Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (9): 1741-1752.doi: 10.3724/SP.J.1006.2021.04149

• RESEARCH PAPERS • Previous Articles     Next Articles

Screening and comprehensive evaluation of shade tolerance of forage soybean varieties

SONG Li-Jun1(), NIE Xiao-Yu1, HE Lei-Lei1, KUAI Jie1, YANG Hua2, GUO An-Guo3, HUANG Jun-Sheng4, FU Ting-Dong1, WANG Bo1,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology of Huazhong Agricultural University / Key Laboratory of Crop Physiology, Ecology and Cultivation in the middle reaches of Yangtze River, Ministry of Agriculture and Rural Areas, Wuhan 430070, Hubei, China
    2Animal Breeding Center of Hubei Province, Wuhan 430070, Hubei, China
    3Agricultural Development Center of Hubei Province, Wuhan 430064, Hubei, China
    4Animal Husbandry Technology Extension Station of Jianshi County, Jianshi 445300, Hubei, China
  • Received:2020-07-07 Accepted:2021-01-21 Online:2021-09-12 Published:2021-02-20
  • Contact: WANG Bo E-mail:2911128276@qq.com;wangbo@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000900);Technological Innovation Major Project of the Science and Technology Department of Hubei Province(2017ABA064);Fundamental Research Funds for the Central Universities(2662017JC005)

Abstract:

Maize intercropped with soybean can significantly increase the protein yield of feed, and the selection of shade tolerant soybean varieties is particularly important. In this study, five treatments including soybean intercropped with maize, monocropping, shading at seedling stage, shading at branching stage, shading at flowering and podding stage were conducted. The biomass, morphology, and nitrogen content were investigated at filling stage among the treatments. The shade tolerance coefficient (STC) of each index was used to measure the shade tolerance of each tested variety. A few key indexes at key growth stages under shading were screened out by stepwise regression analysis to predict the shade tolerance of soybean varieties, which could be used to simplify the screening protocol. The results showed that there were significant differences of shade tolerance between soybean varieties under intercropping. Shade tolerance of shading at flowering and podding stages was positive correlation to shade tolerance of intercropping. Thus, the treatment of shading at flowering and podding stages could be used to screen out feed soybean varieties suitable for intercropping with maize. According to the comprehensive evaluation of shade tolerance under shading at flowering and podding stages, the varieties used in this study were clustered into three groups, and the results were highly consistent with the shade tolerance of intercropped with maize. The regression equation was used to predict the shade tolerance of the tested varieties, and the results of which were highly consistent with the comprehensive evaluation values (D-values). These results suggested that the regression equation established by STC of a few indexes at flowering and podding stages could be used for rapid evaluation and screening of shade tolerant materials under intercropped with maize.

Key words: intercropping, feed soybean, shade tolerance, comprehensive evaluation

Table 1

Soybean materials used in the study"

年份
Year
编号
Number
品种
Variety
2018 C01 石豆1号 Shidou 1
C02 石豆3号 Shidou 3
C03 石豆8号 Shidou 8
C04 冀豆17 Jidou 17
C05 中豆43 Zhongdou 43
C06 中豆41 Zhongdou 41
C07 徐豆14 Xudou 14
C08 天隆1号 Tianlong 1
2019 D01 黔豆10号 Qiandou 10
D02 黔豆11号 Qiandou 11
D03 天隆2号 Tianlong 2
D04 E1
D05 中二124 Zhong’er 124
D06 翠丰 Cuifeng
D07 H6209
D08 H5223
D09 E8
D10 E4
D11 E6
D12 E5

Fig. 1

Planting patterns"

Table 2

Shade tolerance coefficient of every single index at filling stage in soybean in 2018"

处理
Treatment
编号
Number
DW PH SD IN BN LA SLW CPY CPC SNC LNC PNC LSP LSS
I C01 0.712 1.345 0.792 0.866 0.833 1.054 0.694 0.683 0.958 0.803 1.069 0.951 0.690 0.451
C02 0.575 1.332 0.773 0.93 0.645 0.712 0.812 0.501 0.866 0.929 1.006 0.997 1.010 0.810
C03 0.781 0.893 0.877 0.962 1.00 1.270 0.621 0.759 0.968 0.888 1.036 0.980 0.691 0.753
C04 0.507 1.078 0.650 0.872 1.193 0.847 0.719 0.477 0.934 0.832 1.045 1.046 0.990 0.471
C05 0.818 1.194 0.924 1.00 0.978 1.055 0.817 0.771 0.942 0.840 1.008 0.998 0.739 0.937
C06 0.685 1.297 1.021 1.087 0.906 0.878 0.900 0.598 0.871 0.792 0.996 1.019 0.799 0.871
C07 0.677 0.887 0.820 1.057 1.001 1.035 0.643 0.644 0.955 0.792 1.069 1.104 1.099 0.530
C08 0.858 1.017 0.891 1.059 0.932 1.224 0.808 0.808 0.943 0.832 1.023 1.030 1.100 0.770
T1 C01 1.179 1.042 1.012 1.020 1.057 1.023 1.053 1.23 1.042 1.090 1.040 0.980 0.949 1.173
C02 1.056 1.049 1.005 1.022 1.068 0.911 1.076 1.128 1.063 1.100 1.090 0.980 0.920 0.940
C03 1.210 0.992 1.076 1.027 1.132 1.043 1.160 1.386 1.142 0.980 1.240 1.000 0.980 0.964
C04 1.196 1.017 1.062 1.020 1.165 1.184 0.982 1.247 1.036 1.040 1.100 1.030 0.871 1.086
C05 1.208 0.997 0.993 0.991 1.163 1.177 0.914 1.172 0.967 1.110 1.036 0.830 0.871 1.220
C06 1.132 1.049 1.013 1.039 1.093 0.987 1.089 1.176 1.038 1.070 1.000 1.010 1.041 1.231
C07 1.202 1.045 1.019 1.047 1.208 1.355 0.907 1.173 0.981 0.980 0.973 0.8900 0.94 1.140
C08 1.181 1.012 1.069 1.015 1.181 1.107 1.113 1.244 1.055 1.040 1.050 0.960 0.861 1.112
T2 C01 0.871 1.21 0.938 1.043 0.981 1.024 0.821 0.867 0.995 0.900 0.950 1.130 0.809 1.062
C02 0.856 1.241 0.906 1.018 0.955 0.991 0.811 0.918 1.068 1.080 0.980 1.060 0.840 0.862
C03 0.998 1.098 0.952 1.004 0.911 0.893 1.050 0.953 0.953 0.950 1.022 0.960 0.900 0.950
C04 0.932 1.190 0.845 1.036 0.972 0.882 0.957 0.957 1.024 0.950 0.870 1.140 0.740 1.020
C05 1.076 0.832 0.987 0.934 0.721 1.164 0.860 1.056 0.979 0.960 0.889 1.130 0.719 1.056
C06 0.843 0.910 1.005 1.029 0.906 0.959 1.022 0.735 0.872 1.070 0.839 1.050 0.761 1.020
C07 0.870 0.830 0.970 0.969 0.645 0.998 0.813 0.777 0.894 1.070 0.875 0.920 0.760 1.050
C08 1.000 0.800 0.992 0.985 1.093 0.924 1.010 1.016 1.020 0.990 0.940 0.990 0.980 0.920
T3 C01 0.828 1.269 0.852 0.815 0.800 1.091 0.736 0.829 1.006 1.060 0.940 1.110 0.929 0.759
C02 0.611 1.316 0.832 0.877 0.668 0.819 0.816 0.562 0.909 0.865 1.010 1.180 1.00 0.990
C03 0.823 0.869 0.928 0.931 0.721 0.970 0.840 0.883 1.076 1.040 1.160 1.040 0.891 0.819
C04 0.637 1.035 0.695 0.868 0.935 0.866 0.844 0.682 1.071 1.040 1.110 1.090 0.969 0.830
C05 0.757 1.091 0.964 0.982 0.829 0.984 0.818 0.766 1.008 0.950 1.084 0.970 0.929 0.978
C06 0.805 1.252 1.047 1.024 0.956 1.190 0.760 0.698 0.876 0.950 0.915 1.020 0.910 1.030
C07 0.738 0.831 0.889 1.010 1.014 0.883 0.792 0.757 1.032 1.070 1.044 1.180 0.891 0.780
C08 0.805 0.931 0.984 0.986 1.003 1.090 0.861 0.813 1.015 0.970 1.110 1.040 0.940 0.911

Table 3

Shade tolerance coefficient of every single index at filling stage in soybean in 2019"

处理
Treatment
编号
Number
DW PH SD IN BN LA SLW CPY CPC SNC LNC PNC LSP LSS
I D01 0.860 1.136 0.921 0.988 0.860 1.264 0.643 0.778 0.903 0.615 1.056 0.994 0.876 0.827
D02 0.823 1.193 0.948 0.992 0.476 1.335 0.614 0.717 0.872 0.937 0.974 0.924 0.476 0.926
D03 0.714 1.216 0.836 1.049 0.937 0.991 0.549 0.767 1.074 0.597 1.369 1.130 0.742 0.817
D04 0.928 1.137 1.062 1.035 0.833 1.382 0.717 0.992 1.069 0.809 1.224 1.071 1.409 0.888
D05 0.948 1.132 1.079 1.077 1.173 1.602 0.609 0.955 1.008 0.836 1.362 0.923 1.237 0.957
D06 0.699 1.116 0.895 1.013 0.875 1.014 0.694 0.709 1.015 0.854 1.209 1.086 1.282 0.814
D07 0.978 1.114 1.116 0.987 0.825 1.334 0.684 0.776 0.794 0.852 1.112 1.025 1.165 0.971
D08 0.941 1.038 1.025 1.049 0.871 1.212 0.722 0.872 0.926 0.724 0.906 0.972 0.859 0.973
D09 0.899 1.091 1.105 1.061 1.389 1.288 0.706 0.929 1.034 0.968 1.545 1.014 0.462 0.973
D10 0.897 1.158 0.941 1.041 0.857 1.371 0.839 0.736 0.821 0.958 0.860 0.969 0.571 1.027
D11 0.785 1.121 0.960 1.040 0.625 1.113 0.926 0.740 0.943 0.848 1.060 1.128 1.161 0.887
D12 0.759 1.106 0.906 1.018 0.557 1.120 1.002 0.765 1.009 1.024 1.029 1.038 0.687 0.803
T1 D01 1.156 1.030 1.184 0.988 1.060 1.521 0.839 0.951 0.822 0.773 0.901 0.966 0.765 0.973
D02 1.151 1.003 1.092 1.000 1.143 1.077 1.008 1.080 0.939 1.025 0.976 1.019 0.758 0.790
D03 1.153 1.223 0.961 1.086 1.172 0.858 1.372 1.194 1.035 1.146 1.179 0.945 0.810 1.092
D04 1.155 1.069 1.206 0.982 1.439 1.560 0.719 1.099 0.952 1.286 0.970 0.967 0.969 0.903
D05 1.103 1.045 1.112 1.048 1.213 1.305 0.871 0.976 0.886 0.799 1.104 0.877 1.733 1.071
D06 0.913 1.051 1.044 1.004 1.042 0.879 1.042 0.972 1.064 1.149 1.077 1.016 1.078 0.729
D07 1.075 1.044 0.982 1.019 0.961 1.133 0.974 1.039 0.969 0.876 1.086 1.004 1.138 0.992
D08 1.102 0.975 1.180 1.004 0.914 1.175 1.259 1.099 0.997 1.639 0.876 0.965 0.888 0.922
D09 1.200 1.062 1.097 1.026 1.500 1.229 1.225 1.213 1.011 1.360 1.179 0.949 0.498 0.909
D10 1.040 1.138 0.987 1.046 1.397 1.081 1.195 0.961 0.925 1.169 0.958 0.741 1.009 0.822
D11 1.032 0.998 0.964 1.040 1.250 1.072 1.261 1.037 1.006 0.897 1.106 1.106 0.899 1.152
D12 1.043 0.994 0.981 1.018 1.186 0.960 1.282 0.916 0.878 1.124 0.733 1.131 0.757 0.810
T2 D01 1.098 1.134 1.083 1.020 0.960 1.293 0.840 0.812 0.739 0.883 0.799 0.984 0.520 0.628
D02 1.098 1.164 1.086 0.996 0.619 1.357 0.813 0.769 0.699 0.808 0.773 1.003 0.578 1.116
D03 1.018 1.211 0.934 1.033 0.953 0.935 1.125 1.021 1.002 1.128 1.221 1.122 0.784 1.568
D04 1.068 1.111 1.069 1.004 0.909 1.283 0.803 0.807 0.756 0.978 0.842 1.090 0.665 0.744
D05 0.984 1.109 1.122 0.967 0.960 1.110 0.720 0.930 0.946 0.943 1.114 0.895 0.722 0.950
D06 0.723 1.122 0.978 1.013 0.917 0.727 0.895 0.661 0.913 0.966 0.828 0.956 1.050 1.355
D07 1.054 1.184 0.965 1.064 0.951 1.246 0.642 1.006 0.957 0.835 0.976 0.995 1.220 1.443
D08 1.164 1.062 1.115 1.025 0.871 1.230 0.690 1.027 0.883 1.140 0.792 0.943 1.117 1.090
D09 0.959 1.205 1.078 1.044 1.259 0.835 1.390 1.119 1.167 1.233 1.491 1.098 0.619 1.109
D10 0.879 0.992 0.934 1.064 1.095 0.909 1.200 0.723 0.825 0.965 0.799 0.832 0.539 1.153
D11 0.918 1.025 1.008 1.049 0.875 0.984 1.050 0.841 0.915 0.927 0.961 1.030 1.127 1.081
D12 0.962 1.063 1.049 1.031 1.157 1.358 0.834 0.830 0.863 1.281 0.746 0.934 0.774 1.070
T3 D01 0.953 1.185 1.084 1.004 0.780 1.303 0.726 0.824 0.864 0.973 0.825 1.102 0.767 0.868
D02 0.874 1.209 0.948 0.996 0.587 1.044 0.827 0.734 0.840 0.913 0.862 0.978 0.741 0.890
D03 0.759 1.237 1.028 0.992 0.938 1.049 0.773 0.934 1.230 1.339 1.434 1.099 1.045 0.723
D04 0.983 1.232 0.983 0.969 0.818 1.028 0.994 1.012 1.030 1.032 1.133 1.043 1.105 0.969
D05 0.806 1.259 1.022 0.982 0.720 0.842 1.014 0.944 1.171 1.097 1.430 1.143 1.965 0.738
D06 0.723 1.158 0.998 0.983 0.847 0.803 1.078 0.737 1.020 0.935 1.113 1.069 0.718 0.631
D07 0.937 1.143 0.887 1.064 0.786 0.808 1.332 0.914 0.979 0.943 1.046 1.030 1.153 0.881
D08 0.763 1.145 1.025 1.012 0.742 0.766 1.188 0.654 0.857 0.972 0.877 1.013 0.888 0.706
D09 0.873 1.153 0.992 1.039 1.278 1.109 0.952 0.988 1.132 1.502 1.369 1.002 0.570 0.898
D10 0.959 1.085 1.017 1.032 1.063 1.289 0.922 0.943 0.983 1.033 0.926 1.100 0.523 0.757
D11 0.761 1.058 0.914 0.996 0.806 1.003 0.964 0.651 0.855 0.756 0.927 0.966 1.200 0.903
D12 0.700 1.117 0.780 1.040 0.729 0.916 0.942 0.657 0.940 1.404 0.764 1.097 0.719 0.627

Table 4

Correlation matrix of shade tolerance coefficient (STC) of soybean index under intercropping in 2018/2019"

指标
Index
DW PH SD IN BN LA SLW CPY CPC SNC LNC PNC LSP LSS
DW 1.000 -0.391 0.861** 0.141 0.352 0.820** -0.149 0.619* -0.397 0.063 -0.058 -0.584* 0.124 0.776**
PH -0.243 1.000 -0.500 -0.159 -0.231 -0.041 -0.384 -0.338 0.043 -0.183 0.100 0.121 -0.183 -0.243
SD 0.680* 0.151 1.000 0.225 0.470 0.695** -0.095 0.698** -0.144 0.262 0.276 -0.366 0.249 0.670**
IN 0.500 -0.221 0.780** 1.000 0.615* 0.190 0.008 0.587* 0.528 0.020 0.457 0.019 0.020 0.308
BN -0.046 -0.593 -0.208 -0.003 1.000 0.292 -0.404 0.616* 0.348 -0.131 0.739** -0.103 0.013 0.333
LA 0.829** -0.616 0.330 0.250 0.306 1.000 -0.209 0.569* -0.279 0.231 0.030 -0.749** 0.093 0.664**
SLW 0.061 0.662* 0.494 0.391 -0.335 -0.428 1.000 -0.212 -0.101 0.579* -0.423 0.222 -0.051 -0.050
CPY 0.982** -0.355 0.560 0.395 0.060 0.905** -0.107 1.000 0.472 -0.061 0.513 -0.193 0.283 0.298
CPC 0.442 -0.672* -0.193 -0.180 0.535 0.794** -0.760* 0.599 1.000 -0.165 0.691** 0.459 -0.270 0.328
SNC -0.138 0.001 -0.239 -0.335 -0.429 -0.171 -0.025 -0.150 -0.258 1.000 -0.101 -0.262 0.133 -0.142
LNC -0.130 -0.428 -0.549 -0.390 0.319 0.294 -0.842** 0.026 0.718* -0.376 1.000 0.268 0.345 -0.584*
PNC -0.235 -0.533 -0.128 0.489 0.441 -0.121 -0.097 -0.226 0.011 -0.366 0.196 1.000 0.204 -0.526
LSP -0.275 -0.331 -0.341 0.275 0.040 -0.242 0.061 -0.292 -0.182 0.006 0.078 0.771** 1.000 -0.204
LSS 0.470 0.210 0.741** 0.556 -0.317 0.035 0.666* 0.334 -0.444 0.343 -0.901** -0.199 -0.185 1.000

Table 5

Coefficients of comprehensive indexes and proportion under intercropping"

项目
Item
指标
Index
主成分Principle factors in 2018 主成分Principle factors in 2019
CI1 CI2 CI3 CI4 CI1 CI2 CI3 CI4
特征值Eigen value 4.49 4.17 2.41 1.22 4.60 3.13 1.56 1.04
贡献率Contribution ratio 0.32 0.30 0.17 0.09 0.33 0.22 0.11 0.07
累积贡献率Cumulative contribution ratio 0.32 0.62 0.79 0.88 0.33 0.55 0.66 0.74
特征向量Eigen vector DW 0.13 0.95 -0.14 0.01 0.92 -0.28 -0.06 -0.26
PH -0.73 -0.25 -0.41 -0.45 -0.35 0.07 -0.48 0.19
SD -0.40 0.83 0.13 -0.21 0.89 -0.02 0.18 -0.21
IN -0.20 0.66 0.69 -0.03 0.40 0.49 0.25 0.31
BN 0.55 0.00 0.26 -0.07 0.60 0.56 -0.06 0.23
LA 0.61 0.75 -0.17 0.10 0.81 -0.23 -0.16 0.00
SLW -0.84 0.18 0.21 -0.19 -0.23 -0.37 0.92 0.06
CPY 0.30 0.90 -0.19 0.03 0.76 0.49 0.15 -0.12
CPC 0.92 0.29 -0.23 0.00 -0.11 0.89 0.22 0.11
SNC -0.33 -0.16 -0.39 0.86 0.16 -0.36 0.45 0.34
LNC 0.86 -0.30 -0.10 -0.20 0.25 0.82 -0.05 0.18
PNC 0.29 -0.16 0.95 0.09 -0.57 0.48 0.27 -0.25
LSP 0.07 -0.28 0.65 0.25 0.08 0.29 0.12 -0.68
LSS -0.69 0.62 0.06 0.28 0.76 -0.40 -0.01 0.22

Table 6

Comprehensive index (CI), weight, u(Xi), and D-value under intercropping "

年份
Year
编号
Number
CI1 CI2 CI3 CI4 {Invalid MML}(X1) {Invalid MML}(X2) {Invalid MML}(X3) {Invalid MML}(X4) D
D-value
2018 C01 0.897 2.861 0.840 0.007 0.679 0.465 0.000 0.000 0.410
C02 0.029 2.453 1.227 0.267 0.000 0.181 0.487 0.692 0.228
C03 1.241 3.571 1.085 0.382 0.949 0.960 0.308 1.000 0.839
C04 1.087 2.193 1.422 0.215 0.828 0.000 0.733 0.556 0.509
C05 0.538 3.590 1.147 0.210 0.399 0.973 0.386 0.542 0.610
C06 0.123 3.230 1.348 0.064 0.073 0.723 0.640 0.155 0.416
C07 1.307 2.944 1.634 0.325 1.000 0.523 1.000 0.847 0.833
C08 0.940 3.629 1.457 0.354 0.713 1.000 0.777 0.925 0.852
权重Weight 0.370 0.340 0.200 0.100
2019 D01 3.987 2.487 1.058 0.084 0.301 0.492 0.069 0.342 0.325
D02 3.864 1.852 1.089 0.420 0.225 0.004 0.118 0.708 0.188
D03 3.572 3.146 1.014 0.312 0.045 1.000 0.000 0.590 0.379
D04 4.519 2.907 1.373 -0.230 0.629 0.816 0.564 0.000 0.606
D05 5.119 2.983 1.158 0.047 1.000 0.874 0.226 0.301 0.766
D06 3.610 2.864 1.353 -0.031 0.068 0.782 0.532 0.217 0.366
D07 4.480 2.302 1.247 -0.091 0.605 0.350 0.366 0.151 0.441
D08 4.331 2.306 1.281 0.100 0.513 0.353 0.419 0.359 0.430
D09 4.900 3.069 1.291 0.688 0.865 0.940 0.436 1.000 0.828
D10 4.217 1.847 1.321 0.437 0.443 0.000 0.481 0.727 0.340
D11 3.647 2.390 1.566 -0.053 0.091 0.418 0.867 0.193 0.314
D12 3.500 2.153 1.651 0.328 0.000 0.236 1.000 0.608 0.282
权重Weight 0.440 0.300 0.150 0.100

Fig. 2

Dendrogram of clusters for soybean materials under intercropping"

Table 7

D-value of each test material under different treatments "

年份
Year
编号
Number
I T1 T2 T3
2018 C01 0.410 0.430 0.414 0.492
C02 0.228 0.269 0.247 0.302
C03 0.839 0.784 0.525 0.690
C04 0.509 0.568 0.313 0.399
C05 0.610 0.348 0.831 0.690
C06 0.416 0.432 0.436 0.727
C07 0.833 0.548 0.472 0.550
C08 0.852 0.547 0.629 0.779
2019 D01 0.325 0.370 0.341 0.431
D02 0.188 0.498 0.335 0.288
D03 0.379 0.720 0.650 0.656
D04 0.606 0.520 0.381 0.549
D05 0.766 0.390 0.440 0.464
D06 0.366 0.475 0.310 0.372
D07 0.441 0.479 0.593 0.436
D08 0.430 0.560 0.535 0.255
D09 0.828 0.734 0.712 0.855
D10 0.340 0.453 0.297 0.611
D11 0.314 0.572 0.433 0.259
D12 0.282 0.385 0.448 0.331

Table 8

Correlation analysis of intercropping and D-value under different shading treatments in 2018/2019 "

处理 Treatment I T1 T2 T3
I 1.000 0.294 0.484 0.621*
T1 0.741* 1.000 0.722** 0.526
T2 0.570 0.080 1.000 0.478
T3 0.639* 0.373 0.765** 1.000

Table 9

Description of different types to shade tolerance in hierarchical cluster results"

处理
Treatment
类别
Cluster
2018 2019
PH SD IN BN LNC PH SD IN BN LNC
CK I 66.98 8.58 12.17 3.26 18.40 82.37 6.10 13.50 3.61 18.32
II 62.96 8.39 13.04 3.33 20.39 83.25 6.84 14.31 4.61 18.97
III 60.89 7.91 12.67 2.50 18.21 81.49 7.12 12.80 3.53 21.15
T3 I 58.81 8.01 11.82 3.14 20.35 100.04 6.09 13.44 3.28 23.83
II 72.63 7.46 11.94 2.91 20.80 97.03 6.74 14.54 3.76 20.93
III 80.11 6.58 11.11 1.67 18.39 91.78 6.76 12.97 2.80 18.19
[1] 郭旭生, 丁武蓉, 玉柱. 青贮饲料发酵品质评定体系及其新进展. 中国草地学报, 2008, (4):100-106.
Guo X S, Ding W R, Yu Z. The evaluation system of silage fermentation quality and its new development. Chin J Grassland, 2008, (4):100-106 (in Chinese).
[2] 包攀峰, 吕江南, 王加跃, 刘佳杰, 马兰. 青贮饲料收获机械的发展现状与对策. 粮食与饲料工业, 2018, (1):42-45.
Bao P F, Lyu J N, Wang J Y, Liu J J, Ma L. Research progress and suggestion on harvesting machine for silage fodder. Cereal Feed Ind, 2018, (1):42-45 (in Chinese with English abstract).
[3] 张吉旺, 胡昌浩, 王空军, 董树亭, 刘鹏. 不同类型玉米品种饲用营养价值比较. 作物学报, 2003, 29:951-954.
Zhang J W, Hu C H, Wang K J, Dong S T, Liu P. Forage nutritive value of different type maize cultivars. Acta Agron Sin, 2003, 29:951-954 (in Chinese with English abstract).
[4] 阮征, 米书梅, 印遇龙. 我国大宗非粮型饲料蛋白资源现状及高效利用. 饲料工业, 2015, 36(5):51-55.
Ruan Z, Mi S M, Yin Y L. Protein resource use efficiency for non-grain-based feed and related techniques. Feed Ind, 2015, 36(5):51-55 (in Chinese with English abstract).
[5] 中华人民共和国统计局. 中国统计年鉴. 北京: 中国统计出版社, 2019. pp 352-352.
China Bureau of Statistics. China Statistical Yearbook. Beijing: China Statistics Press, 2019. pp 352-352(in Chinese).
[6] Htet M N S, Soomro R N, Bo H J. Effect of different planting of maize (Zea maysL.) and soybean (Glycine maxL.) intercropping in resource consumption on fodder yield and silage quality. Am J Plant Sci, 2017, 8:666-679.
doi: 10.4236/ajps.2017.84046
[7] Aggarwal G, Sidhu A. Effect of irrigation and nitrogen on maize-cowpea fodder intercropping at Ludhiana, India: Advantages and intercrop competition. Field Crop Res, 1988, 18:177-184.
doi: 10.1016/0378-4290(88)90007-X
[8] 董钻. 大豆产量生理. 北京: 中国农业出版社, 2000. pp 55-56.
Dong Z. Physiology of Soybean Yield. Beijing: China Agriculture Press, 2000. pp 55-56(in Chinese).
[9] 李初英, 孙祖东, 陈怀珠, 杨守臻. 不同遮光胁迫对大豆产量性状及产量的影响. 大豆科学, 2006, 25:294-298.
Li C Y, Sun Z D, Chen H Z, Yang S Z. Effects of different shading stress on yield characters and yield of soybean. Soybean Sci, 2006, 25:294-298 (in Chinese with English abstract).
[10] 于晓波, 张明荣, 吴海英, 杨文钰. 净套作下不同耐荫性大豆品种农艺性状及产量分布的研究. 大豆科学, 2012, 31:757-761.
Yu X B, Zhang M R, Wu H Y, Yang W Y. Agronomic characters and yield distribution of different shade tolerance soybean under monoculture and relay strip Intercropping systems. Soybean Sci, 2012, 31:757-761 (in Chinese with English abstract).
[11] 梁镇林. 耐阴与不耐阴大豆茎叶性状的变异及差异比较研究. 大豆科学, 2000, 19:35-41.
Liang Z L. A comparative study on the variation and difference of stem and leaf characters between shade tolerant and shade intolerant soybean. Soybean Sci, 2000, 19:35-41 (in Chinese with English abstract).
[12] Green-Tracewicz E, Page E, Swanton C. Shade avoidance in soybean reduces branching and increases plant-to-plant variability in biomass and yield per plant. Weed Sci, 2017, 59:43-49.
doi: 10.1614/WS-D-10-00081.1
[13] 罗玲, 于晓波, 万燕, 蒋涛, 杜俊波, 邹俊林, 杨文钰, 刘卫国. 套作大豆苗期倒伏与茎秆内源赤霉素代谢的关系. 中国农业科学, 2015, 48:47-56.
Luo L, Yu X B, Wan Y, Jiang T, Du J B, Zou J L, Yang W Y, Liu W G. The relationship between lodging and stem endogenous gibberellins metabolism pathway of relay intercropping soybean at seedling stage. Sci Agric Sin, 2015, 48:47-56 (in Chinese with English abstract).
[14] 程亚娇, 范元芳, 谌俊旭, 王仲林, 谭婷婷, 李佳凤, 李盛蓝, 杨峰, 杨文钰. 光照强度对大豆叶片光合特性及同化物的影响. 作物学报, 2018, 44:1867-1874.
Cheng Y J, Fan Y F, Chen J X, Wang Z L, Tan T T, Li J F, Li S L, Yang F, Yang W Y. Effects of light intensity on photosynthetic characteristics and assimilates of soybean leaf. Acta Agron Sin, 2018, 44:1867-1874 (in Chinese with English abstract).
[15] 宋艳霞, 杨文钰, 李卓玺, 雍太明, 刘岚. 套作遮阴对大豆不同品种苗期氮代谢的影响. 中国油料作物学报, 2010, 32:64-68.
Song Y X, Yang W Y, Li Z X, Yong T M, Liu L. Effects of maize-soybean relay cropping shade on nitrogen metabolism of soybean seedlings. Chin J Oil Crop Sci, 2010, 32:64-68 (in Chinese with English abstract).
[16] 程亚娇, 谌俊旭, 王仲林, 范元芳, 陈思宇, 李泽林, 刘沁林, 李中川, 杨峰, 杨文钰. 光强和光质对大豆幼苗形态及光合特性的影响. 中国农业科学, 2018, 51:2655-2663.
Cheng Y J, Chen X J, Wang Z L, Fan Y F, Chen S Y, Li Z L, Liu X L, Li Z C, Yang F, Yang W Y. Effects of light intensity and light quality on morphology and photosynthetic characteristics of soybean seedlings. Sci Agric Sin, 2018, 51:2655-2663 (in Chinese with English abstract).
[17] Liu W, Deng Y, Hussain S, Zou J, Yuan J, Luo L, Yang C, Yuan X, Yang W. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max(L.) Merr.]. Field Crops Res, 2016, 196:261-267.
doi: 10.1016/j.fcr.2016.07.008
[18] 李春红, 姚兴东, 鞠宝韬, 朱明月, 王海英, 张惠君, 敖雪, 于翠梅, 谢甫绨, 宋书宏. 不同基因型大豆耐荫性分析及其鉴定指标的筛选. 中国农业科学, 2014, 47:2927-2939.
Li C H, Yao X D, Ju B W, Zhu M Y, Wang H Y, Zhang H J, Ao X, Yu C M, Xie F T, Song S H. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes. Sci Agric Sin, 2014, 47:2927-2939 (in Chinese with English abstract).
[19] 赵银月, 詹和明, 代希茜, 单丹丹, 王铁军. 云南间作大豆耐荫性综合评价及鉴定指标筛选. 中国油料作物学报, 2019, 41:81-91.
Zhao Y Y, Zhan H M, Dai X X, Shan D D, Wang T J. Comprehensive evaluation and screening identification index of shade tolerance of intercroppong soybean. Chin J Oil Crop Sci, 2019, 41:81-91 (in Chinese with English abstract).
[20] 武晓玲, 梁海媛, 杨峰, 刘卫国, 佘跃辉, 杨文钰. 大豆苗期耐荫性综合评价及其鉴定指标的筛选. 中国农业科学, 2015, 48:2497-2507.
Wu X L, Liang H Y, Yang F, Liu W G, She Y H, Yang W Y. Comprehensive evaluation and screening identification index of shade tolerance at seedling in soybean. Sci Agric Sin, 2015, 48:2497-2507 (in Chinese with English abstract).
[21] 孙祖东, 张志鹏, 蔡昭艳, 曾维英, 赖振光, 陈怀珠, 杨守臻, 唐向民, 苏燕竹, 盖钧镒. 大豆耐荫性评价体系的建立与中国南方大豆资源耐荫性变异. 中国农业科学, 2017, 50:792-801.
Sun Z D, Zhang Z P, Cai Z Y, Zeng W Y, Lai Z G, Chen H Z, Yang S Z, Tang X M, Su Y Z, Gai J Y. Establishment of an evaluation system of shade tolerance in soybean and its variation in southern china germplasm population. Sci Agric Sin, 2017, 50:792-801 (in Chinese with English abstract).
[22] Wang Y, Yang W, Zhang X, Yang T W, Liu W, Su B. Effects of shading at different growth stages on different traits and yield of soybean. Acta Agron Sin, 2013, 39:1871-1879.
doi: 10.3724/SP.J.1006.2013.01871
[23] 戴宏林, 吴小骏. 用凯氏定氮法测定植物干样品中的氮含量. 扬州大学学报(农业与生命科学版), 1995, 16(3):70.
Dai H L, Wu X J. Determination of nitrogen content in plant dry samples by Kjeldahl method. J Yangzhou Univ(Agric Life Sci Edn), 1995, 16(3):70 (in Chinese with English abstract).
[24] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 184-185, 195-196.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 184-185, 195-196.(in Chinese).
[25] 肖筱南. 小样本多元逐步回归的最优筛选分析. 统计与信息论坛, 2002, 17(1):22-24.
Xiao X N. The optimal screening analysis of small sample multiple stepwise regression. Statistics Inf Forum, 2002, 17(1):22-24 (in Chinese).
[26] 谢季坚, 刘承平. 模糊数学方法及其应用. 武汉: 华中科技大学出版社, 2013. pp 99-183.
Xie J J, Liu C P. Fuzzy Mathematics Method and Its Application. Wuhan: Huazhong University of Science and Technology Press, 2013. pp 99-183(in Chinese).
[27] 吴文超, 曲延英, 高文伟, 吴鹏昊, 陈全家. 不同棉花品种对盐、旱胁迫的光合响应及抗逆性评价. 新疆农业科学, 2016, 53:1569-1579.
Wu W C, Qu Y Y, Gao W W, Wu P H, Chen Q J. Photosynthetic response and stress resistance evaluation of different cotton varieties to salt and drought stress. Xinjiang Agric Sci, 2016, 53:1569-1579 (in Chinese with English abstract).
[28] 李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44:988-999.
Li L, Mao X G, Wang J Y, Chang X P, Liu Y P, Jing R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agron Sin, 2018, 44:988-999 (in Chinese with English abstract).
[29] 周广生, 梅方竹, 周竹青, 朱旭彤. 小麦不同品种耐湿性生理指标综合评价及其预测. 中国农业科学, 2003, 36:1378-1382.
Zhou G S, Mei F Z, Zhou Z Q, Zhu X T. Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties. Sci Agric Sin, 2003, 36:1378-1382 (in Chinese with English abstract).
[30] 晏庆九, 霍仕平, 张芳魁, 张兴瑞, 张健, 向振凡, 徐志江, 冯云超. 人工模拟阴湿环境对玉米自交系生长发育特性的影响. 作物学报, 2013, 39:2253-2261.
Yan Q J, Huo S P, Zhang F K, Zhang X R, Zhang J, Xiang Z F, Xu Z J, Feng Y C. Effects of artificial shaded-humid environment on growth characteristics in different maize inbred lines. Acta Agron Sin, 2013, 39:2253-2261 (in Chinese with English abstract).
[31] 刘勋, 张娇, 沈昱辰, 谢德斌, 李宏利, 李春明, 易小平, 赵勇, 唐道彬, 吕长文, 王季春. 基于光合系统参数建立马铃薯耐荫性综合评价体系. 植物学报, 2019, 54:360-370.
doi: 10.11983/CBB18182
Liu X, Zhang J, Shen Y C, Xie D B, Li H L, Li C M, Yi X P, Zhao Y, Tang D B, Lyu C W, Wang J C. A comprehensive evaluation system of potato shade tolerance was established based on photosynthetic system parameters. Chin Bull Bot, 2019, 54:360-370 (in Chinese with English abstract).
[32] 黄妙华. 玉米大豆间作品种筛选及田间配置研究. 南京农业大学硕士学位论文, 江苏南京, 2015.
Huang M H. Study on Seed Selection and Field Allocation of Maize and Soybean Intercropping. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015 (in Chinese with English abstract).
[33] 王竹, 杨文钰, 吴其林. 玉/豆套作荫蔽对大豆光合特性与产量的影响. 作物学报, 2007, 33:1502-1507.
Wang Z, Yang W Y, Wu Q L. Effects of shading in maize/soybean relay-cropping system on the photosynthetic characteristics and yield of soybean. Acta Agron Sin, 2007, 33:1502-1507 (in Chinese with English abstract).
[34] 王亚江, 魏海燕, 颜希亭, 葛梦婕, 孟天瑶, 张洪程, 戴其根, 霍中洋, 许轲, 费新茹. 光、氮及其互作对超级粳稻产量和氮、磷、钾吸收的影响. 作物学报, 2014, 40:1235-1244.
Wang Y J, Wei H Y, Yan X T, Ge M J, Meng T Y, Zhang H C, Huo Z Y, Xu K, Fei X R. Effects of light, nitrogen and their interaction on grain yield and nitrogen, phosphorus and potassium absorption in japonica super rice. Acta Agron Sin, 2014, 40:1235-1244 (in Chinese with English abstract).
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[3] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[4] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[5] DANG Ke, GONG Xiang-Wei, LYU Si-Ming, ZHAO Guan, TIAN Li-Xin, JIN Fei, YANG Pu, FENG Bai-Li, GAO Xiao-Li. Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping [J]. Acta Agronomica Sinica, 2021, 47(6): 1175-1187.
[6] WANG Yi-Fan, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground [J]. Acta Agronomica Sinica, 2021, 47(5): 929-941.
[7] LUO Kai, XIE Chen, WANG Jin, WANG Tian, HE Shun, YONG Tai-Wen, YANG Wen-Yu. Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2021, 47(4): 752-760.
[8] ZHANG Jin-Dan, FAN Hong, DU Jin-Yong, YIN Wen, FAN Zhi-Long, HU Fa-Long, CHAI Qiang. Synchronously higher planting density can increase yield via optimizing interspecific interaction of intercropped wheat and maize [J]. Acta Agronomica Sinica, 2021, 47(12): 2481-2489.
[9] WANG Fei, GUO Bin-Bin, SUN Zeng-Guang, YIN Fei, LIU Ling, JIAO Nian-Yuan, FU Guo-Zhan. Effects of elevated temperature and CO2 concentration on growth and yield of maize under intercropping with peanut [J]. Acta Agronomica Sinica, 2021, 47(11): 2220-2231.
[10] QIN Xiao-Min, PAN Hao-Nan, XIAO Jing-Xiu, TANG Li, ZHENG Yi. Effects of maize and soybean intercropping on nodule growth, nitrogen fixation of soybean under low phosphorus condition [J]. Acta Agronomica Sinica, 2021, 47(11): 2268-2277.
[11] REN Yuan-Yuan, ZHANG Li, YU Yao-Chuang, ZHANG Yan-Jun, ZHANG Sui-Qi. Competitive effect of soybean density on yield formation in maize/soybean intercropping systems [J]. Acta Agronomica Sinica, 2021, 47(10): 1978-1987.
[12] GAO Huan-Huan,YE Sang,WANG Qian,WANG Liu-Yan,WANG Rui-Li,CHEN Liu-Yi,TANG Zhang-Lin,LI Jia-Na,ZHOU Qing-Yuan,CUI Cui. Screening and comprehensive evaluation of aluminum-toxicity tolerance during seed germination in Brassca napus [J]. Acta Agronomica Sinica, 2019, 45(9): 1416-1430.
[13] DU Jin-Yong,CHAI Qiang,WANG Yi-Fan,FAN Hong,HU Fa-Long,YIN Wen,LI Deng-Ye. Effect of above- and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping [J]. Acta Agronomica Sinica, 2019, 45(9): 1398-1406.
[14] JI Long,SHEN Hong-Fang,XU Chun-Chun,CHEN Zhong-Du,FANG Fu-Ping. Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis [J]. Acta Agronomica Sinica, 2019, 45(7): 982-992.
[15] Yong-Fu REN,Guo-Peng CHEN,Tian PU,Cheng CHEN,Jin-Xi ZENG,Xiao PENG,Yan-Wei MA,Wen-Yu YANG,Xiao-Chun WANG. Responses of photosynthetic characteristics to low light stress in ear leaves of high photosynthetic efficiency maize at narrow row of maize-soybean strip intercropping system [J]. Acta Agronomica Sinica, 2019, 45(5): 728-739.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!