Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (4): 752-760.doi: 10.3724/SP.J.1006.2021.04129


Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean

LUO Kai1(), XIE Chen1, WANG Jin1, WANG Tian1, HE Shun2, YONG Tai-Wen1,*(), YANG Wen-Yu1   

  1. 1College of Agriculture, Sichuan Agriculture University / Key Laboratory of Crop Physiology, Ecology and Cultivation in Southwest China, Ministry of Agriculture and Rural Affairs / Sichuan Engineering Research Center for Crop Strip Intercropping System, Wenjiang 611130, Sichuan, China
    2Chengdu Seed Management Station / Chengdu Agricultural Product Quality and Safety Center, Qingyang 610072, Sichuan, China
  • Received:2020-06-16 Accepted:2020-10-14 Online:2021-04-12 Published:2020-11-06
  • Contact: YONG Tai-Wen E-mail:592234005@qq.com;scndytw@qq.com
  • Supported by:
    National Key Research and Development Program of China(2018YFD0201006);China Agriculture Research System (Soybean)(CARS-04-03A)


Maize shading inhibited the growth of soybean at the seedling stage, reduced the number of soybean flowers and pods, and decreased the yield of soybean under maize-soybean relay strip intercropping system. To explore the effect of exogenous plant growth regulators (PGRs) on flowering, pod setting, and yield of soybean is important for relay strip intercropping soybean production. Field experiments were used one-factor randomized block design to investigate the effect of foliage spraying 6-Benzylaminopurine (6-BA), diethyl aminoethyl hexanoate (DTA-6) and uniconazole (S3307) at the beginning of flowering stage on abscission of flowers and pods, leaf carbon and nitrogen metabolism, and yield formation in relay strip intercropping soybean. The results demonstrated that spraying PRGs improved the sucrose synthetase (SS), sucrose phosphate synthetase (SPS) and invertase (Inv) activities in soybean leaves. Exogenous PGRs increased soluble sugar content in stems, leaves, and pods of soybean at the beginning of grain-filling stage, promoted soluble sugar transport from stem and leaves to pods. Exogenous PGRs increased carbon and nitrogen content and decreased the C:N ratio in soybean leaves at the beginning of podding stage. PGRs increased the carbon content, decreased nitrogen content, and increased the C:N ratio in soybean leaves at beginning of grain-filling stage. Foliar spraying PGRs increased the number of flowers and pods, reduced the abscission pod number, and decreased the ratio of pods abscission and flowers-pods abscission, the effect of DTA-6 treatments was better than others. The pods per plant and yield of soybean in 2018 and 2019 under DTA-6 treatment were increased by 25.4%, 41.3% and 32.9%, 37.6% as compared with CK, respectively. Foliar spraying PGRs increased the activities of SPS, SS, and Inv enzymes in soybean leaves, coordinated the carbon-nitrogen metabolism in soybean organs, promoted the soybean flowering and pod-setting, decreased the abscission of pods, increased the pods per plant and yield of relay strip intercropping soybean, the production increasing effect of DTA-6 were better than others.

Key words: maize-soybean relay strip intercropping, flowers and pods abscission, plant growth regulators, carbon and nitrogen metabolism, yield

Table 1

Effects of spraying plant growth regulators on soluble sugar content in relay intercropping soybean leaves (g kg-1)"

R1 R5 R8
茎秆Stem 叶Leaf 茎秆Stem 叶Leaf 荚果Pod 茎秆Stem 叶Leaf 荚果Pod
CK 12.72±1.17 a 11.32±1.23 a 13.23±0.13 b 11.56±0.74 b 8.56±0.92 a 8.33±0.92 a 9.82±0.67 a 20.76±1.84 b
6-BA 12.73±1.15 a 12.03±0.98 a 17.04±0.21 a 13.56±0.69 a 8.84±1.09 a 6.14±0.73 b 7.84±0.33 b 24.23±1.68 a
S3307 12.84±1.42 a 12.04±1.77 a 16.03±0.10 a 13.78±1.48 a 9.56±1.47 a 6.32±1.44 b 8.13±0.51 b 24.79±1.72 a
DTA-6 11.93±1.34 a 11.34±1.03 a 16.64±0.11 a 13.33±0.22 a 9.53±1.73 a 5.89±1.09 b 8.22±0.29 b 24.86±1.23 a

Fig. 1

Effects of spraying plant growth regulators on the activities of SS, SPS, and Inv in relay intercropping soybean leaves Different lowercase letters indicate significant differences among different regulator treatments at the 0.05 probability level. R2: blooming flower stage; R4: blooming pod stage; R6: full seed stage. Treatments are the same as those given in Table 1."

Table 2

Effects of spraying plant growth regulators on C content of stem, leaf, pod husks, and grains in relay intercropping soybean (g kg-1)"

R3 R5

Pod husks

Pod husks
CK 422.22±2.67 b 442.86±6.73 a 416.86±6.91 b 457.93±3.11 a 458.71±1.33 b 440.56±6.93 a 506.22±1.44 b
6-BA 427.67±4.78 b 444.24±5.59 a 417.56±5.12 b 446.59±8.03 a 461.89±6.04 a 441.22±1.12 a 507.74±0.53 b
S3307 437.87±2.33 a 448.18±6.72 a 431.33±4.28 a 453.73±6.36 a 463.03±2.44 a 442.71±2.37 a 510.90±2.64 a
DTA-6 428.94±6.64 b 445.80±2.44 a 421.04±4.13 ab 451.74±8.86 a 464.53±3.24 a 443.42±1.76 a 509.71±4.62 ab

Table 3

Effects of spraying plant growth regulators on N content of stem, leaf, pod husks, and grains in relay intercropping soybean (g kg-1)"

R3 R5

Pod husks

Pod husks
CK 20.69±0.23 a 49.87±2.03 b 45.71±0.12 a 13.38±0.02 b 42.16±2.03 a 25.83±1.68 b 77.05±2.11 b
6-BA 20.60±1.04 a 53.78±1.19 a 44.22±0.88 a 18.04±0.16 a 37.37±6.84 ab 32.66±3.03 a 77.64±2.13 ab
S3307 19.79±1.22 a 52.54±2.36 ab 44.51±1.57 a 13.73±0.15 b 32.38±3.03 b 33.06±3.43 a 79.58±4.76 ab
DTA-6 19.89±2.23 a 53.84±0.67 a 43.94±1.83 a 16.70±0.19 a 40.36±5.44 ab 31.72±1.58 a 81.68±1.26 a

Table 4

Effects of spraying plant growth regulators on C/N ratio of stem, leaf, pod husks, and grains in relay intercropping soybean"

R3 R5

Pod husks

Pod husks
CK 20.40±0.11 b 8.88±0.38 a 9.12±0.15 a 34.23±0.22 a 10.88±0.48 b 17.06±0.84 a 6.57±0.17 a
6-BA 20.76±0.86 b 8.26±0.23 b 9.44±0.11 a 24.76±2.08 b 12.36±2.36 ab 13.51±1.28 b 6.54±0.18 a
S3307 22.12±0.47 a 8.53±0.11 ab 9.69±0.28 a 33.05±3.99 a 14.30±1.39 a 13.39±1.45 b 6.42±0.35 a
DTA-6 21.57±0.43 a b 8.28±0.38 b 9.58±0.19 a 27.05±3.08 b 11.51±1.57 ab 13.98±0.77 b 6.24±0.21 a

Table 5

Effects of spraying plant growth regulators on flowers and pods abscission number and abscission rate in relay intercropping soybean"

Number of
Number of pods
Number of abscission flowers
Number of
abscission pods
abscission rate (%)
Pod abscission rate (%)
Flower and pod abscission rate (%)
2018 CK 137.93±5.020 b 75.60±5.03 b 62.33±4.74 a 30.33±4.16 a 45.19±1.79 a 40.12±3.68 a 67.18±2.73 a
6-BA 147.82±5.00 ab 83.82±6.00 ab 64.00±3.00 a 33.00±6.00 a 43.29±1.69 a 39.37±1.48 a 65.62±1.37 ab
S3307 149.97±6.69 a 82.64±6.07 ab 67.33±3.79 a 28.33±4.51 a 44.90±2.63 a 34.28±1.99 b 63.79±1.72 b
DTA-6 152.28±5.79 a 86.95±7.77 a 65.33±1.81 a 29.67±2.08 a 42.90±1.27 a 34.12±1.83 b 62.39±1.90 b
2019 CK 161.36±3.85 b 83.40±2.61 b 77.96±0.64 a 36.55±3.48 a 48.31±1.88 a 43.82±2.58 a 70.97±1.88 a
6-BA 166.00±5.42 ab 89.85±3.27 a 76.15±2.21 a 36.64±1.31 a 45.87±2.22 a 40.77±0.59 a 67.95±1.62 ab
S3307 162.76±4.45 ab 85.32±4.24 ab 77.44±0.39 a 29.02±4.06 b 47.58±1.96 a 34.01±2.85 b 65.41±1.76 bc
DTA-6 169.69±2.85 a 90.17±3.39 a 79.52±2.95 a 27.91±4.56 b 46.86±1.59 a 30.95±2.75 b 63.31±1.45 c
年份 Years (Y) 125.07** 8.85* 50.96* 1.26 8.72* 0.01 3.40
调节剂Regulators (R) 10.48* 4.91 0.22 2.11 1.16 1.81 4.53
年份×调节剂 Y×R 1.38 0.32 0.37 0.51 0.78 0.11 0.41

Table 6

Effects of spraying plant growth regulators on yield and yield components in relay intercropping soybean"

Pods number per plant
Grains number per plant
100-grain weight (g)
Yield (kg hm-2)
2018 CK 45.27±1.98 c 76.25±3.76 c 24.78±0.19 b 1752.25±86.36 c
6-BA 50.82±2.31 b 87.52±2.41 b 25.42±0.16 a 2117.40±99.12 b
S3307 54.31±2.19 ab 89.13±3.32 b 25.66±0.11 a 2093.64±68.45 b
DTA-6 56.77±2.31 a 103.37±4.45 a 25.54±0.23 a 2475.65±89.56 a
2019 CK 46.85±2.62 c 78.89±4.50 c 25.25±0.10 b 1886.82±108.03 c
6-BA 53.21±3.07 b 90.72±5.69 b 25.52±0.11 a 2231.02±99.53 b
S3307 56.30±2.99 ab 93.48±4.36 b 25.78±0.12 a 2281.38±93.31 b
DTA-6 62.26±3.12 a 105.05±7.14 a 25.56±0.12 a 2597.13±106.94 a
年份 Years (Y) 16.33** 3.95 1.64 13.38*
调节剂 Regulators (R) 39.73** 71.12** 7.24* 61.45**
年份×调节剂 Y×R 2.53 0.12 0.52 0.18
[1] Chen P, Song C, Liu X M, Zhou L, Yang H, Zhang X N, Zhou Y, Du Q, Pang T, Fu Z D, Wang X C, Liu W G, Yang F, Shu K, Du J B, Liu J, Yang W Y, Yong T W. Yield advantage and nitrogen fate in an additive maize-soybean relay intercropping system. Sci Total Environ, 2019,657:987-999.
doi: 10.1016/j.scitotenv.2018.11.376 pmid: 30677964
[2] 蒋利, 雍太文, 张群, 肖静, 杨欢, 杨文钰. 种植模式和施氮水平对大豆花荚脱落及产量的影响. 大豆科学, 2015,34:843-849.
Jiang L, Yong T W, Zhang Q, Xiao J, Yang H, Yang W Y. Effect of different planting patterns and N application rates on abscission of flower and pod of soybean and yield. Soybean Sci, 2015,34:43-849 (in Chinese with English abstract).
[3] Liu B, Qu D N. Effects of shading on spatial distribution of flower and flower abscission in field-grown three soybeans in Northern China. Emirates J Food Agric, 2015,27:629-635.
[4] 崔洪秋, 冯乃杰, 孙福东, 刘涛, 李建英, 杜吉到, 韩毅强, 郑殿峰. DTA-6对大豆花荚脱落纤维素酶和GmAC基因表达的调控. 作物学报, 2016,42:51-57.
doi: 10.3724/SP.J.1006.2016.00051
Cui H Q, Feng N J, Sun F D, Liu T, Li J Y, Du J D, Han Y Q, Zheng D F. Regulation of DTA-6 by abscission cellulase and GmAC gene expression in flowers and pods of soybean. Acta Agron Sin, 2016,42:51-57 (in Chinese with English abstract).
[5] Duarte L, Clemente J, Caixeta I, Senoski M, Aquino L. Dry matter and nutrient accumulation curve in cabbage crop. Revista Caatinga, 2019,32:679-689.
doi: 10.1590/1983-21252019v32n312rc
[6] Zhang J H, He N P, Liu C G, Xu L, Chen Z, Li Y, Wang R M, Yu G R, Sun W, Xiao C W, Reich P. Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biol, 2020,26:2534-2543.
doi: 10.1111/gcb.v26.4
[7] 胡志辉, 汪艳杰, 陈禅友. 喷施细胞分裂素对豇豆花荚脱落率及花荚酶活性的影响. 植物科学学报, 2016,34:439-445.
doi: 10.11913/PSJ.2095-0837.2016.30439
Hu Z H, Wang Y J, Chen C Y. Effects of spraying cytokinin on abscission rate and enzymic activity of flowers and pods of cowpea. Plant Sci J, 2016,34:439-445 (in Chinese with English abstract).
[8] 万燕, 闫艳红, 杨文钰. 不同氮肥水平下叶面喷施烯效唑对套作大豆生长和氮代谢的影响. 浙江大学学报(农业与生命科学版), 2012,38:185-196.
Wan Y, Yan Y H, Yang W Y. Effects of foliar spraying uniconazole on growth and nitrogen metabolism of relay strip intercropping soybean under different nitrogen levels. J Zhejiang Univ (Agric Life Sci), 2012,38:185-196 (in Chinese with English abstract).
[9] 郑殿峰, 宋春艳. 植物生长调节剂对大豆氮代谢相关生理指标以及产量和品质的影响. 大豆科学, 2011,30:109-112.
Zheng D F, Song C Y. Effects of plant growth regulators on nitrogen metabolism related indicators and yield in soybean. Soybean Sci, 2011,30:109-112 (in Chinese with English abstract).
[10] Zhang M C, Duan L S, Tian X L, He Z P, Li J M, Wang B M, Li Z H. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. J Plant Physiol, 2007,164:709-717.
doi: 10.1016/j.jplph.2006.04.008 pmid: 16769153
[11] Wen D X, Li Y, He L F, Zhang C Q. Transcriptome analysis reveals the mechanism by which spraying diethyl aminoethyl hexanoate after anthesis regulates wheat grain filling. BMC Plant Biol, 2019,19:327.
doi: 10.1186/s12870-019-1925-5 pmid: 31324148
[12] Kim J H, Shon J Y, Lee C K, Yang W, Yoon Y W, Yang W H, Kim Y G, Lee B W. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Res, 2011,122:207-213.
doi: 10.1016/j.fcr.2011.03.014
[13] 闫艳红, 万燕, 杨文钰, 王小春, 雍太文, 刘卫国, 张新全. 叶面喷施烯效唑对套作大豆花后碳氮代谢及产量的影响. 大豆科学, 2015,34:75-81.
Yan Y H, Wan Y, Yang W Y, Wang X C, Yong T W, Liu W G, Zhang X Q. Effect of spraying uniconazole on carbon and nitrogen metabolism and yield of relay strip intercropping soybean. Soybean Sci, 2015,34:75-81 (in Chinese with English abstract).
[14] Zhou W G, Chen F, Zhao S H, Yang C Q, Meng Y J, Shuai H W, Luo X F, Dai Y J, Yin H, Du J B, Liu J, Fan G Q, Liu W G, Yang W Y, Shu K. DA-6 promotes germination and seedling establishment from aged soybean seeds by mediating fatty acid metabolism and glycometabolism. J Exp Bot, 2018,70:101-114.
doi: 10.1093/jxb/ery247 pmid: 29982626
[15] Liu C J, Feng N J, Zheng D F, Cui H Q, Sun F D, Gong X W. Uniconazole and diethyl aminoethyl hexanoate increase soybean pod setting and yield by regulating sucrose and starch content. J Sci Food Agric, 2019,99:748-758.
doi: 10.1002/jsfa.9243 pmid: 29999535
[16] Roitsch T, Ehneß R. Regulation of source/sink relations by cytokinins. Plant Growth Regul, 2000,32:359-367.
doi: 10.1023/A:1010781500705
[17] Choi J, Hwang I. Cytokinin: perception, signal transduction, and role in plant growth and development. J Plant Biol, 2007,50:98-108.
doi: 10.1007/BF03030617
[18] Du J B, Han T F, Gai J Y, Yong T W, Sun X, Wang X C, Yang F, Liu J, Shu K, Liu W G, Yang W Y. Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability. J Integr Agric, 2018,17:747-754.
doi: 10.1016/S2095-3119(17)61789-1
[19] Yang W T, Miao J Q, Wang X W, Xu J C, Lu M J, Li Z X. Corn-soybean intercropping and nitrogen rates affected crop nitrogen and carbon uptake and C:N ratio in upland red soil. J Plant Nutr, 2018,41:1890-1902.
doi: 10.1080/01904167.2018.1476540
[20] Yang F, Huang S, Gao R C, Liu W G, Yong T W, Wang X C, Wu X L, Yang W Y. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio. Field Crops Res, 2014,155:245-253.
doi: 10.1016/j.fcr.2013.08.011
[21] Liu X, Rahman T, Song C, Su B Y, Yang F, Yong T W, Wu Y S, Zhang C Y, Yang W Y. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Res, 2017,200:38-46.
doi: 10.1016/j.fcr.2016.10.003
[22] Chen P, Du Q, Liu X M, Zhou L, Hussain S, Lei L, Song C, Wang X C, Liu W G, Yang F, Shu K, Liu J, Du J B, Yang W Y, Yong T W. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS One, 2017,12:e0184503.
doi: 10.1371/journal.pone.0184503 pmid: 28910355
[23] 徐光域, 颜军, 郭晓强, 刘嵬, 李晓光, 苟小军. 硫酸-苯酚定糖法的改进与初步应用. 食品科学, 2005,26(8):342-346.
Xu G Y, Yan J, Guo X Q, Liu W, Li X G, Gou X J. The betterment and apply of phenol-sulphate acid method. Food Sci, 2005,26(8):342-346 (in Chinese with English abstract).
[24] 邓小燕, 王小春, 杨文钰, 张群. “麦/玉/豆”模式下氮肥运筹对玉米碳氮代谢的影响. 草业学报, 2012,21(4):52-61.
doi: 10.11686/cyxb20120407
Deng X Y, Wang X C, Yang W Y, Zhang Q. Effects of nitrogen strategies on carbon and nitrogen metabolism of maize in wheat/maize/soybean relay intercropping system. Acta Pratac Sin, 2012,21(4):52-61 (in Chinese with English abstract).
[25] Chopra J, Kaur N, Gupta A K. Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mungbean reproductive structures. Phytochemistry, 2000,53:539-548.
doi: 10.1016/s0031-9422(99)00545-2 pmid: 10724178
[26] Dyer D J, Carlson D R, Cotterman C D, Sikorski J A, Ditson S L. Soybean pod set enhancement with synthetic cytokinin analogs. Plant Physiol, 1987,84:240-243.
doi: 10.1104/pp.84.2.240 pmid: 16665423
[27] Cui L, Yang W Y, Huang N, Liu J, Wang Y L, Wang X H, Liu Y, Yan S. Effects of maize plant types on dry matter accumulation characteristics and yield of soybean in maize-soybean intercropping systems. Chin J Appl Ecol, 2015,26:2414-2420.
[28] Yan Y H, Wan Y, Liu W G, Wang X C, Yong T W, Yang W Y, Zhao L L. Influence of seed treatment with uniconazole powder on soybean growth, photosynthesis, dry matter accumulation after flowering and yield in relay strip intercropping system. Plant Prod Sci, 2015,18:295-301.
doi: 10.1626/pps.18.295
[29] 冯乃杰, 宋莉萍, 刘金辉, 郑殿峰. 不同时期PGRS对大豆花荚脱落率及纤维素酶活性的影响. 中国油料作物学报, 2011,33:253-258.
Feng N J, Song L P, Liu J H, Zheng D F. Regulation of plant growth regulators on abscission rate and cellulase activity of soybean flowers and pods. Chin J Oil Crop Sci, 2011,33:253-258 (in Chinese with English abstract).
[30] 刘海坤, 刘小宁, 黄玉芳, 叶优良. 不同氮水平下小麦植株的碳氮代谢及碳代谢与赤霉病的关系. 中国生态农业学报, 2014,22:782-789.
Liu H K, Liu X N, Huang Y F, Ye Y L. Effect of nitrogen application on carbon and nitrogen metabolisms and relationship between carbon metabolism and wheat scab. Chin J Eco-Agric, 2014,22:782-789 (in Chinese with English abstract).
[31] Liu C G, Wang Y J, Pan K W, Zhu T T, Li W, Zhang L. Carbon and nitrogen metabolism in leaves and roots of Dwarf Bamboo ( Fargesia denudata Yi) subjected to drought for two consecutive years during sprouting period. J Plant Growth Regul, 2014,33:243-255.
doi: 10.1007/s00344-013-9367-z
[32] 赵黎明, 冯乃杰, 郑殿峰. 植物生长调节剂对大豆荚皮同化物代谢及糖分积累的影响. 植物科学学报, 2008,26:407-411.
Zhao L M, Feng N J, Zheng D F. Effects of plant growth regulators on assimilation metabolism and sugar accumulation in pod husks of soybean. Plant Sci J, 2008,26:407-411 (in Chinese with English abstract).
[33] 宋春艳, 冯乃杰, 郑殿峰. 植物生长调节剂对大豆叶片碳代谢相关生理指标及产量品质的影响. 干旱地区农业研究, 2011,29(3):91-95.
Sun C Y, Feng N J, Zheng D F. Effects of plant growth regulators on carbon metabolism related indicators in soybean leaves. Agric Res Arid Areas, 2011,29(3):91-95 (in Chinese with English abstract).
[34] Truong Q, Koch K, Yoon Jo M, Everard J D, Shanks J V. Influence of carbon to nitrogen ratios on soybean somatic embryo (cv. Jack) growth and composition. J Exp Bot, 2013,64:2985-2995.
doi: 10.1093/jxb/ert138 pmid: 23740932
[35] 蒋利. 净套作条件下不同施N量对大豆植株形态、花荚脱落和产量的影响. 四川农业大学硕士学位论文, 四川雅安, 2015.
Jiang L. The Effects of N Application on Plant Morphology, Flower, and Pod Abscission and Yield of Soybean in Monoculture and the Strip Intercropping System. MS Thesis of Sichuan Agriculture University, Ya’an, Sichuan, China, 2015 (in Chinese with English abstract).
[36] 刘春娟, 冯乃杰, 郑殿峰, 宫香伟, 孙福东, 石英, 崔洪秋, 张盼盼, 赵晶晶. 植物生长调节剂S3307和DTA-6对大豆源库碳水化合物代谢及产量的影响. 中国农业科学, 2016,49:657-666.
doi: 10.3864/j.issn.0578-1752.2016.04.005
Liu C J, Feng N J, Zheng D F, Gong X W, Sun F D, Shi Y, Cui H Q, Zhang P P, Zhao J J. Effects of plant growth regulators S3307 and DTA-6 on carbohydrate content and yield in soybean. Sci Agric Sin, 2016,49:657-666 (in Chinese with English abstract).
[37] 刘春娟, 冯乃杰, 郑殿峰, 孙福东, 刘涛, 崔洪秋, 赵晶晶. S3307和DTA-6对大豆叶片生理活性及产量的影响. 植物营养与肥料学报, 2016,22:626-633.
Liu C J, Feng N J, Zheng D F, Sun F D, Liu T, Cui H Q, Zhao J J. Effects of plant growth regulators S3307 and DTA-6 on the leaf physiological activity and yield of soybean. J Plant Nutr Fert, 2016,22:626-633 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Full text



No Suggested Reading articles found!