling stage. J Plant Nutr Fert, 2012, 18: 523-530. (in Chinese with English abstract)
[12] Shimon R, Hans L, Bingru H. Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species. J Exp Bot, 2006, 57: 623-631.
[13] Ehdaie B, Merhaut D J, Ahmadian S, Hoops A C, Waines J G. Root system size influences water-nutrient uptake and nitrate leaching potential in wheat. J Agron Crop Sci, 2010, 196: 455-466.
[14] Lynch J P. Roots of the second green revolution. Aust J Bot, 2007, 55: 493-512.
[15] Coviella C E, Stipanovic R D, Trumble J T. Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants. J Exp Bot, 2002, 53: 323-331.
[16] Wang Y. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J Exp Bot, 2012, 63: 5887-5901.
[17] Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of Upland cotton as influenced by nitrogen and potassium nutrition. Eur J Agron, 2006, 24: 282-290.
[18] Mao L L, Zhang L Z, Zhao X H, Liu S D, Werf W D, Zhang S P, Spiertz H, Li Z H. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator. Field Crops Res, 2014, 155: 67-76.
[19] 鲍士旦. 土壤农化分析(第2版). 北京: 中国农业出版社, 1986. pp 213-216.
Bao S D. Soil Agro-chemistrical Analysis, 2nd edn. Beijing: China Agriculture Press, 1986. pp 213-216. (in Chinese)
[20] 张楚, 张永清, 路之娟, 刘丽琴. 苗期耐低氮基因型苦荞的筛选及其评价指标. 作物学报, 2017, 43: 1205-1215.
Zhang C, Zhang Y Q, Lu Z J, Liu L Q. Screening Fagopyrum tararicum genotypes tolerant to low nitrogen stress at seeding stage and its evaluating indices. Acta Agron Sin, 2017, 43: 1205-1215. (in Chinese with English abstract)
[21] 钟思荣, 陈仁霄, 陶瑶, 龚丝雨, 何宽信, 张启明, 张世川, 刘齐元. 耐低氮烟草基因型的筛选及其氮效率类型. 作物学报, 2017, 43: 993-1002.
Zhong S R, Chen R X, Tao Y, Gong S Y, He K X, Zhang Q M, Zhang S C, Liu Q Y. Screening of tobacco genotypes tolerant to low-nitrogen and their nitrogen efficiency types. Acta Agron Sin, 2017, 43: 993-1002. (in Chinese with English abstract)
[22] Andreas S, Mara P, Matthias F, Benjamin W, Snowdon R J. Recent genetic gains in nitrogen use efficiency in oilseed rape. Front Plant Sci, 2017, 8: 963.
[23] 郝青南, 王程, 陈水莲, 沙爱华, 单志慧, 陈海峰, 周蓉, 周新安. 大豆苗期氮高效和氮敏感资源的筛选研究. 大豆科学, 2011, 30: 910-915.
Hao Q N, Wang C, Chen S L, Sha A H, Shan Z H, Chen H F, Zhou R, Zhou X A. Screening of soybean varieties with different nitrogen efficiency at seedling stage. Soybean Sci, 2011, 30: 910-915. (in Chinese with English abstract)
[24] Singh U, Ladha J K, Castillo E G, Punzalan G, Duqueza M. Genotypic variation in nitrogen use efficiency in medium- and long-duration rice. Field Crops Res, 1998, 58: 35-53.
[25] 代小伟, 王庆, 薛卫青, 马晗煦, 孙宝启, 孙群. 4个玉米品种种子耐老化能力的模糊隶属函数法分析. 玉米科学, 2012, 20(5): 82-85.
Dai X W, Wang Q, Xue W Q, Ma H X, Sun B Q, Sun Q. Anti-aging property analysis of four maize hybrid varieties by fuzzy subordinate function. J Maize Sci, 2012, 20(5): 82-85. (in Chinese with English abstract)
[26] 李霞, 孙志伟, 吕川根, 任承刚, 曹昆, 王超. 田间杂交水稻单年单点5种不同逆境的批量筛选及聚类分析. 中国生态农业学报, 2010, 18: 528-534.
Li X, Sun Z W, Lyu C G, Ren C G, Cao K, Wang C. Mass screening and cluster analysis for tolerance to stress of hybrid rice variety under field conditions. Chin J Ecol Agric, 2010, 18: 528-534. (in Chinese with English abstract)
[27] 李强, 罗延宏, 谭杰, 孔凡磊, 杨世民, 袁继超. 玉米杂交种苗期耐低氮指标的筛选与综合评价. 中国生态农业学报, 2014, 22: 1190-1199.
Li Q, Luo H Y, Tan J, Kong F L, Yang S M, Yuan J C. Indexes screening and comprehensive evaluation of low nitrogen tolerance of hybrid maize cultivars at seedling stage. Chin J Ecol Agric, 2014, 12: 1190-1199. (in Chinese with English abstract)
[28] Nagel K A, Lenz H, Kastenholz B, Gilmer F, Schurr U. The platform GrowScreen-Agar enables identification of phenotypic diversity in root and shoot growth traits of agar grown plants. Plant Methods, 2020, 16: 89.
[29] Lynch J P, Tobias W. Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot, 2015, 66: 2199-2210.
[1] GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114.
[2] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[3] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[4] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[5] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[6] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[7] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[8] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[9] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[10] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[11] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[12] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[13] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[14] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[15] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[5] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[6] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[7] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[8] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[9] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[10] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .