Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 1978-1987.doi: 10.3724/SP.J.1006.2021.04226

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Competitive effect of soybean density on yield formation in maize/soybean intercropping systems

REN Yuan-Yuan1(), ZHANG Li2, YU Yao-Chuang1, ZHANG Yan-Jun1, ZHANG Sui-Qi3,*()   

  1. 1College of Geography and Environment Engineering, Baoji University of Arts and Sciences / Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, Shannxi, China
    2School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
    3State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau / Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
  • Received:2020-10-12 Accepted:2021-01-13 Online:2021-10-12 Published:2021-02-20
  • Contact: ZHANG Sui-Qi E-mail:renyuanyuan0410@163.com;sqzhang@ms.iswc.ac.cn
  • Supported by:
    Shaanxi National Science Foundation(2019JQ-895);Youth Foundation of National Natural Science Foundation of China(41901025);Open Foundation of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau(A314021402-1712);PhD Research Startup Foundation of Baoji University of Arts and Sciences(ZK2017042)

Abstract:

Crop intercropping system in arid areas is an important planting method for optimizing crop population quality and improving crop yield. There are few reports on the mechanism of crop intercropping competitive advantage in terms of yield components. In this study, to explore the mechanism of crop competition for increasing the yield of intercropping systems, three soybean densities and four row proportions (maize and soybean intercropping with 2:0, 0:2, 2:2, and 2:4) were used to investigate the changes of competition index, yield components, and yield of intercropping system. The results showed that the yield of intercropping system with different row proportion and soybean density was increased by 14%-23%. The actual yield loss of maize was greater than 0, the actual yield loss of soybean was less than 0. The ear weight, ear length, ear diameter, grain weight per ear, cob weight, and 1000-grain weight of maize in intercropping systems were significantly higher than those in monoculture. Except pod length and internode length of main stem, the grain weight per plant, pod number per plants, grain number per plant, effective grain number per plants, nodes on main stem, and 100-grain weight of soybean in intercropping systems were lower than that of monoculture. And there was no significant difference between intercropping and monoculture. The competition ratio of maize was greater than one, and the competition ratio of soybean was less than one. The competition ratio of maize and soybean was 2.08, 1.84, 1.68 and 0.49, 0.56, 0.63, respectively, with three soybean densities, indicating that with the increase of soybean density competition ratio of maize increased while competition ratio of soybean decreased in intercrops. The aggressivity of maize was positive value, and that of soybean was less than zero in intercropping system. Maize yield was positively correlated with cob weight, 1000-grain weight, ear weight, grain weight per ear, ear length, and row kernel number negatively correlated with barren tip length. Path analysis revealed that in the direct effect, grain weight per ear contributed the most to maize yield (2.18); in indirect effect, cob weight and 1000-grain weight contributed more to maize yield 1000-grain weight per ear (1.64 and 1.58). In conclusion, maize intercropped with soybean had intercropping advantages that derived from grain weight per ear.

Key words: density, intercropping, path analysis, competition ratio

Fig. 1

Daily rainfall and air temperature during whole growth stages of experimental crops"

Fig. 2

Effects of different interplanting patterns on land equivalent ratio MS1, MS2, and MS3 indicate maize intercropping soybean with low density (9 plants m-2), medium density (21 plants m-2), and high density (33 plants m-2), respectively. White and gray symbols indicate 2:2 and 2:4 row proportion in maize-soybean intercropping systems."

Fig. 3

Effects of different interplanting patterns on actual yield loss Treatments are the same as those given in Fig. 2. White and gray symbols indicate 2:2 and 2:4 row proportion in maize-soybean intercropping systems."

Table 1

Effects of different planting pattern on yield and yield components in maize"

种植比例
Row
proportion
密度
Density
穗重
Ear
weight (g)
穗长
Ear
length (cm)
秃尖长
Barren tip
length (cm)
穗粗
Ear
diameter (cm)
行数
Ear row
number (No.)
行粒数
Row kernel
number (No.)
穗粒重
Grain weight
per ear (g)
轴粗
Cob
diameter (cm)
轴重
Cob
weight (g)
千粒重
Thousand-
grain weight (g)
单作
Single crop
M 215 b 15.6 c 0.40 a 4.68 b 15.3 b 36.8 c 161 c 2.82 c 149 c 306 b
MS1 252 a 16.7 ab 0.49 a 4.87 a 15.5 ab 37.4 bc 184 b 2.92 ab 183 b 328 a
2:2 MS2 252 a 16.5 b 0.41 a 4.85 a 15.6 ab 38.0 ab 186 ab 2.90 b 191 ab 329 a
MS3 256 a 16.8 ab 0.41 a 4.84 a 15.4 ab 37.7 abc 186 ab 2.94 ab 202 a 329 a
MS1 267 a 17.2 a 0.49 a 4.93 a 15.9 a 39.3 a 197 a 2.93 ab 200 a 336 a
2:4 MS2 256 a 16.9 ab 0.48 a 4.96 a 15.7 ab 37.9 abc 187 ab 2.97 a 192 ab 332 a
MS3 256 a 16.6 b 0.43 a 4.82 a 15.8 ab 37.5 bc 189 ab 2.88 bc 199 ab 333 a

Table 2

Effects of different planting pattern on yield and yield components in soybean"

种植比例
Row
proportion
密度
Density
单株粒重
Grain weight
per plant
(g)
单株荚数
Pods per plant
单株总粒数
Grain
number
per plant
单株有效粒数
Effective grain
number per plant
结荚长度
Length of
podding (cm)
主茎节间长度
Internode length (cm)
主茎节数
Nodes on
main stem (No.)
百粒重
Hundred grain
weight
(g)
单作
Single crop
S1 23.5 aA 53.3 aA 105 aA 101 aA 51.0 aB 58.4 bB 16.7 aA 23.7 aA
S2 15.9 bA 36.1 bA 70.0 bA 68.4 bA 54.5 aA 66.9 aA 16.7 aA 24.1 aA
S3 10.8 cA 25.3 cA 47.2 cA 46.1 cA 53.8 aA 66.8 aA 15.3 bA 24.1 aA
MS1 20.2 aA 43.0 aB 85.1 aB 82.2 aB 55.5 aA 63.9 bA 15.2 aB 23.9 aA
2:2 MS2 12.3 bC 28.1 bB 56.2 bB 54.0 bB 54.7 aA 68.9 aA 15.1 aB 24.1 aA
MS3 11.5 bA 25.0 bA 49.8 bA 47.9 bA 54.7 aA 72.1 aA 14.4 bB 24.3 aA
MS1 21.6 aA 48.4 aAB 94.2 aAB 89.4 aAB 51.9 aB 61.7 bAB 15.8 aB 24.0 aA
2:4 MS2 14.0 bB 31.0 bB 60.1 bB 58.5 bB 52.4 aA 66.4 aA 15.5 aB 24.2 aA
MS3 11.2 cA 24.9 cA 48.3 cA 46.3 cA 51.4 aA 68.4 aA 14.6 bB 24.4 aA

Fig. 4

Effects of different interplanting patterns on crop aggressivity and competition ratio Treatments are the same as those given in Fig. 2. Different letters denote significant difference at P < 0.05 among different soybean density in the same row proportion (lowercase letters), and among different row proportions in the same soybean density (capital letters)."

Table 3

Correlation between yield and yield components in maize"

性状
Traits
产量
Yield
穗重
Ear
weight
穗长
Ear
length
秃尖长
Barren
tip length
穗粗
Ear
diameter
行数
Ear row
number
行粒数
Row kernel
number
穗粒重
Grain weight
per ear
轴粗
Cob
diameter
轴重
Cob
weight
千粒重
1000-
grain weight
产量Yield 1.00
穗重Ear weight 0.80** 1.00
穗长Ear length 0.71** 0.89** 1.00
秃尖长Barren tip length -0.48** -0.53** -0.43** 1.00
穗粗 Ear diameter -0.01 0.29** 0.38** -0.09 1.00
行数 Ear row number 0.09 0.22** 0.06 -0.08 0.29** 1.00
行粒数 Row kernel number 0.61** 0.76** 0.79** -0.52** 0.10 -0.03 1.00
穗粒重 Grain weight per ear 0.73** 0.66** 0.58** -0.34** 0.09 0.17** 0.51** 1.00
轴粗Cob diameter 0.02 0.06 0.08 -0.06 0.07 0.02 0.09 0.05 1.00
轴重 Cob weight 0.89** 0.81** 0.74** -0.44** 0.09 0.11* 0.63** 0.75** 0.15** 1.00
千粒重 1000-grain weight 0.82** 0.74** 0.69** -0.33** 0.10 0.11 0.58** 0.72** 0.07 0.83** 1.00

Table 4

Path analysis of maize yield in interplanting patterns"

自变量
Independent
variable
直接通径系数(直接作用)
Direct path coefficient
(direct action)
间接通径系数(间接作用) Indirect path coefficient (indirect action)
穗重
Ear
weight
穗长
Ear
length
秃尖长
Barren
tip length
行粒数
Ear row
number
穗粒重
Grain weight
per ear
轴重
Cob
weight
千粒重
1000-
grain weight
穗重Ear weight -1.71 -0.11 -0.50 0.39 1.43 0.19 0.04
穗长Ear length -0.13 -1.53 -0.41 0.40 1.26 0.17 0.03
秃尖长Barren tip length 0.94 0.91 0.05 -0.26 -0.75 -0.10 -0.02
行粒数Ear row number 0.51 -1.31 -0.10 -0.48 1.11 0.15 0.03
穗粒重Grain weight per ear 2.18 -1.13 -0.07 -0.32 0.26 0.18 0.04
轴重Cob weight 0.24 -1.39 -0.09 -0.41 0.32 1.64 0.04
千粒重1000-grain weight 0.05 -1.27 -0.09 -0.31 0.29 1.58 0.20
[1] Singh P, Jadhav A, Varshney M. Light interception and light use efficiency in sorghum based intercropping system. J Agrometeorol, 2002, 4:93-96.
[2] Fustec J, Lesuffleur F, Mahieu S, Cliquet J B. Nitrogen rhizodeposition of legumes: a review. Agron Sustain Dev, 2010, 30:57-66.
doi: 10.1051/agro/2009003
[3] Zhu Y, Chen H, Fan J, Wang Y, Yan L, Chen J, Fan J X, Yang S, Hu L, Leung H. Genetic diversity and disease control in rice. Nature, 2000, 406:718-722.
doi: 10.1038/35021046
[4] Banik P, Midya A, Sarkar B K, Ghose S S. Wheat and chickpea intercropping systems in an additive series experiment: advantages and weed smothering. Eur J Agron, 2006, 24:325-332.
doi: 10.1016/j.eja.2005.10.010
[5] Li R, Zhang Z, Tang W, Huang Y, Coulter J A, Nan Z. Common vetch cultivars improve yield of oat row intercropping on the Qinghai-Tibetan plateau by optimizing photosynthetic performance. Eur J Agron, 2020, 117:1-13.
[6] Mao L, Zhang L, Li W, van der Werf W, Sun J, Spiertz H, Li L. Yield advantage and water saving in maize/pea intercrop. Field Crops Res, 2012, 138:11-20.
doi: 10.1016/j.fcr.2012.09.019
[7] Chen P, Du Q, Liu X, Li Z, Sajad H, Lu L, Song C, Wang X, Liu W, Feng Y. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS One, 2017, 12:1-19.
[8] Lithourgidis A S, Vlachostergios D N, Dordas C A, Damalas C A. Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems. Eur J Agron, 2011. 34:287-294.
doi: 10.1016/j.eja.2011.02.007
[9] 张向前. 不同氮水平下玉米间作大豆和花生的效应研究. 南京农业大学博士学位论文, 江苏南京, 2013.
Zhang X Q. A Study on the Effect of Maize Intercropped with Soybean and Peanut under Different Nitrogen Fertilization Levels. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013 (in Chinese with English abstract).
[10] Zhang F, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil, 2003, 248:305-312.
doi: 10.1023/A:1022352229863
[11] 赵建华, 孙建好, 陈亮之, 李伟绮. 玉米行距对大豆/玉米间作作物生长及种间竞争力的影响. 大豆科学, 2019, 38:229-235.
Zhao J H, Sun J H, Chen L Z, Li W Q. Growth and interspecific competition of crops as affected by maize row spacing in soybean/maize intercropping system. Soybean Sci, 2019, 38:229-235 (in Chinese with English abstract).
[12] 赵建华, 孙建好, 李伟绮. 覆膜对玉米‖豌豆作物生产力及种间互作的影响. 干旱地区农业研究, 2020, 38(2):164-169.
Zhao J H, Sun J H, Li W Q. Effect of film mulching on productivity and interspecific interaction in maize-pea intercropping system. Agric Res Arid Areas, 2020, 38(2):164-169 (in Chinese with English abstract).
[13] Undie U, Uwah D, Attoe E. Effect of intercropping and crop arrangement on yield and productivity of late season maize/soybean mixtures in the humid environment of South Southern Nigeria. J Agric Sci, 2012, 4:37-50.
[14] Wang R, Sun Z, Zhang L, Yang N, Feng L, Bai W, Zhang D, Wang Q, Evers J B, Liu Y. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crops Res, 2020, 253:107819.
doi: 10.1016/j.fcr.2020.107819
[15] 杜进勇, 柴强, 王一帆, 范虹, 胡发龙, 殷文, 李登业. 地上地下互作强度对小麦间作玉米光合特性的影响. 作物学报, 2019, 45:1398-1406.
Du J Y, Chai Q, Wang Y F, Fan H, Hu F L, Yin W, Li D Y. Effect of above- and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping. Acta Agron Sin, 2019, 45:1398-1406 (in Chinese with English abstract).
[16] 任旭灵, 滕园园, 王一帆, 殷文, 柴强. 玉米间作豌豆种间竞争互补对少耕密植的响应. 中国生态农业学报, 2019, 27:860-869.
Ren X L, Teng Y Y, Wang Y F, Yin W, Chai Q. Response of interspecific competition and complementarity of maize/pea intercropping to reduced tillage and high-density planting. Chin J Eco-Agric, 2019, 27:860-869 (in Chinese with English abstract).
[17] 于海秋, 徐克章, 陈学求, 武志海, 姜子涟, 沈秀瑛. 玉米主要抗旱性状的配合力及遗传参数分析: I.产量性状. 玉米科学, 2003, 11(1):12-18.
Yu H Q, Xu K Z, Chen X Q, Wu Z H, Jiang Z L, Shen X Y. Analysis of combining ability and hereditary parameter of major drought resistance traits in maize: I. yield traits. J Maize Sci, 2003, 11(1):12-18 (in Chinese with English abstract).
[18] 鲁珊, 肖荷霞, 毛彩云, 陆建章, 岳金生. 不同类型玉米主要农艺性状的相关和通径分析. 中国农学通报, 2019, 35(19):11-14.
Lu S, Xiao H X, Mao C Y, Lu J Z, Yue J S. Correlation and path analysis of major agronomic traits of maize types. Chin Agric Sci Bull, 2019, 35(19):11-14 (in Chinese with English abstract).
[19] Raza M A, Feng L Y, Werf W V D, Iqbal N. Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system. Food Energy Secur, 2020, 1:1-14.
doi: 10.1002/fes3.1
[20] Gong X, Dang K, Lyu S, Zhao G, Tian L, Luo Y, Feng B. Interspecific root interactions and water use efficiency of intercropped proso millet and mung bean. Eur J Agron, 2020, 115:1-12.
[21] Raza M A, Khalid M H B, Zhang X, Feng L Y, Khan I, Hassan M J, Ahmed M, Ansar M, Chen Y K, Fan Y F. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Sci Rep, 2019, 9:4947.
doi: 10.1038/s41598-019-41364-1
[22] Mead R, Willey R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp Agric, 1980, 16:217-228.
doi: 10.1017/S0014479700010978
[23] Banik P, Sasmal T, Ghosal P K, Bagchi D K. Evaluation of mustard (Brassica compestris var. Toria) and legume intercropping under 1:1 and 2:1 row-replacement series systems. J Agron Crop Sci, 2000, 185:9-14.
doi: 10.1046/j.1439-037X.2000.00388.x
[24] Agegnehu G, Ghizaw A, Sinebo W. Yield performance and land­use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. Eur J Agron, 2006, 25:202-207.
doi: 10.1016/j.eja.2006.05.002
[25] Dhima K V, Lithourgidis A S, Vasilakoglou I B, Dordas C A. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Res, 2007, 100:249-256.
doi: 10.1016/j.fcr.2006.07.008
[26] 张建华, 马义勇, 王振南, 齐晶. 间作系统中玉米光合作用指标改善的研究. 玉米科学, 2006, 14(4):104-106.
Zhang J H, Ma Y Y, Wang Z N, Qi J. Research on the improvement of photosynthesis indices of maize in the intercropping system. J Maize Sci, 2006, 14(4):104-106 (in Chinese with English abstract).
[27] Ghosh P K. Growth, yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crops Res, 2004, 88:227-237.
doi: 10.1016/j.fcr.2004.01.015
[28] Feng L, Sun Z, Zheng M, Muchoki M, Zheng J, Yang N, Bai W, Feng C, Zhang Z, Cai Q, Zhang D. Productivity enhancement and water use efficiency of peanut­millet intercropping. Pak J Bot, 2016, 48:1459-1466.
[29] 宋振伟, 齐华, 张振平, 钱春荣, 郭金瑞, 邓艾兴, 张卫建. 春玉米中单909农艺性状和产量对密植的响应及其在东北不同区域的差异. 作物学报, 2012, 38:2267-2277.
Song Z W, Qi H, Zhang Z P, Qian C R, Guo J R, Deng A X, Zhang W J. Effects of plant density on agronomic traits and yield in spring maize Zhongdan 909 and their regional differences in Northeast China. Acta Agron Sin, 2012, 38:2267-2277 (in Chinese with English abstract).
[30] 康彩睿, 谢军红, 李玲玲, 王嘉男, 郭喜军, 彭正凯, 王进斌, Fudjoe S, 王林林. 种植密度与施氮量对陇中旱农区玉米产量及光合特性的影响. 草业学报, 2020, 29(5):141-149.
Kang C R, Xie J H, Li L L, Wang J N, Guo X J, Peng Z K, Wang J B, Fudjoe S, Wang L L. Effects of planting density and nitrogen fertilizer rate on maize yield and photosynthetic characteristics in arid areas of central Gansu, China. Acta Pratac Sin, 2020, 29(5):141-149 (in Chinese with English abstract).
[31] 任媛媛, 王志梁, 王小林, 张岁岐. 黄土塬区玉米大豆不同间作方式对产量和经济收益的影响及其机制. 生态学报, 2015, 12:4168-4177.
Ren Y Y, Wang Z L, Wang X L, Zhang S Q. The effect and mechanism of intercropping pattern on yield and economic benefit on the Loess Plateau. Acta Ecol Sin, 2015, 12:4168-4177 (in Chinese with English abstract).
[32] 朱元刚, 高凤菊, 曹鹏鹏, 王乐政. 种植密度对玉米-大豆间作群体产量和经济产值的影响. 应用生态学报, 2015, 26:1751-1758.
Zhu Y G, Gao F J, Cao P P, Wang L Z. Effect of plant density on population yield and economic output value in maize-soybean intercropping. Chin J Appl Ecol, 2015, 26:1751-1758 (in Chinese with English abstract).
[33] 吕越, 吴普特, 陈小莉, 王玉宝, 赵西宁. 地上部与地下部作用对玉米/大豆间作优势的影响. 农业机械学报, 2014, 45(1):129-136.
Lyu Y, Wu P T, Chen X L, Wang Y B, Zhao X N. Effect of above- and below-ground interaction on maize/soybean intercropping advantage. Trans CSAM, 2014, 45(1):129-136 (in Chinese with English abstract).
[34] 李智, 王宏富, 王钰云, 杨净, 鱼冰星, 黄珊珊. 谷子大豆间作对作物光合特性及产量的影响. 中国农业科技导报, 2020, 22(6):168-175.
Li Z, Wang H F, Wang Y Y, Yang J, Yu B X, Huang S S. Impact of millet and soybean intercropping on their photosynthetic characteristics and yield. J Agric Sci Technol, 2020, 22(6):168-175 (in Chinese with English abstract).
[35] Raza M A, Feng L Y, van der Werf W, Iqbal N, Khan, I., Hassan M J, Ansar M, Chen Y K, Xi Z J, Shi J Y, Ahmed M, Yang F, Yang W. Optimum leaf defoliation: a new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. Field Crops Res, 2019, 244:1-11.
[36] 吕越, 吴普特, 陈小莉, 王玉宝, 赵西宁. 玉米/大豆间作系统的作物资源竞争. 应用生态学报, 2014, 25:139-146.
Lyu Y, Wu P T, Chen X L, Wang Y B, Zhao X N. Resource competition in maize/soybean intercropping system. Chin J Appl Ecol, 2014, 25:139-146 (in Chinese with English abstract).
[37] 王一帆, 秦亚洲, 冯福学, 赵财, 于爱忠, 刘畅, 柴强. 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响. 作物学报, 2017, 43:754-762.
Wang Y F, Qin Y Z, Feng F X, Zhao C, Yu A Z, Liu C, Chai Q. Synergistic effect of root interaction and density on yield and yield components of wheat/maize intercropping system. Acta Agron Sin, 2017, 43:754-762 (in Chinese with English abstract).
[38] 张作为, 史海滨, 李祯, 李仙岳, 闫建文, 李介均. 不同生育时期非充分灌溉对间作作物产量构成因子及收获指数的影响. 干旱地区农业研究, 2016, 34(4):31-37.
Zhang Z W, Shi H B, Li Z, Li X Y, Yan J W, Li J J. The influence of deficit irrigation during different growth periods on the yield components and harvest index of intercropped crops. Agric Res Arid Areas, 2016, 34(4):31-37 (in Chinese with English abstract).
[39] 杨坤, 段正凤, 李福星, 陈芝能. 玉米穗部性状及产量间的通径分析. 农技服务, 2016, 33(1):69-71.
Yang K, Duan Z F, Li F X, Chen Z N. Path analysis between ear traits and yield of maize. Agric Technol Serv, 2016, 33(1):69-71 (in Chinese with English abstract).
[40] 汤华, 黄益勤, 严建兵, 刘宗华, 汤继华, 郑用琏, 李建生. 玉米优良杂交种豫玉22产量性状的遗传分析. 作物学报, 2004, 30:922-926.
Tang H, Huang Y Q, Yan J B, Liu Z H, Tang J H, Zheng Y L, Li J S. Genetic analysis of yield traits with elite maize hybrid—Yuyu 22. Acta Agron Sin, 2004, 30:922-926 (in Chinese with English abstract).
[41] 徐磊, 谭福忠, 师臣, 周长军, 郑巍, 齐国超, 陈刚, 于海峰. 黑龙江省西部干旱区玉米产量与产量构成因素的相关性分析. 黑龙江农业科学, 2020, (7):1-6.
Xu L, Tan F Z, Shi C, Zhou C J, Zheng W, Qi G C, Chen G, Yu H F. Correlation analysis of maize yield and yield components in arid area of western Heilongjiang province. Heilongjiang Agric Sci, 2020, (7):1-6 (in Chinese with English abstract).
[42] 安治良. 夏玉米杂交种农艺性状与产量的相关与通径分析. 安徽农学通报, 2018, 24(17):34-35.
An Z L. Genetic correlation and path analysis of yield and agronomic characteristics of summer maize hybrids. Anhui Agric Sci Bull, 2018, 24(17):34-35 (in Chinese with English abstract).
[43] 梁晓玲, 阿布来提, 冯国俊, 李进, 李铭东, 李维鼎, 高慧慧. 玉米杂交种的产量比较及主要农艺性状的相关和通径分析. 玉米科学, 2001, 9(1):16-20.
Liang X L, ABU L T, Feng G J, Li J, Li M D, Li W D, Gao H H. Yield performance of maize hybrids and analysis of correlation between yield and agronomic characteristics. J Maize Sci, 2001, 9(1):16-20 (in Chinese with English abstract).
[44] 谭巍巍, 石云素, 宋燕春, 杨德光, 王天宇, 黎裕, 王阳, 李永祥, 刘成, 刘志斋. 不同环境下多个玉米穗部性状的QTL分析. 中国农业科学, 2011, 44:233-244.
Tan W W, Shi Y S, Song Y Q, Yang D G, Wang T Y, Li Y, Wang Y, Li Y X, Liu C, Liu Z Z. QTL analysis of ear traits in maize across multiple environments. Sci Agric Sin, 2011, 44:233-244 (in Chinese with English abstract).
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[3] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[4] LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740.
[5] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[6] CHEN Yun, LIU Kun, ZHANG Hong-Lu, LI Si-Yu, ZHANG Ya-Jun, WEI Jia-Li, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars [J]. Acta Agronomica Sinica, 2021, 47(8): 1540-1550.
[7] DANG Ke, GONG Xiang-Wei, LYU Si-Ming, ZHAO Guan, TIAN Li-Xin, JIN Fei, YANG Pu, FENG Bai-Li, GAO Xiao-Li. Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping [J]. Acta Agronomica Sinica, 2021, 47(6): 1175-1187.
[8] WANG Yi-Fan, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground [J]. Acta Agronomica Sinica, 2021, 47(5): 929-941.
[9] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[10] LUO Kai, XIE Chen, WANG Jin, WANG Tian, HE Shun, YONG Tai-Wen, YANG Wen-Yu. Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2021, 47(4): 752-760.
[11] DONG Er-Wei, WANG Jin-Song, WU Ai-Lian, WANG Yuan, WANG Li-Ge, HAN Xiong, GUO Jun, JIAO Xiao-Yan. Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of sorghum grain of different parts of panicle [J]. Acta Agronomica Sinica, 2021, 47(12): 2459-2470.
[12] ZHANG Jin-Dan, FAN Hong, DU Jin-Yong, YIN Wen, FAN Zhi-Long, HU Fa-Long, CHAI Qiang. Synchronously higher planting density can increase yield via optimizing interspecific interaction of intercropped wheat and maize [J]. Acta Agronomica Sinica, 2021, 47(12): 2481-2489.
[13] LEI Wei, WANG Rui-Li, WANG Liu-Yan, YUAN Fang, MENG Li-Jiao, XING Ming-Li, XU Lu, TANG Zhang-Lin, LI Jia-Na, CUI Cui, ZHOU Qing-Yuan. Genome-wide association study of seed density and its related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(11): 2099-2110.
[14] WANG Fei, GUO Bin-Bin, SUN Zeng-Guang, YIN Fei, LIU Ling, JIAO Nian-Yuan, FU Guo-Zhan. Effects of elevated temperature and CO2 concentration on growth and yield of maize under intercropping with peanut [J]. Acta Agronomica Sinica, 2021, 47(11): 2220-2231.
[15] QIN Xiao-Min, PAN Hao-Nan, XIAO Jing-Xiu, TANG Li, ZHENG Yi. Effects of maize and soybean intercropping on nodule growth, nitrogen fixation of soybean under low phosphorus condition [J]. Acta Agronomica Sinica, 2021, 47(11): 2268-2277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!