Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (9): 1724-1740.doi: 10.3724/SP.J.1006.2021.04253

• RESEARCH PAPERS • Previous Articles     Next Articles

Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L.

LOU Hong-Xiang1(), JI Jian-Li1, KUAI Jie1, WANG Bo1, XU Liang2, LI Zhen1, LIU Fang3, HUANG Wei4, LIU Shu-Yan5, YIN Yu-Feng6, WANG Jing1,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, Qinghai, China
    3National Agricultural Technology Extension Service Center, Beijing 100125, China
    4Huanggang Academy of Agriculture Science, Huanggang 438000, Hubei, China
    5Jingzhou Academy of Agriculture Science, Jingzhou 434000, Hubei, China
    6Xiangyang Academy of Agriculture Science, Xiangyang 441057, Hubei, China
  • Received:2020-11-23 Accepted:2021-01-21 Online:2021-09-12 Published:2021-02-19
  • Contact: WANG Jing E-mail:davidlou@webmail.hzau.edu.cn;wangjing@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000900)

Abstract:

High yield and lodging resistance are two goals in rapeseed production that are hard to reconcile, which restrict severely the further improvement of economic performance. This contradiction is particularly prominent in the high-density and mechanize farming mode. Due to maternal inheritance, there are obvious differences in yield and lodging resistance related traits among reciprocal hybrids, but the effects of planting density on these key traits are not clear. Here, Huahang 901 and Zheyou 50, which are conventional rapeseed varieties and their reciprocal hybrids, were planted with gradient density. The yield and lodging related traits were measured and the heterosis of each trait was calculated. In order to provide the basis for the selection of parents under the high-density and direct seeding farming mode, the effects of planting density on yield and lodging related traits of parents and reciprocal hybrids were investigated. The results showed that the actual yield and economic coefficient of two parents and their reciprocal hybrids were first increased and then decreased with the increase of the planting density. Interesting, the dynamic change pattern and the values of both traits of reciprocal hybrids under gradient density were well consistent with those of paternal parent. The variation of lodging index with increased density at two sites was different, but the values and the dynamic change patterns of reciprocal hybrids were consistent with that of the maternal parent. In 2017 in Xining, the actual yield of reciprocal hybrids had obvious heterosis and Huahang 901×Zheyou 50 showed higher heterosis than that of Zheyou 50×Huahang 901. Meanwhile, the Huahang 901×Zheyou 50 had greater heterosis of lodging resistances, but there was no such heterosis in Zheyou 50×Huahang 901. In conclusion, to obtain hybrids rapeseed varieties with high yield lodging resistance and dense planting under the high-density and direct seeding farming mode, it was better to select those varieties with high-yield as paternal parents and those varieties with strong lodging resistance as maternal parents.

Key words: rapeseed, reciprocal hybrids, planting density, yield, lodging

Fig. 1

Effects of planting densities on yield components in rapeseed in 2017 D1, D2, D3, D4, and D5 indicate the planting densities of 1.5×105, 3.0×105, 4.5×105, 6.0×105, and 7.5×105 plants hm-2, respectively. Zheyou 50, Huahang 901, Huahang 901×Zheyou 50, and Zheyou 50×Huahang 901 are two parents and their reciprocal hybrids, respectively. "

Fig. 2

Effects of planting densities on yield related traits in rapeseed in 2017 Abbreviations and treatments are the same as those given in Fig. 1. "

Table S1

Effects of planting densities on yield and yield components in rapeseed"

年份(点)
Year
(site)
品种
Variety
密度Density 单株角果数
Number of siliques per plant
每角果粒数
Number of seeds per silique
千粒重
1000-seed weight (g)
单株产量
Yield per plant (g)
实际产量Actual yield
(kg hm-2)
生物产量
Biological yield
(kg hm-2)
经济系数Economic coefficient
(%)
2017武汉 浙油50 D1 315.6 ab 20.6 a 3.47 hij 22.56 a 2590.5 j 10384.4 fg 24.97 jkl
2017 Wuhan Zheyou 50 D2 228.5 efg 19.0 b 3.60 bcde 15.63 e 2829.5 d 11064.8 e 25.62 hij
D3 192.6 ghij 18.8 b 3.63 ab 13.14 g 3082.7 b 11597.3 c 26.62 efg
D4 187.4 hij 18.1 c 3.62 abc 11.28 h 2651.9 ghij 10054.4 h 26.43 fg
D5 179.3 hij 17.4 de 3.68 a 10.48 ij 2618.1 hij 10314.7 g 25.41 ijk
华航901
Huahang 901
D1 292.0 abc 16.6 f 3.61 bcd 17.50 d 2418.2 l 9288.5 m 26.09 ghi
D2 283.6 bcd 14.6 hi 3.61 bcd 14.92 f 2649.8 ghij 9704.5 k 27.33 bcd
D3 203.6 ghi 13.8 jk 3.54 efg 9.95 jk 2717.9 efg 9725.6 k 28.00 ab
D4 198.9 ghij 13.5 kl 3.56 cdef 9.56 kl 2642.4 hij 9974.3 i 26.52 fg
D5 186.9 hij 13.1 l 3.55 def 8.69 m 2509.8 k 9611.2 l 26.17 gh
华航901 D1 326.5 a 17.8 cd 3.48 ghij 20.22 b 2684.7 fgh 9933.1 i 27.06 def
×浙油50 D2 311.0 ab 16.9 ef 3.51 fghi 18.45 c 2862.3 d 10449.1 f 27.45 abcd
Huahang 901× D3 254.5 cde 14.4 ij 3.48 ghij 12.75 g 3182.3 a 11336.5 d 28.11 a
Zheyou 50 D4 216.1 efgh 14.3 ij 3.52 fgh 10.88 hi 2736.2 ef 9849.7 j 27.84 abc
D5 206.8 fghi 13.4 kl 3.46 hij 9.59 kl 2601.5 ij 9542.8 l 27.29 cde
浙油50× D1 246.1 de 16.6 f 3.42 j 16.97 d 2405.3 l 10075.0 h 23.90 n
年份(点)
Year
(site)
品种
Variety
密度Density 单株角果数
Number of siliques per plant
每角果粒数
Number of seeds per silique
千粒重
1000-seed weight (g)
单株产量
Yield per plant (g)
实际产量Actual yield
(kg hm-2)
生物产量
Biological yield
(kg hm-2)
经济系数Economic coefficient
(%)
华航901 D2 244.6 ef 15.4 g 3.45 ij 13.00 g 2663.1 ghi 10993.1 e 24.26 mn
Zheyou 50× D3 187.3 hij 15.3 g 3.51 fghi 10.06 jk 2961.2 c 12150.1 b 24.42 lmn
Huahang 901 D4 171.4 ij 15.2 gh 3.54 efg 9.22 lm 3055.2 b 12342.0 a 24.79 klm
D5 164.2 j 15.2 gh 3.52 fgh 7.79 n 2754.5 e 11266.8 d 24.50 lmn
2017西宁 浙油50 D1 241.2 c 23.9 c 3.88 abc 22.39 c 3129.4 j 12767.8 n 24.54 m
2017 Xining Zheyou 50 D2 162.6 g 21.8 de 3.72 ef 13.20 e 3884.0 f 14689.3 e 26.48 hijk
D3 126.8 ij 21.7 de 3.56 g 9.79 h 4138.6 cd 15445.8 c 26.82 ghij
D4 100.9 m 19.5 gh 3.86 abc 7.59 jk 3886.1 f 14351.0 fg 27.14 fghi
D5 93.7 n 19.6 gh 3.91 abc 7.18 l 3852.9 f 14978.6 d 25.75 kl
华航901 D1 225.8 d 26.4 a 3.81 cde 22.72 c 3352.7 i 12218.5 o 27.50 efg
Huahang 901 D2 161.6 g 20.3 fg 3.84 bcd 12.61 f 3686.3 g 12872.5 m 28.67 cd
D3 128.8 ij 19.0 hi 3.94 ab 9.65 h 3878.6 f 13063.0 l 29.75 ab
D4 95.9 mn 19.3 hi 3.96 a 7.34 kl 3963.1 ef 13707.7 k 28.95 bcd
D5 76.3 o 18.6 i 3.95 ab 5.61 n 3567.7 gh 12720.1 n 28.11 de
华航901 D1 306.6 a 25.1 b 3.68 fg 28.28 a 3870.6 f 14209.0 h 27.25 efgh
×浙油50 D2 181.1 f 22.1 d 3.68 f 14.70 d 4072.4 de 14701.0 e 27.77 ef
Huahang 901× D3 150.4 h 17.1 jk 3.87 abc 9.93 h 4573.7 a 15004.7 d 30.52 a
Zheyou 50 D4 123.6 j 16.6 k 3.86 abc 7.90 j 4198.8 cd 14264.2 gh 29.50 bc
D5 107.0 l 21.1 ef 3.94 ab 8.88 i 4113.3 cd 13944.5 j 29.54 bc
浙油50× D1 295.0 b 21.3 de 3.72 ef 23.38 b 3554.7 h 14365.2 f 24.81 m
华航901 D2 193.0 e 18.5 i 3.64 fg 12.98 e 3644.0 gh 14049.1 i 25.97 jkl
Zheyou 50× D3 153.8 h 17.1 jk 3.93 ab 10.33 g 4208.0 c 16039.6 b 26.29 ijk
Huahang 901 D4 132.0 i 17.5 j 3.97 a 9.20 i 4422.8 b 16470.1 a 26.89 fghi
D5 117.0 k 15.0 l 3.74 def 6.58 m 3621.3 gh 14371.2 f 25.26 lm
方差分析Variance analyses
年份(点) Year & Site (YS) ** ** ** ** ** ** **
品种Variety (V) ** ** ** ** ** ** **
密度Density (D) ** ** ** ** ** ** **
YS×V ** ** ** ** ** ** **
YS×D ** ** ** ** ** ** **
V×D NS ** ** ** ** ** **
YS×V×D ** ** ** ** ** ** *

Fig. 3

Effects of planting densities on yield heterosis index of reciprocal hybrids in 2017 Abbreviations and treatments are the same as those given in Fig. 1. Values followed by different lowercase letters are significantly different among different densities in the same variety at P < 0.05. "

Fig. 4

Effects of planting densities on main agronomic traits at maturity stage in rapeseed in 2017 Abbreviations and treatments are the same as those given in Fig. 1. "

Table S2

Effects of planting densities on main agronomic traits of rapeseed at maturity (2017, Wuhan)"

品种
Variety
密度
Density
株高
Plant height (cm)
一次分枝高度
Primary branch height (cm)
分枝数
Branch
number
根颈粗
Root crown diameter (mm)
地上部鲜重
Shoot fresh weight (g)
根鲜重
Root fresh weight (g)
茎秆抗折力
Stem breaking resistance (N)
浙油50 D1 212.6 a 88.3 gh 7.9 c 20.47 b 328.92 a 42.30 a 140.78 a
Zheyou 50 D2 202.0 c 94.6 abc 6.2 h 16.37 g 200.80 f 23.98 g 108.65 c
D3 193.1 e 95.1 ab 6.1 i 15.22 h 173.52 h 20.31 i 98.64 cd
D4 188.3 f 96.0 a 5.6 k 14.85 ij 157.29 i 19.08 j 92.02 de
D5 180.8 ij 86.8 hij 5.4 l 14.72 j 142.82 k 18.56 j 78.18 fg
华航901 D1 200.9 c 87.7 ghi 8.0 b 18.38 d 231.58 e 30.66 d 95.80 cde
Huahang D2 186.4 fg 89.9 fg 6.5 f 17.94 e 176.17 h 28.38 e 83.44 ef
901 D3 181.0 hij 90.8 ef 6.3 g 15.21 h 146.77 j 17.06 k 61.94 hi
D4 180.3 ij 92.3 cde 6.1 i 14.45 k 129.48 l 16.28 l 56.74 hij
D5 172.6 k 83.1 kl 5.8 j 13.87 m 116.39 n 14.81 m 49.40 ij
华航901 D1 196.8 d 83.0 kl 8.1 a 21.05 a 263.66 b 40.51 b 134.12 ab
×浙油50 D2 189.0 f 84.5 jk 7.7 d 20.65 b 241.60 c 37.74 c 122.09 b
Huahang 901 D3 179.8 ij 85.5 ij 6.6 e 16.84 f 141.65 k 26.91 f 65.41 gh
×Zheyou 50 D4 179.1 j 85.8 ij 6.3 g 14.96 ij 130.50 l 21.22 h 56.91 hij
D5 167.9 l 81.0 l 5.2 n 14.47 k 119.43 mn 21.08 h 47.83 j
浙油50× D1 208.5 b 93.3 bcd 6.5 f 18.93 c 235.16 d 40.20 b 103.34 cd
华航901 D2 199.7 cd 94.1 abc 5.8 j 17.85 e 194.07 g 27.71 e 94.33 de
Zheyou 50× D3 184.3 gh 92.6 cde 5.3 m 15.03 hi 156.82 i 20.09 i 84.87 ef
Huahang 901 D4 182.5 hi 91.3 def 5.1 o 14.33 k 130.48 l 17.77 k 63.30 h
D5 173.1 k 81.3 l 4.6 p 14.11 l 121.91 m 15.92 l 59.04 hij
方差分析Variance analyses
品种Variety (V) ** ** ** ** ** ** **
密度Density (D) ** ** ** ** ** ** **
V×D ** ** ** ** ** ** **

Table S3

Effects of planting densities on main agronomic traits of rapeseed at maturity (2017, Xining)"

品种
Variety
密度Density 株高
Plant height (cm)
一次分枝高度
Primary branch height (cm)
分枝数
Branch
number
根颈粗
Root crown diameter (mm)
地上部鲜重
Shoot fresh weight (g)
根鲜重
Root fresh weight (g)
茎秆抗折力
Stem breaking resistance (N)
浙油50 D1 174.4 a 73.1 g 5.9 e 17.38 c 292.65 c 31.21 b 130.01 b
Zheyou 50 D2 168.1 b 77.8 cd 5.2 i 13.41 f 197.37 e 14.51 h 69.91 de
D3 157.8 de 89.3 a 4.7 k 12.42 k 129.09 i 13.06 i 55.57 ef
D4 143.5 hi 79.9 b 4.1 m 10.15 o 91.74 k 7.40 m 33.31 h
D5 132.7 k 74.2 f 4.0 o 9.11 r 80.72 l 6.65 n 24.21 h
华航901 D1 126.0 l 26.1 p 7.0 c 17.44 c 190.02 f 24.12 d 73.22 d
Huahang D2 116.2 m 31.7 o 6.0 d 12.99 h 121.17 j 15.26 g 62.01 def
901 D3 113.5 m 34.9 n 5.5 g 12.80 i 118.13 j 15.17 gh 48.22 fg
D4 106.3 n 44.0 l 4.1 n 9.86 p 61.55 m 8.99 k 34.43 gh
D5 103.4 n 40.7 m 4.0 no 9.39 q 60.03 mn 7.24 mn 25.30 h
品种
Variety
密度Density 株高
Plant height (cm)
一次分枝高度
Primary branch height (cm)
分枝数
Branch
number
根颈粗
Root crown diameter (mm)
地上部鲜重
Shoot fresh weight (g)
根鲜重
Root fresh weight (g)
茎秆抗折力
Stem breaking resistance (N)
华航901 D1 158.8 de 58.7 j 7.5 b 23.11 a 337.99 b 33.53 a 125.40 b
×浙油50 D2 149.4 f 63.5 i 5.8 f 14.93 d 179.60 g 18.73 f 67.68 de
Huahang 901 D3 141.8 i 67.6 h 5.0 j 13.18 g 128.38 i 12.57 i 48.46 fg
×Zheyou 50 D4 136.5 j 67.6 h 4.5 l 11.87 l 78.40 l 9.70 j 31.86 h
D5 135.6 jk 78.0 c 4.5 l 10.53 n 77.11 l 9.04 jk 20.69 h
浙油50× D1 163.0 c 56.0 k 7.6 a 17.64 b 344.22 a 26.15 c 158.41 a
华航901 D2 160.8 cd 73.5 g 5.9 e 14.45 e 225.05 d 19.98 e 92.68 c
Zheyou 50× D3 156.8 e 77.2 de 5.4 h 12.61 j 146.89 h 12.66 i 57.56 ef
Huahang 901 D4 148.6 fg 76.8 e 3.6 p 11.16 m 81.25 l 8.19 l 31.64 h
D5 145.6 gh 73.4 g 3.2 q 8.34 s 56.11 n 4.29 o 19.84 h
方差分析Variance analyses
品种Varity (V) ** ** ** ** ** ** **
密度Density (D) ** ** ** ** ** ** **
V×D ** ** ** ** ** ** **

Fig. 5

Effects of planting densities on lodging index of stem in rapeseed in 2017 P1, P2, P3, and P4 indicate the first, second, third and fourth part from bottom to the top of the main stem. Values followed by different letters are significantly different among different treatments atP < 0.05. Other abbreviations and treatments are the same as those given in Fig. 1. "

Table S4

Effects of planting densities on lodging index at different parts of rapeseed stem"

年份(点)
Year (site)
品种
Variety
密度Density 第1段
Part one
(cm g g-1)
第2段
Part two
(cm g g-1)
第3段
Part three
(cm g g-1)
第4段
Part four
(cm g g-1)
4段平均值
Average of four parts (cm g g-1)
2017 武汉
2017 Wuhan
浙油50
Zheyou 50
D1 2.81 c 3.20 b 3.46 b 3.23 d 3.17 b
D2 2.31 h 2.49 f 2.69 h 2.93 g 2.61 g
D3 2.29 hi 2.32 h 2.42 j 2.51 ij 2.39 j
D4 1.79 k 2.19 i 2.38 j 2.12 l 2.12 l
D5 1.61 l 1.96 k 2.19 k 2.17 kl 1.98 n
华航901 D1 3.07 a 3.29 a 3.71 a 3.84 a 3.48 a
Huahang 901 D2 2.88 b 3.02 c 3.21 cd 3.43 c 3.14 b
D3 2.82 c 2.80 d 3.07 e 3.02 f 2.93 d
D4 2.59 e 2.66 e 3.20 d 3.00 f 2.86 e
D5 2.38 g 2.45 fg 2.98 f 2.52 ij 2.58 gh
华航901 D1 2.70 d 2.98 c 3.19 d 3.41 c 3.07 c
×浙油50 D2 2.45 f 2.69 e 2.83 g 3.10 e 2.77 f
Huahang 901 D3 2.38 g 2.42 g 2.63 h 2.85 h 2.57 gh
×Zheyou 50 D4 2.35 gh 2.45 fg 2.82 g 2.55 i 2.54 hi
D5 2.12 j 2.24 i 2.50 i 2.47 j 2.33 k
浙油50× D1 2.69 d 3.02 c 3.27 c 3.60 b 3.15 b
华航901 D2 2.24 i 2.33 h 2.52 i 2.97 fg 2.51 i
Zheyou 50× D3 1.83 k 1.96 k 2.19 k 2.46 j 2.11 l
Huahang 901 D4 1.78 k 2.05 j 2.17 k 2.21 k 2.05 m
年份(点)
Year (site)
品种
Variety
密度Density 第1段
Part one
(cm g g-1)
第2段
Part two
(cm g g-1)
第3段
Part three
(cm g g-1)
第4段
Part four
(cm g g-1)
4段平均值
Average of four parts (cm g g-1)
D5 1.51 m 1.74 l 1.93 l 2.20 k 1.84 o
2017 西宁
2017 Xining
浙油50
Zheyou 50
D1 2.86 e 3.23 c 2.71 f 2.36 f 2.79 e
D2 2.15 i 3.10 ef 2.59 g 2.28 h 2.53 g
D3 2.56 g 2.79 h 2.45 h 1.84 l 2.41 i
D4 2.83 e 3.04 fg 3.02 d 2.28 gh 2.79 e
D5 3.42 b 3.86 a 3.42 a 2.47 e 3.29 a
华航901 D1 1.77 k 2.12 k 2.83 e 3.30 a 2.50 g
Huahang 901 D2 1.62 l 1.81 m 1.86 j 2.05 j 1.83 m
D3 1.39 m 1.74 n 1.85 j 1.96 k 1.73 n
D4 1.43 m 1.67 n 1.75 k 1.40 m 1.56 o
D5 1.95 j 2.28 j 2.11 i 2.13 i 2.12 k
华航901 D1 2.62 g 3.02 g 2.63 g 2.34 fg 2.65 f
×浙油50 D2 2.40 h 2.42 i 2.10 i 1.96 k 2.22 j
Huahang 901 D3 2.18 i 2.17 k 1.91 j 1.81 l 2.02 l
×Zheyou 50 D4 1.91 j 1.96 l 1.53 l 1.42 m 1.71 n
D5 2.70 f 2.82 h 2.46 h 1.79 l 2.44 h
浙油50× D1 3.01 d 3.15 de 3.24 c 2.86 b 3.06 b
华航901 D2 2.72 f 3.03 g 3.03 d 2.86 b 2.91 d
Zheyou 50× D3 2.88 e 3.21 cd 3.02 d 2.72 c 2.96 c
Huahang 901 D4 3.20 c 3.26 c 3.25 c 2.43 e 3.04 b
D5 3.66 a 3.49 b 3.35 b 2.58 d 3.27 a
方差分析Variance analyses
年份(点) Year & Site (YS) ** ** ** ** **
品种Variety (V) ** ** ** ** **
密度Density (D) ** ** ** ** **
YS×V ** ** ** ** **
YS×D ** ** ** ** **
V×D ** ** ** ** **
YS×V×D ** ** ** ** **

Fig. 6

Effects of planting densities on lodging heterosis index of reciprocal combinations in 2017 Abbreviations and treatments are the same as those given in Fig. 1. Values followed by different letters are significantly different among different densities in the same variety at P < 0.05. "

Table S5

Effects of planting densities on lodging heterosis index of reciprocal combinations"

年份(点)
Year (site)
品种
Variety
密度
Density
株高
Plant height (%)
地上部鲜重
Shoot fresh weight (%)
倒伏指数Lodging index (%)
第1段
Part one
第2段
Part two
第3段
Part three
第4段
Part four
平均值
Average
2017 武汉
2017 Wuhan
华航901
×浙油50
Huahang 901
×Zheyou 50
D1 95.19 f 94.08 d 91.76 b 91.84 d 88.90 c 96.44 cd 92.24 d
D2 97.32 cde 128.20 a 94.38 b 97.66 bc 95.94 b 97.54 c 96.44 bc
D3 96.12 ef 88.44 f 93.15 b 94.67 cd 95.98 b 103.13 ab 96.84 b
D4 97.20 de 91.00 e 107.24 a 101.25 ab 101.04 a 99.77 bc 102.12 a
D5 95.03 f 92.15 de 106.48 a 101.57 a 96.56 b 105.41 a 102.20 a
AVG 96.17 98.77 98.60 97.40 95.69 100.46 97.97
浙油50×
华航901
Zheyou 50×
Huahang 901
D1 100.86 b 83.91 g 91.43 b 93.26 d 91.24 c 101.82 b 94.58 c
D2 102.82 a 102.97 b 86.24 c 84.69 e 85.22 d 93.39 d 87.58 e
D3 98.53 cd 97.92 c 71.66 f 76.77 f 79.96 e 88.85 e 79.50 g
D4 99.03 c 91.02 e 81.42 d 84.41 e 77.91 e 86.20 e 82.38 f
D5 97.98 cd 94.07 d 75.46 e 79.09 f 74.77 f 93.70 d 80.81 fg
AVG 99.84 93.98 81.24 83.64 81.82 92.79 84.97
2017 西宁
2017 Xining
华航901
×浙油50
Huahang 901
×Zheyou 50
D1 105.74 ef 140.05 a 113.01 e 112.93 d 94.91 e 82.70 g 100.14 f
D2 105.13 f 112.76 c 127.33 d 98.41 e 94.59 e 90.71 f 101.76 f
D3 104.55 f 103.91 e 110.25 e 96.01 e 89.06 f 95.17 e 97.41 g
D4 109.30 d 102.38 e 89.68 g 83.36 g 64.42 g 77.39 h 78.44 i
D5 114.91 c 109.62 cd 100.62 f 91.86 f 88.70 f 78.03 h 90.29 h
AVG 107.93 113.75 108.18 96.51 86.34 84.80 93.61
浙油50×
华航901
Zheyou 50×
Huahang 901
D1 108.52 de 142.63 a 130.16 d 117.86 c 116.90 d 100.89 d 115.75 e
D2 113.16 c 141.32 a 144.54 b 123.31 b 136.30 b 132.32 b 133.43 c
D3 115.59 c 118.84 b 146.17 ab 141.80 a 140.66 a 143.17 a 142.85 a
D4 118.97 b 106.03 de 150.48 a 138.49 a 136.59 b 132.07 b 139.54 b
D5 123.35 a 79.73 f 136.22 c 113.59 d 121.00 c 112.33 c 120.82 d
AVG 115.92 117.71 141.52 127.01 130.29 124.16 130.48

Fig. 7

Fitting curve of planting density with actual yield and lodging index in 2017 Abbreviations are the same as those given in Fig. 1. ** Significant at the 1% probability level. "

[1] 刘成, 黄杰, 冷博峰, 冯中朝, 李俊鹏. 我国油菜产业现状, 发展困境及建议. 中国农业大学学报, 2017, 22(12):203-210.
Liu C, Huang J, Leng B F, Feng Z C, Li J P. Current situation, development difficulties and suggestions of Chinese rape industry. J China Agric Univ, 2017, 22(12):203-210 (in Chinese with English abstract).
[2] Food and Agriculture Organization (FAO) of the United Nations. FAO Statistical Databases in 2018. [2020-09-20]. http://www.fao.org.
[3] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41:485-489.
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41:485-489 (in Chinese with English abstract).
[4] 熊秋芳, 文静, 李兴华, 沈金雄. 中国油菜科技创新与产业发展. 中国农业科技导报, 2014, 16(3):14-22.
Xiong Q F, Wen J, Li X H, Shen J X. Technological innovation and industrial development of rapeseed in China. J Agric Sci Technol, 2014, 16(3):14-22 (in Chinese with English abstract).
[5] 李小勇, 周敏, 王涛, 张兰, 周广生, 蒯婕. 种植密度对油菜机械收获关键性状的影响. 作物学报, 2018, 44:278-287.
Li X Y, Zhou M, Wang T, Zhang L, Zhou G S, Kuai J. Effects of planting density on the mechanical harvesting characteristics of semi-winter rapeseed. Acta Agron Sin, 2018, 44:278-287 (in Chinese with English abstract).
[6] 安伟, 樊智翔, 郭玉宏, 米小红, 徐澜. 玉米品种的增产潜力与改良方向. 山西农业大学学报, 2003, 23:386-388.
An W, Fan Z X, Guo Y H, Mi X H, Xu L. Utilization and quality improvement of high starch maize. J Shanxi Agric Univ, 2003, 23:386-388 (in Chinese with English abstract).
[7] 李豪圣, 宋健民, 刘爱峰, 程敦公, 王西芝, 杜长林, 赵振东, 刘建军. 播期和种植密度对超高产小麦‘济麦22’产量及其构成因素的影响. 中国农学通报, 2011, 27(5):243-248.
Li H S, Song J M, Liu A F, Cheng D G, Wang X Z, Du C L, Zhao Z D, Liu J J. Effect of sowing time and planting density on yield and components of ‘Jimai 22’ with super-high yield. Chin Agric Sci Bull, 2011, 27(5):243-248 (in Chinese with English abstract).
[8] 刘浩, 王加峰, 孙大元, 郭涛, 刘永柱, 王慧, 陈志强. 水稻矮秆基因研究进展. 广东农业科学, 2013, 40(22):139-144.
Liu H, Wang J F, Sun D Y, Guo T, Liu Y Z, Wang H, Chen Z Q. Research progress of dwarf genes in rice. Guangdong Agric Sci, 2013, 40(22):139-144 (in Chinese with English abstract).
[9] 王成瑷, 王伯伦, 张文香, 赵磊, 赵秀哲, 高连文. 栽培密度对水稻产量及品质的影响. 沈阳农业大学学报, 2004, 35:318-322.
Wang C A, Wang B L, Zhang W X, Zhao L, Zhao X Z, Gao L W. Effect of planting density on grain yield and quality of rice. J Shenyang Agric Univ, 2004, 35:318-322 (in Chinese with English abstract).
[10] 杨国虎, 李新, 王承莲, 罗湘宁. 种植密度影响玉米产量及部分产量相关性状的研究. 西北农业学报, 2006, 15(5):57-60.
Yang G H, Li X, Wang C L, Luo X N. Study on effects of plant densities on the yield and the related characters of maize hybrids. Acta Agric Boreali-Occident Sin, 2006, 15(5):57-60 (in Chinese with English abstract).
[11] 周江明, 赵琳, 董越勇, 徐进, 边武英, 毛杨仓, 章秀福. 氮肥和栽植密度对水稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2010, 16:274-281.
Zhou J M, Zhao L, Dong Y Y, Xu J, Bian W Y, Mao Y C, Zhang X F. Nitrogen and transplanting density interactions on the rice yield and N use rate. J Plant Nutr Fert, 2010, 16:274-281 (in Chinese with English abstract).
[12] Li H T, Li J J, Song J R, Zhao B, Guo C C, Wang B, Zhang Q H, Wang J, King G J, Liu K D. An auxin signaling geneBnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. New Phytol, 2019, 222:837-851.
[13] Ma N, Yuan J Z, Li M, Li J, Zhang L Y, Liu L X, Naeem M S, Zhang C L. Ideotype population exploration: growth, photosynthesis, and yield components at different planting densities in winter oilseed rape (Brassica napusL.). PLoS One, 2014, 9:e114232.
[14] Kuai J, Sun Y Y, Zhou M, Zhang P P, Zuo Q S, Wu J S, Zhou G S. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res, 2016, 199:89-98.
[15] 蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51:4625-4632.
Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Sci Agric Sin, 2018, 51:4625-4632 (in Chinese with English abstract).
[16] 赵永国, 程勇, 陆光远, 徐劲松, 付桂萍, 邹锡玲, 乔醒, 刘清云, 张学昆. 密植条件下国审冬油菜品种主要性状特点与差异. 中国油料作物学报, 2015, 37:285-290.
Zhao Y G, Cheng Y, Lu G Y, Xu J S, Fu G P, Zou X L, Qiao X, Liu Q Y, Zhang X K. Characteristics and variation of winter rapeseed (Brassica napus L.) cultivars under high density. Chin J Oil Crop Sci, 2015, 37:285-290 (in Chinese with English abstract).
[17] 宋稀, 刘凤兰, 郑普英, 张学昆, 陆光远, 付桂萍, 程勇. 高密度种植专用油菜重要农艺性状与产量的关系分析. 中国农业科学, 2010, 43:1800-1806.
Song X, Liu F L, Zheng P Y, Zhang X K, Lu G Y, Fu G P, Cheng Y. Correlation analysis between agronomic traits and yield of rapeseed (Brassica napus L.) for high-density planting. Sci Agric Sin, 2010, 43:1800-1806 (in Chinese with English abstract).
[18] 王寅, 鲁剑巍. 中国冬油菜栽培方式变迁与相应的养分管理策略. 中国农业科学, 2015, 48:2952-2966.
Wang Y, Lu J W. The transitional cultivation patterns of winter oilseed rape in China and the corresponding nutrient management strategies. Sci Agric Sin, 2015, 48:2952-2966 (in Chinese with English abstract).
[19] Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67:35-49.
[20] Hu Q, Hua W, Yin Y, Zhang X, Liu L, Shi J, Zhao Y, Qin L, Chen C, Wang H Z. Rapeseed research and production in China. Crop J, 2017, 5:127-135.
[21] Huang X H, Yang S H, Gong J Y, Zhao Q, Feng Q, Zhan Q L, Zhao Y, Li W J, Cheng B Y, Xia J H, Chen N, Huang T, Zhang L, Fan D L, Chen J Y, Zhou C C, Lu Y Q, Weng Q J, Han B. Genomic architecture of heterosis for yield traits in rice. Nature, 2016, 537:629-633.
[22] 傅廷栋. 中国油菜生产和品种改良的现状与前景. 安徽农学通报, 2000, 6(1):3-10.
Fu T D. Current status and prospects of rape production and variety improvement in China. Anhui Agric Sci Bull, 2000, 6(1):3-10 (in Chinese with English abstract).
[23] 乌兰, 马伟杰, 义如格勒图, 崔仲楠, 鲁兴华. 油菜秸秆饲用价值分析及其开发利用. 内蒙古草业, 2007, 19(1):41-42.
Wu L, Ma W J, Yi R G L T, Cui Z N, Lu X H. Feeding value analysis and development and utilization of rapeseed straw. Inner Mongolia Pratac, 2007, 19(1):41-42 (in Chinese with English abstract).
[24] 左旭. 我国农业废弃物新型能源化开发利用研究. 中国农业科学院博士学位论文, 北京, 2015.
Zuo X. A Research on the Development and Utilization of the Agricultural Residues as New Sources Energy in China. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[25] Li N, Song O J, Peng W, Zhan J P, Shi J Q, Wang X F, Liu G H, Wang H Z. Maternal control of seed weight in rapeseed (Brassica napus L.): the causal link between the size of pod (mother, source) and seed (offspring, sink). Plant Biotechnol J, 2019, 17:736-749.
[26] Guo M, Rupe M A, Dieter J A, Zou J J, Spielbauer D, Duncan K E, Howard R J, Hou Z L, Simmons C R. Cell number regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell, 2010, 22:1057-1073.
[27] Ma J, Zhang D F, Cao Y Y, Wang L F, Li J J, Lubberstedt T, Wang T Y, Li Y, Li H Y. Heterosis-related genes under different planting densities in maize. J Exp Bot, 2018, 69:5077-5087.
[28] Qian C R, Yu Y, Gong X J, Jiang Y B, Zhao Y, Yang Z L, Hao Y B, Li L, Song Z W, Zhang W J. Response of grain yield to plant density and nitrogen rate in spring maize hybrids released from 1970 to 2010 in Northeast China. Crop J, 2016, 4:459-467.
[29] 沈金雄, 傅廷栋, 杨光圣, 马朝芝, 涂金星. 甘蓝型油菜杂种优势及产量性状的遗传改良. 中国油料作物学报, 2005, 27(1):5-9.
Shen J X, Fu T D, Yang G S, Ma C Z, Tu J X. Analysis of heterosis reveals genetic improvement for yield traits in rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2005, 27(1):5-9 (in Chinese with English abstract).
[30] 刘绚霞, 董振生, 刘创社, 董军刚, 李红兵. 甘蓝型优质杂交油菜主要农艺性状配合力与遗传力研究. 中国油料作物学报, 2001, 23(3):2-5.
Liu X X, Dong Z S, Liu C S, Dong J G, Li H B. Combining ability and genetic ability of main agronomy characters in double-low rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2001, 23(3):2-5 (in Chinese with English abstract).
[31] 王天宇, 祝云芳, 陈华璋, 陈泽辉. 玉米正反交杂交种F1主要性状的差异性分析. 玉米科学, 2007, 15(4):52-55.
Wang T Y, Zhu Y F, Chen H Z, Chen Z H. Study on Differences of main characters between maize hybrids and reciprocal crosses. J Maize Sci, 2007, 15(4):52-55 (in Chinese with English abstract).
[32] 张耀文, 赵小光, 田建华, 王辉, 王学芳, 李殿荣, 侯君利, 关周博, 韦世豪. 甘蓝型油菜正反交组合叶片净光合速率和叶绿素含量的比较. 华北农学报, 2015, 30(5):135-140.
Zhang Y W, Zhao X G, Tian J H, Wang H, Wang X F, Li D R, Hou J L, Guan Z B, Wei S H. Comparison of net photosynthetic rate and chlorophyll content of Brassica napus between orthogonal and reciprocal combinations. Acta Agric Boreali-Sin, 2015, 30(5):135-140 (in Chinese with English abstract).
[33] Magrath R, Mithen R. Maternal effects on the expression of individual aliphatic glucosinolates in seeds and seedlings of Brassica napus. Plant Breed, 1993, 111:249-252.
[34] Hua W, Li R J, Zhan G M, Liu J, Li J, Wang X F, Liu G H, Wang H Z. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Plant J, 2012, 69:432-444.
[35] Li N, Peng W, Shi J Q, Wang X F, Liu G H, Wang H Z. The natural variation of seed weight is mainly controlled by maternal genotype in rapeseed (Brassica napus L.). PLoS One, 2015, 10:e0125360.
[36] Liu J, Hao W J, Liu J, Fan S H, Zhao W, Deng L B, Wang X F, Hu Z Y, Hua W, Wang H Z. A novel chimeric mitochondrial gene confers cytoplasmic effects on seed oil content in polyploid rapeseed (Brassica napus). Mol Plant, 2019, 12:582-596.
[37] 王学芳, 田建华, 董育红, 关周博, 杨丽. 不同密度紧凑型油菜的源库特征及与收获指数的相关研究. 中国农学通报, 2020, 36(18):33-38.
Wang X F, Tian J H, Dong Y H, Guan Z B, Yang L. Compact rapeseed under different densities: sink-source characteristics and their correlation with harvest index. Chin Agric Sci Bull, 2020, 36(18):33-38 (in Chinese with English abstract).
[38] 孙超, 汪骞, 唐伟杰, 李丽萍, 夏张婷, 赵海洋, 韩月鑫, 林良斌. 受母性影响的油菜种子性状研究. 种子, 2018, 37(5):9-12.
Sun C, Wang Q, Tang W J, Li L P, Xia Z T, Zhao H Y, Han Y X, Lin L B. Study on the characters of seed in Brassica napus affected by maternale effects. Seed, 2018, 37(5):9-12 (in Chinese with English abstract).
[39] 王瑞, 李加纳, 唐章林, 谌利, 张学昆. 甘蓝型黄籽油菜产量性状的遗传分析. 中国农学通报. 2004, 20(5):37-38.
Wang R, Li J N, Tang Z L, Chen L, Zhang X K. Genetic analysis for yield characters in yellow-seeded rapeseed lines (Brassica napusL.). Chin Agric Sci Bull. 2004, 20(5):37-38 (in Chinese with English abstract).
[40] 顾慧, 戚存扣. 甘蓝型油菜(Brassica napusL.)抗倒性状的主基因+多基因遗传分析. 作物学报, 2008, 34:376-381.
Gu H, Qi C K. Genetic analysis of lodging resistance with mixed model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2008, 34:376-381 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[6] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[7] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[8] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[9] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[10] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[11] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[12] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[13] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[14] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[15] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!