Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 1966-1977.doi: 10.3724/SP.J.1006.2021.02059

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation in mechanical transplanted hybrid rice

LYU Teng-Fei1,2(), SHEN Jie1, DAI Zou2, MA Peng1, YANG Zhi-Yuan1, ZHENG Chuan-Gang2, MA Jun1,*()   

  1. 1Rice Research Institute, Sichuan Agricultural University / Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
    2College of Agricultural Science and Technology, Xichang University, Xichang 615000, Sichuan, China
  • Received:2020-08-22 Accepted:2021-01-13 Online:2021-10-12 Published:2021-02-19
  • Contact: MA Jun E-mail:1018914967@qq.com;majunp2002@163.com
  • Supported by:
    National Key Research and Development Program of China(2017YFD0301701);National Key Research and Development Program of China(2017YFD0301706);National Key Research and Development Program of China(2018YFD0301202)

Abstract:

To explore the effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation of machine-transplanted indica hybrid rice in southwestern China. A split-plot design experiments were carried out in 2016 and 2017 repeatedly, with two machine-transplanting methods as main plot, and four nitrogen treatments as subplot using F you 498 as the experimental variety. The contents of carbon (C) and nitrogen (N), and their related key enzyme activities were investigated. Results showed that, compared with the blanket-seedling rice, potted-seedling increased key enzyme activities of C and N metabolism of young panicles and flag leaves, C and N accumulation at heading and maturity stage, C accumulation and C/N at jointing stage, C/N of panicle at heading and maturity stage, resulting in the yield improvement of F you 498. Compared with 100% slow release N fertilizer (SRNF) as base, 70% SRNF as base + 30% urea as panicle (SBUP) significantly improved key enzyme activities of C and N metabolism, C/N at jointing stage, C accumulation at heading and maturity stage, leading to a further yield growth in machine-transplanting method. Meanwhile, this study suggested that C/N of the high-yield groups of machine-transplanting hybrid rice should be controlled 1.85-2.12, 2.47-2.82, and 3.34-3.53 at jointing, heading and maturity stages, respectively.

Key words: hybrid indica rice, potted-seedling machine-transplantation, slow and rapid nitrogen fertilizer combined application, carbon and nitrogen metabolism, C/N

Fig. 1

Weather data during whole growth stages in rice"

Table 1

Main growth stages under different machine-transplanting methods (month/day)"

年份
Year
育秧方式
Seedling-raising
method
播种期
Seeding date
移栽期
Transplanting date
拔节期
Elongation date
抽穗期
Heading date
成熟期
Maturity date
2016 钵苗Potted seedling 3/20 4/17 6/6 7/4 8/22
毯苗Blanket seedling 3/20 4/17 6/7 7/8 8/24
2017 钵苗Potted seedling 3/25 4/23 6/2 7/8 8/18
毯苗Blanket seedling 3/25 4/23 6/4 7/10 8/20

Table 2

Effects of different machine-transplantation methods and N treatments on C accumulation of organs at different growth stages"

年份
Year
处理
Treatment
拔节期
Elongation stage
抽穗期
Heading stage
成熟期
Maturity stage
茎鞘
Stem-sheath
叶片
Leaf
茎鞘
Stem-sheath
叶片
Leaf

Panicle
茎鞘
Stem-sheath
叶片
Leaf

Panicle
2016 M1N0 0.48±0.02 d 0.36±0.01 d 1.80±0.02 d 0.77±0.01 c 0.62±0.01 c 1.10±0.02 c 0.42±0.01 b 3.33±0.06 d
M1N1 0.90±0.02 b 0.78±0.02 b 3.08±0.02 c 1.50±0.01 a 0.94±0.03 b 2.04±0.03 a 0.89±0.02 a 5.20±0.04 b
M1N2 1.15±0.03 a 0.85±0.03 a 3.34±0.03 a 1.38±0.01 b 1.01±0.01 a 1.87±0.04 b 0.87±0.01 a 5.03±0.05 c
M1N3 0.81±0.03 c 0.69±0.02 c 3.23±0.02 b 1.56±0.06 a 1.05±0.04 a 1.97±0.01 a 0.88±0.01 a 5.40±0.06 a
M2N0 0.49±0.01 c 0.41±0.01 c 1.52±0.05 c 0.59±0.02 d 0.59±0.02 c 1.09±0.03 d 0.52±0.01 c 3.01±0.06 c
M2N1 0.73±0.02 b 0.66±0.02 b 2.49±0.03 b 1.47±0.05 b 0.84±0.02 b 1.94±0.01 c 1.00±0.05 ab 4.78±0.02 a
M2N2 0.88±0.01 a 0.82±0.01 a 2.54±0.01 b 1.38±0.04 c 0.86±0.01 b 2.03±0.03 b 0.95±0.02 b 4.44±0.04 b
M2N3 0.75±0.02 c 0.67±0.02 c 2.83±0.03 a 1.63±0.05 a 0.99±0.03 a 2.15±0.03 a 1.04±0.03 a 4.89±0.09 a
F-value M 496.27** 9.82 ns 184.99** 3.54 ns 25.34* 21.74* 31.86* 278.29**
N 243.14** 258.67** 102.33** 625.72** 196.40** 469.31** 249.69** 510.68**
M×N 18.57** 8.73** 32.36** 10.42** 4.48* 10.86** 1.40 ns 1.98 ns
2017 M1N0 0.46±0.01 c 0.29±0.01 c 1.96±0.04 c 0.61±0.02 c 0.57±0.02 c 1.36±0.01 c 0.46±0.01 b 3.26±0.06 c
M1N1 0.81±0.01 b 0.71±0.02 b 3.37±0.03 bc 1.30±0.01 b 0.94±0.01 b 1.99±0.02 b 0.92±0.02 a 5.32±0.05 a
M1N2 1.00±0.02 a 0.80±0.03 a 3.41±0.09 ab 1.27±0.02 b 1.01±0.03 a 2.04±0.06 b 0.93±0.03 a 5.13±0.06 b
M1N3 0.82±0.02 b 0.73±0.01 b 3.54±0.05 a 1.59±0.07 a 1.04±0.03 a 2.16±0.02 a 0.88±0.03 a 5.40±0.04 a
M2N0 0.39±0.02 c 0.31±0.01 c 1.82±0.06 c 0.57±0.02 d 0.52±0.01 c 1.16±0.04 d 0.55±0.02 c 3.11±0.07 c
M2N1 0.81±0.03 a 0.71±0.01 ab 2.84±0.08 b 1.31±0.03 b 0.80±0.03 b 1.91±0.01 c 1.06±0.03 a 5.04±0.04 a
M2N2 0.75±0.02 b 0.74±0.03 a 2.96±0.06 ab 1.14±0.01 c 0.80±0.02 b 1.98±0.04 b 0.96±0.01 b 4.75±0.09 b
M2N3 0.76±0.01 ab 0.68±0.01 b 3.05±0.06 a 1.44±0.01 a 0.90±0.01 a 2.25±0.02 a 1.10±0.02 a 5.00±0.11 a
F-value M 61.45* 16.16 ns 152.28** 98.20* 341.10** 19.47* 153.27** 64.83*
N 262.02** 253.67** 231.54** 436.98** 114.32** 521.67** 238.17** 353.74**
M×N 18.29** 2.64 ns 3.99* 3.90* 3.61* 10.27** 6.07** 1.25 ns

Table 3

Effects of different machine-transplantation methods and N treatments on C/N of organs at different growth stages"

年份
Year
处理
Treatment
拔节期
Elongation stage
抽穗期
Heading stage
成熟期
Maturity stage
茎鞘
Stem-sheath
叶片
Leaf
茎鞘
Stem-sheath
叶片
Leaf

Panicle
茎鞘
Stem-sheath
叶片
Leaf

Panicle
2016 M1N0 4.94±0.01 a 2.05±0.02 a 5.60±0.04 a 1.86±0.04 a 3.21±0.07 a 4.74±0.08 b 3.01±0.06 a 3.29±0.05 ab
M1N1 3.16±0.03 c 1.33±0.02 c 3.87±0.03 d 1.37±0.03 c 3.00±0.09 b 5.12±0.02 a 2.66±0.03 b 3.23±0.01 bc
M1N2 3.64±0.01 b 1.38±0.02 bc 5.13±0.05 b 1.49±0.01 b 3.31±0.07 a 5.22±0.06 a 2.94±0.03 a 3.35±0.05 a
M1N3 3.67±0.01 b 1.42±0.01 b 4.41±0.04 c 1.35±0.03 c 2.57±0.02 c 4.62±0.04 b 2.98±0.05 a 3.21±0.04 c
M2N0 3.33±0.07 a 1.58±0.02 a 5.80±0.11 a 1.69±0.02 a 3.24±0.09 a 4.79±0.06 a 3.13±0.01 a 3.30±0.03 b
M2N1 2.48±0.07 d 1.20±0.02 d 4.34±0.06 c 1.44±0.02 c 2.59±0.06 d 4.40±0.16 c 2.82±0.02 c 3.40±0.03 a
M2N2 2.84±0.02 c 1.37±0.01 b 5.20±0.10 b 1.63±0.01 b 3.10±0.07 b 4.60±0.05 b 2.96±0.02 b 3.33±0.02 ab
M2N3 3.09±0.02 b 1.28±0.02 c 3.88±0.21 d 1.46±0.02 c 2.74±0.08 c 4.60±0.04 b 2.32±0.03 d 3.40±0.01 a
F-value M 820.81** 1035.33** 7.51 ns 19.32* 10.26 ns 553.09** 19.29* 12.54 ns
N 383.11** 295.37** 97.99** 349.17** 130.21** 4.07* 44.80** 0.79 ns
M×N 70.94** 49.58** 7.04** 57.75** 24.63** 10.58** 45.38** 4.68*
2017 M1N0 4.89±0.08 a 1.62±0.03 a 6.02±0.08 a 1.69±0.02 a 3.09±0.03 b 5.60±0.14 a 2.72±0.04 c 3.15±0.04 b
M1N1 2.61±0.03 d 1.15±0.01 d 4.00±0.01 c 1.27±0.02 d 3.12±0.07 b 5.39±0.01 b 2.40±0.02 d 3.11±0.01 b
M1N2 2.80±0.02 c 1.21±0.02 c 5.91±0.12 a 1.45±0.01 b 3.40±0.07 a 5.58±0.07 a 3.19±0.04 a 3.39±0.03 a
M1N3 3.03±0.04 b 1.31±0.02 b 4.95±0.11 b 1.41±0.01 c 3.04±0.07 b 4.90±0.05 c 2.85±0.06 b 3.11±0.05 b
M2N0 3.97±0.02 a 1.45±0.01 a 7.24±0.06 a 1.97±0.01 a 2.98±0.06 b 4.80±0.10 b 3.26±0.08 a 3.39±0.01 ab
M2N1 2.61±0.06 b 1.18±0.01 b 5.44±0.02 c 1.37±0.01 b 2.72±0.02 c 4.47±0.03 c 2.87±0.03 b 3.42±0.03 ab
M2N2 2.35±0.03 c 1.18±0.01 b 6.08±0.05 b 1.28±0.01 c 3.14±0.03 a 4.54±0.10 c 3.16±0.04 a 3.50±0.06 a
M2N3 2.69±0.03 b 1.20±0.01 b 4.76±0.03 d 1.35±0.01 b 2.88±0.06 b 5.04±0.04 a 2.61±0.02 c 3.34±0.04 b
F-value M 883.50** 114.50** 86.30* 51.46* 17.44 ns 57.94* 48.17* 106.69**
N 660.08** 167.54** 353.39** 908.80** 21.97** 5.65* 49.16** 11.58**
M×N 30.71** 10.37** 65.91** 156.94** 3.77* 29.57** 29.48** 2.55 ns

Table 4

Effects of different machine-transplantation methods and N treatments on C, N accumulation and C/N"

年份
Year
处理
Treatment
全碳积累量 C accumulation (t hm-2) 全氮积累量 N accumulation (kg hm-2) 碳氮比 C/N 产量
Yield (kg hm-2)
拔节期
Elongation stage
抽穗期
Heading stage
成熟期
Maturity stage
拔节期
Elongation stage
抽穗期
Heading stage
成熟期
Maturity stage
拔节期
Elongation stage
抽穗期
Heading stage
成熟期
Maturity stage
2016 M1N0 0.84±0.02 d 3.19±0.02 d 4.84±0.08 c 27.20±0.53 d 93.07±1.33 d 138.24±1.25 d 3.07±0.02 a 3.43±0.05 a 3.50±0.05 b 7647.32±191.73 c
M1N1 1.68±0.04 b 5.53±0.06 c 8.13±0.05 a 87.08±2.15 b 220.60±0.81 b 234.28±1.62 b 1.93±0.02 c 2.51±0.03 c 3.47±0.01 bc 12,057.53±175.03 b
M1N2 2.00±0.04 a 5.73±0.03 b 7.77±0.02 b 93.50±1.37 a 188.59±0.78 c 215.34±0.83 c 2.14±0.01 b 3.04±0.02 b 3.61±0.02 a 11,665.74±182.51 b
M1N3 1.50±0.04 c 5.84±0.08 a 8.25±0.07 a 70.60±2.14 c 229.21±3.46 a 240.34±0.49 a 2.12±0.01 b 2.55±0.01 c 3.43±0.02 c 12,608.57±197.97 a
M2N0 0.90±0.02 c 2.71±0.08 c 4.62±0.05 d 40.71±0.64 d 79.77±1.83 d 130.67±1.49 d 2.20±0.01 a 3.40±0.05 a 3.53±0.02 a 7066.64±123.93 c
M2N1 1.40±0.04 b 4.80±0.06 b 7.72±0.07 b 84.97±0.86 b 191.60±3.37 b 220.27±1.42 b 1.64±0.04 c 2.50±0.02 c 3.50±0.01 a 10,830.51±272.57 b
M2N2 1.69±0.01 a 4.78±0.05 b 7.42±0.07 c 90.35±0.71 a 161.51±1.05 c 209.40±2.16 c 1.88±0.01 b 2.96±0.02 b 3.54±0.01 a 10,501.40±159.28 b
M2N3 1.43±0.01 b 5.45±0.06 a 8.08±0.10 a 76.95±0.77 c 221.13±5.70 a 235.36±4.20 a 1.85±0.01 b 2.47±0.04 c 3.43±0.02 b 11,410.96±151.36 a
F-value M 266.22** 108.62** 89.41* 20.50* 134.29** 225.03** 846.21** 18.31 ns 0.01 ns 272.61**
N 362.85** 254.01** 961.60** 787.38** 346.68** 908.66** 865.00** 436.76** 9.75** 267.08**
M×N 16.72** 26.12** 1.18 ns 17.72** 9.42** 1.71 ns 139.52** 0.80 ns 1.69 ns 1.43 ns
2017 M1N0 0.75±0.01 c 3.14±0.07 c 5.08±0.08 c 27.30±0.11 d 87.08±2.29 c 144.60±3.16 c 2.73±0.02 a 3.61±0.05 a 3.51±0.02 b 7336.30±169.64 d
M1N1 1.52±0.02 b 5.61±0.03 b 8.23±0.05 ab 92.64±1.55 b 216.92±1.92 a 246.55±1.97 a 1.64±0.01 d 2.59±0.01 d 3.34±0.01 c 11,636.94±176.42 b
M1N2 1.80±0.05 a 5.69±0.12 b 8.10±0.14 b 102.02±2.36 a 174.79±4.52 b 216.91±1.99 b 1.77±0.01 c 3.25±0.03 b 3.73±0.04 a 11,191.95±256.75 c
M1N3 1.56±0.03 b 6.16±0.12 a 8.44±0.03 a 83.41±2.45 c 218.62±4.53 a 249.01±3.08 a 1.87±0.03 b 2.82±0.01 c 3.39±0.05 c 12,178.10±187.51 a
M2N0 0.70±0.03 b 2.92±0.06 c 4.82±0.09 d 31.39±1.00 c 71.90±1.06 d 132.85±2.29 d 2.24±0.02 a 4.05±0.02 a 3.63±0.01 a 6889.11±145.79 c
M2N1 1.52±0.04 a 4.96±0.10 b 8.01±0.06 b 91.24±1.36 a 177.83±2.73 b 227.15±0.75 b 1.66±0.02 b 2.79±0.02 c 3.53±0.02 b 10,794.88±111.85 ab
M2N2 1.49±0.05 a 4.90±0.09 b 7.69±0.09 c 94.93±3.01 a 162.98±2.69 c 210.06±4.96 c 1.57±0.02 c 3.01±0.01 b 3.66±0.04 a 10,527.79±198.08 b
M2N3 1.44±0.03 a 5.39±0.08 a 8.34±0.13 a 84.62±0.82 b 202.21±3.34 a 236.07±2.30 a 1.70±0.01 b 2.67±0.01 d 3.53±0.02 b 11,242.41±171.13 a
F-value M 35.45* 178.71** 45.00* 0.60 ns 215.94** 654.57** 527.78** 18.37 ns 18.26 ns 52.26*
N 346.16** 417.44** 722.79** 662.11** 904.02** 551.82** 750.06** 110.09** 28.25** 233.49**
M×N 9.34** 4.71* 1.76 ns 3.74* 10.11** 1.61 ns 53.85** 102.91** 6.30** 0.61 ns

Fig. 2

Glutamate synthase, glutamine synthase, sucrose phosphate synthase sucrose synthase activity of young panicle at differentiation stages of the primary and secondary branch primodium PBPD: primary branch primordium differentiation stage; SBSPD: secondary branch and spikelet primordium differentiation stage. Other abbreviations are the same as those given in Table 2. The values within a column followed by different lowercase letters indicate statistically significant differences at the 0.05 probability level."

Fig. 3

Glutamate synthase, glutamine synthase, sucrose phosphate synthase, and sucrose synthase activity of flag leaves after heading stage Other abbreviations are the same as those given in Table 2. The values within a column followed by different lowercase letters show significant differences at the 0.05 probability level."

[1] Zhang J Z, He C X, Chen L, Cao S X. Improving food security in China by taking advantage of marginal and degraded lands. J Clean Prod, 2018, 171:1020-1030.
doi: 10.1016/j.jclepro.2017.10.110
[2] Wu W, Nie L X, Liao Y C, Shah F, Cui K H, Wang Q, Lian Y, Huang J L. Toward yield improvement of early-season rice: other options under double rice-cropping system in central China. Eur J Agron, 2013, 45:75-86.
doi: 10.1016/j.eja.2012.10.009
[3] Khush G. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 2005, 59:1-6.
doi: 10.1007/s11103-005-2159-5
[4] Peng S B. Dilemma and way-out of hybrid rice during the transition period in China. Acta Agron Sin, 2016, 42:313-319.
doi: 10.3724/SP.J.1006.2016.00313
[5] Huang M, Chen J N, Cao F B, Zou Y B. Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice. Field Crops Res, 2018, 221:333-338.
doi: 10.1016/j.fcr.2017.06.028
[6] 张洪程, 赵品恒, 孙菊英, 吴桂成, 徐军, 端木银熙, 戴其根, 霍中洋, 许轲, 魏海燕. 机插杂交粳稻超高产形成群体特征. 农业工程学报, 2012, 28(2):39-44.
Zhang H C, Zhao P H, Sun J Y, Wu G C, Xu J, Duan-Mu Y X, Dai Q G, Huo Z Y, Xu K, Wei H Y. Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice. Trans CSAE, 2012, 28(2):39-44 (in Chinese with English abstract).
[7] 胡雅杰, 邢志鹏, 龚金龙, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 沙安勤, 周有炎, 刘国林, 陆秀军, 刘国涛, 朱嘉炜. 适宜机插株行距提高不同穗型粳稻产量. 农业工程学报, 2013, 29(14):33-44.
Hu Y J, Xing Z P, Gong J L, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Li D J, Sha A Q, Zhou Y Y, Liu G L, Lu X J, Liu G T, Zhu J W. Suitable spacing in and between rows of plants by machinery improves yield of different panicle type japonica rices. Trans CSAE, 2013, 29(14):33-44 (in Chinese with English abstract).
[8] 胡雅杰, 邢志鹏, 龚金龙, 刘国涛, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 沙安勤, 周有炎, 罗学超, 刘国林. 钵苗机插水稻群体动态特征及高产形成机制的探讨. 中国农业科学, 2014, 47:865-879.
Hu Y J, Xing Z P, Gong J L, Liu G T, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W, Sha A Q, Zhou Y Y, Luo X C, Liu G L. Study on population characteristics and formation mechanisms for high yield of pot-seedling mechanical transplanting rice. Sci Agric Sin, 2014, 47:865-879 (in Chinese with English abstract).
[9] 杨松, 贾一磊, 王进友, 罗来君, 高雯雯. 钵苗机插杂交籼稻的优势及其精确定量栽培技术研究. 大麦与谷类科学, 2019, 36(6):16-21.
Yang S, Jia Y L, Wang J Y, Luo L J, Gao W W. Research on the advantages and precise quantitative cultivation technologies of the indica hybrid rice whose seedlings are potted and mechanically transplanted. Barl Cer Sci, 2019, 36(6):16-21 (in Chinese with English abstract).
[10] Cheng S H, Zhuang J Y, Fan Y Y, Jing H D, Li Y C. Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot, 2007, 100:959-966.
doi: 10.1093/aob/mcm121
[11] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47:1273-1289.
Zhang H C, Gong J L, Research status and development discussion on high-yielding agronomy of mechanized planting rice in china. Sci Agric Sin, 2014, 47:1273-1289 (in Chinese with English abstract).
[12] 李应洪, 王海月, 吕腾飞, 张绍文, 蒋明金, 何巧林, 孙永健, 马均. 不同秧龄下机插方式与密度对杂交稻光合生产及产量的影响. 中国农业科学, 2017, 31:265-277.
Li Y H, Wang H Y, Lyu T F, Zhang S W, Jiang M J, He Q L, Sun Y J, Ma J. Effects of mechanically-transplanted modes and density on photosynthetic production and yield in hybrid rice at different seedling-ages. Sci Agric Sin, 2017, 31:265-277 (in Chinese with English abstract).
[13] 吴文革, 张健美, 周永进, 陈刚, 许有尊, 李胜群, 严文学, 高尚勤. 江淮水稻钵苗机插生育特性与高产栽培关键技术研究. 中国稻米, 2015, 21(4):118-124.
Wu W G, Zhang J M, Zhou Y J, Chen G, Xu Y Z, Li S Q, Yan W X, Gao S Q. Study on growth and development characteristics and high-yielding cultivation techniques of rice with nutrition bowl mechanical transplanting in Jianghuai area. China Rice, 2015, 21(4):118-124 (in Chinese with English abstract).
[14] 张军, 王兴龙, 石广跃, 米长生, 郭保卫, 李必忠, 方书亮, 陆海空, 刘忠红, 张永进, 庚跃东. 不同机栽方式下杂交稻产量及其形成特征比较. 农业工程学报, 2015, 31(10):84-91.
Zhang J, Wang X L, Shi G Y, Mi C S, Guo B W, Li B Z, Fang S L, Lu H K, Liu Z H, Zhang Y J, Geng Y D. Yield and its formation of hybrid rice under different mechanical transplanted methods. Trans CSAE, 2015, 31(10):84-91 (in Chinese with English abstract).
[15] 胡雅杰, 曹伟伟, 钱海军, 邢志鹏, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 高辉, 沙安勤, 周有炎, 刘国林. 钵苗机插密度对不同穗型水稻品种产量、株型和抗倒伏能力的影响. 作物学报, 2015, 41:743-757.
Hu Y J, Cao W W, Qian H J, Xing Z P, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W, Gao H, Sha A Q, Zhou Y Y, Liu G L. Effect of planting density of mechanically transplanted pot seedlings on yield, plant type and lodging resistance in rice with different panicle types. Acta Agron Sin, 2015, 41:743-757 (in Chinese with English abstract).
[16] 江立庚, 曹卫星. 水稻高效利用氮素的生理机制及有效途径. 中国水稻科学, 2002, 16:261-264.
Jiang L G, Cao W X. Physiological mechanism and approaches for efficient nitrogen utilization in rice. Chin J Rice Sci, 2002, 16:261-264 (in Chinese with English abstract).
[17] 魏海燕, 李宏亮, 程金秋, 张洪程, 戴其根, 霍中洋, 许轲, 郭保卫, 胡雅杰, 崔培媛. 缓释肥类型与运筹对不同穗型水稻产量的影响. 作物学报, 2017, 43:730-740.
Wei H Y, Li H L, Cheng J Q, Zhang H C, Dai Q G, Huo Z Y, Xu K, Guo B W, Hu Y J, Cui P Y. Effects of slow/controlled release fertilizer types and their application regime on yield in rice with different types of panicle. Acta Agron Sin, 2017, 43:730-740 (in Chinese with English abstract).
[18] Deng F, Wang L, Ren W J, Mei X F. Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea. Field Crops Res, 2014, 169:30-38.
doi: 10.1016/j.fcr.2014.08.015
[19] 陈贤友, 吴良欢, 李金先, 应金耀. 新型控释肥对水稻产量与氮肥利用率的影响探讨. 土壤通报, 2010, 41(1):133-137.
Chen X Y, Wu L H, Li J X, Ying J Y. Effects of new controlled release fertilizers on rice yield and nitrogen use efficiency. Chin J Soil Sci, 2010, 41(1):133-137 (in Chinese with English abstract).
[20] 李敏, 郭熙盛, 叶舒娅, 刘枫, 袁嫚嫚, 黄义德. 硫膜和树脂膜控释尿素对水稻产量、光合特性及氮肥利用率的影响. 植物营养与肥料学报, 2013, 19:808-815.
Li M, Guo X S, Ye S Y, Liu F, Yuan M M, Huang Y D. Effects of sulfur- and polymer-coated controlled release urea on yield, photosynthetic characteristics and nitrogen fertilizer efficiency of rice. Plant Nutr Fert Sci, 2013, 19:808-815 (in Chinese with English abstract).
[21] 张敬昇, 李冰, 王昌全, 罗晶, 古珺, 龙思帆, 何杰, 向毫, 尹斌. 控释掺混尿素对稻麦产量及氮素利用率的影响. 中国水稻科学, 2017, 31:288-298.
Zhang J S, Li B, Wang C Q, Luo J, Gu J, Long S F, He J, Xiang H, Yin B. Effects of controlled release blend bulk urea on the yield and nitrogen use efficiency of wheat and rice. Chin J Rice Sci, 2017, 31:288-298 (in Chinese with English abstract).
[22] 孙克刚, 杜君, 孙克振, 和爱玲, 张运红. 控释尿素与化肥配施对水稻产量及氮素利用率的影响. 磷肥与复肥, 2015, 30(10):48-50.
Sun K G, Du J, Sun K Z, He A L, Zhang Y H. Effect of combined application controlled release urea and chemical fertilizer on yield of rice and utilization rate of nitrogen. Phosph Comp Fert, 2015, 30(10):48-50 (in Chinese with English abstract).
[23] 李酉开. 土壤农业化学常规分析方法. 北京: 科学出版社, 1983. pp 79, 272.
Li Y K. Conventional Analytical Methods for Soil Agricultural Chemistry. Beijing: Science Press, 1983. pp 79, 272 (in Chinese).
[24] Douglas C D, Tsung M K, Frederick C F. Enzymes of sucrouse and hexose metabolism indevelopment kernels of two inbreds of maize. Plant Physiol, 1988, 86:1013-1019.
doi: 10.1104/pp.86.4.1013
[25] Mei T, Lee Q, Setter T L. Effect of increased temperature in apical regions of maize ears on starch-synthesis enzymes and accumulation of sugars and starch. Plant Physiol, 1985, 79:852-855.
doi: 10.1104/pp.79.3.852
[26] Umemoto T, Nakamura Y, Ishikura M. Effect of grain location of the panicle of actives involve in starch synthesis in rice endosperm. Phytochemistry, 1994, 36:843-847.
doi: 10.1016/S0031-9422(00)90448-5
[27] Kumar R, Sarawgi A K, Ramos C, Amarante S T, Ismail A M, Wade L J. Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Res, 2006, 96:455-465.
doi: 10.1016/j.fcr.2005.09.001
[28] Lu Y H, Watanabe A, Kimura M. Input and distribution of photosynthesized carbon in a flooded soil. Global Biogeochem Cycl, 2002, 16:321-328.
[29] 刘利, 雷小龙, 黄光忠, 刘代银, 任万军. 机械化播栽对杂交稻氮素积累分配及碳氮比的影响. 植物营养与肥料学报, 2014, 20:831-844
Liu L, Lei X L, Huang G Z, Liu D Y, Ren W J. Influences of mechanical sowing and transplanting on nitrogen accumulation, distribution and C/N of hybrid rice cultivars. J Plant Nutr Fert, 2014, 20:831-844 (in Chinese with English abstract).
[30] 林瑞余, 蔡碧琼, 柯庆明, 蔡向阳, 林文雄. 不同水稻品种产量形成过程的固碳特性研究. 中国农业科学, 2006, 39:2441-2448.
Lin R Y, Cai B Q, Ke Q M, Cai X Y, Lin W X. Characteristics of carbon fixation in different rice cultivars during yield formation process. Sci Agric Sin, 2006, 39:2441-2448 (in Chinese with English abstract).
[31] 胡雅杰, 吴培, 朱明, 邢志鹏, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 张洪程. 钵苗机插水稻氮素吸收与利用特征. 中国水稻科学, 2018, 32:257-264.
Hu Y J, Wu P, Zhu M, Xing Z P, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W, Zhang H C. Characteristics of nitrogen uptake and utilization of mechanically-transplanted pot-tray-nursed rice seedlings. Chin J Rice Sci, 2018, 32:257-264 (in Chinese with English abstract)
[32] 薛利红, 杨林章, 范小晖. 基于碳氮代谢的水稻氮含量及碳氮比光谱估测. 作物学报, 2006, 32:430-435.
Xue L H, Yang L Z, Fan X H. Estimation of nitrogen content and C/N in rice leaves and plant with canopy reflectance spectra. Acta Agron Sin, 2006, 32:430-435 (in Chinese with English abstract).
[33] 阮新民, 施伏芝, 罗志祥. 施氮对高产杂交水稻生育后期叶碳氮比与氮素吸收利用的影响. 中国土壤与肥料, 2011, 2:35-38.
Ruan X M, Shi F Z, Luo Z X. Effects of nitrogen application on the leaf of C/N and nitrogen uptake and utilization at later developmental stages in different high yield hybrid rice varieties. Soil Fert Sci China, 2011, 2:35-38 (in Chinese with English abstract).
[34] Kobayasi K, Horie T. The effect of plant nitrogen condition during reproductive stage on the differentiation of spikelets and rachis-branches in rice. Jpn J Crop Sci, 1994, 63:193-199.
doi: 10.1626/jcs.63.193
[35] Kobayasi K, Yamane K, Imaki T. Effect of non-structural carbohydrates on spikelets differentiation in rice. Plant Prod Sci, 2001, 4:9-14.
doi: 10.1626/pps.4.9
[36] Ansari T H, Yamamoto Y, Yoshida T, Miyazaki A, Wang Y L. Cultivar differences in the number of differentiated spikelets and percentage of degenerated spikelets as determinats of the spikelet number per panicle in relation to dry matter production and nitrogen absorption. Soil Sci Plant Nutr, 2003, 49:433-444.
doi: 10.1080/00380768.2003.10410029
[37] 邱泽生, 刘捷平, 黄勤妮, 丁以珊, 张承谦, 王沅. 冬小麦的小花发育与碳氮代谢的关系. 作物学报, 1980, 6:139-146.
Qiu Z S, Liu J P, Huang Q N, Ding Y S, Zhang C Q, Wang Y. The relation between floret development and carbon-nitrogen metabolism in winter wheat. Acta Agron Sin, 1980, 6:139-146 (in Chinese with English abstract).
[38] 孙永健, 孙园园, 严奉君, 杨志远, 徐徽, 李玥, 王海月, 马均. 氮肥后移对不同氮效率水稻花后碳氮代谢的影响. 作物学报, 2017, 43:407-419.
Sun Y J, Sun Y Y, Yan F J, Yang Z Y, Xu H, Li Y, Wang H Y, Ma J. Effects of postponing nitrogen topdressing on post-anthesis carbon and nitrogen metabolism in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2017, 43:407-419 (in Chinese with English abstract).
[39] Krapp A, Saliba-Colombani V, Daniel-Vedele F. Analysis of C and N metabolisms and of C/N interactions using quantitative genetics. Photosyn Res, 2005, 83:251-263.
doi: 10.1007/s11120-004-3196-7
[40] 田纪春, 陈建省, 王延训, 张永祥. 氮素追肥后移对小麦籽粒产量和旗叶光合特性的影响. 中国农业科学, 2001, 34:101-103.
Tian J C, Chen J S, Wang Y X, Zhang Y X. Effects of delayed-nitrogen application on grain yield and photosynthetic characteristics in flag leaves of wheat cultivars. Sci Agric Sin, 2001, 34:101-103 (in Chinese with English abstract).
[41] 许光利, 刘佳, 梁成刚, 汪燕, 丁春邦, 李天. 灌浆结实期弱光对水稻籽粒氮代谢酶及蛋白质含量的影响. 浙江大学学报(农业与生命科学版), 2016, 42(1):53-62.
Xu G L, Liu J, Liang C G, Wang Y, Ding C B, Li T. Changes of nitrogen metabolism enzyme activities and protein content in response to low light during the seed filling stage in rice. J Zhejiang Univ (Agric Life Sci Edn), 2016, 42(1):53-62 (in Chinese with English abstract).
[42] Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Laforgue T T, Quilleré I, Coque M, Gallais A, Moro G M, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K J, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006, 18:3252-3274.
doi: 10.1105/tpc.106.042689
[43] Hirel B. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol, 2001, 125:1258-1270.
pmid: 11244107
[44] 杜君, 孙克刚, 雷利君, 和爱玲, 张运红, 孙克振. 控释尿素与普通尿素配施对水稻氮代谢关键酶活性及产质量的影响. 河南农业科学, 2016, 45(3):67-72.
Du J, Sun K G, Lei L J, He A L, Zhang Y H, Sun K Z. Effects of combined application of controlled release urea and common urea on activities of key enzymes related with nitrogen metabolism, yield and quality of rice. J Henan Agric Sci, 2016, 45(3):67-72 (in Chinese with English abstract).
[45] 阮新民, 施伏芝, 从夕汉, 罗志祥. 氮高效利用水稻碳氮代谢物含量的变化特征. 作物杂志, 2015, (6):76-83.
Ruan X M, Shi F Z, Cong X H, Luo Z X. Characteristics of carbon and nitrogen metabolites of rice genotype with high nitrogen use efficiency. Crops, 2015, (6):76-83 (in Chinese with English abstract).
[1] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[2] LUO Kai, XIE Chen, WANG Jin, WANG Tian, HE Shun, YONG Tai-Wen, YANG Wen-Yu. Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2021, 47(4): 752-760.
[3] Jing-Nan ZOU,Qi YU,Xi-Jun JIN,Ming-Yao WANG,Bin QIN,Chun-Yuan REN,Meng-Xue WANG,Yu-Xian ZHANG. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress [J]. Acta Agronomica Sinica, 2020, 46(5): 745-758.
[4] ZHOU Wei-Xia,DONG Peng-Fei,WANG Xiu-Ping,LI CHAO-Hai. Effects of Low-light Stress on Kernel Setting, and Carbon and Nitrogen Metabolism of Different Maize (Zea mays L.) Genotypes [J]. Acta Agron Sin, 2013, 39(10): 1826-1834.
[5] SUN Xue-Fang,DING Zai-Song,HOU Hai-Peng,GE Jun-Zhu,TANG Li-Yuan,ZHAO Ming. Post-Anthesis Photosynthetic Assimilation and the Changes of Carbon and Nitrogen in Different Varieties of Spring Maize [J]. Acta Agron Sin, 2013, 39(07): 1284-1292.
[6] LÜ Li-Hua;TAO Hong-Bin;WANG Pu;LIU Ming;ZHAO Ming;WANG Run-Zheng. Carbon and Nitrogen Metabolism and Nitrogen Use Efficiency in Summer Maize under Different Planting Densities [J]. Acta Agron Sin, 2008, 34(04): 718-723.
[7] HU Hong-Biao;ZHANG Wen-Jing;CHEN Bing-Lin;WANG You-Hua;SHU Hong-Mei;ZHOU Zhi-Guo. Changes of C/N Ratio in the Subtending Leaf of Cotton Boll and Its Relation- ship to Cotton Boll Dry Matter Accumulation and Distribution [J]. Acta Agron Sin, 2008, 34(02): 254-260.
[8] XUE Li-Hong;YANG Lin-Zhang and FAN Xiao-Hui. Estimation of Nitrogen Content and C/N in Rice Leaves and Plant with Canopy Reflectance Spectra [J]. Acta Agron Sin, 2006, 32(03): 430-435.
[9] YANG Hong-Jian; YANG Lian-Xin; LIU Hong-Jiang; HUANG Jian-Ye; DONG Gui-Chun; ZHU Jian-Guo; WANG Yu-Long. Effect of Free-air CO2 Enrichment on Root Activity of Japonica Rice (Oryza sativa L.) Cultivar Wuxiangjing 14 [J]. Acta Agron Sin, 2006, 32(01): 118-124.
[10] Shi Hongzhi;Han Jinfeng;Guan Chunyun;Yuan Tong. Effects of Red and Blue Light Proportion on Leaf Growth,Carbon-Nitrogen Metabolism and Quality in Tobacco [J]. Acta Agron Sin, 1999, 25(02): 215-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!