Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 1953-1965.doi: 10.3724/SP.J.1006.2021.02068

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields

CHE Yang(), CHENG Shuang, TIAN Jin-Yu, TAO Yu, LIU Qiou-Yuan, XING Zhi-Peng*(), DOU Zhi, XU Qiang, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, GAO Hui, ZHANG Hong-Cheng*()   

  1. Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture / Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2020-10-17 Accepted:2021-03-19 Online:2021-10-12 Published:2021-03-31
  • Contact: XING Zhi-Peng,ZHANG Hong-Cheng E-mail:cheyangde@foxmail.com;zpxing@yzu.edu.cn;hczhang@yzu.edu.cn
  • Supported by:
    Key Research and Development Program of Jiangsu Province(BE2018355);National Key Research and Development Program of China(2018YFD0300804);China Agricultural Research System(CARS-01-27);National Natural Science Foundation of China(31801293);Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Abstract:

To explore the characteristics and differences in yield, photosynthetic matter production, quality and economic benefits of rice under different modes of comprehensive planting-breeding in paddy fields, six modes including rice crayfish (RC), rice turtle (RT), rice loach (RL), rice catfish (RF), rice koi (RK), and rice duck (RD) were arranged using Nanjing 9108 (a high-quality rice variety) as the experimental material in 2018 and 2019. Comparing these modes with rice cultivation under rice-wheat rotation (CK), the effects of different modes of comprehensive planting-breeding in paddy fields on quality, yield and yield component of rice, characteristics of photosynthetic matter production, and economic benefits were systematically investigated in this study. The results showed that, compared with CK, the rice yield of different modes of comprehensive planting-breeding in paddy fields was significantly decreased by 3.66%-7.54%, and the RD mode reduced the least, and the RK mode reduced the most. Compared with CK, the reduction of rice yield in different modes of comprehensive planting-breeding in paddy fields was mainly due to lower dry matter accumulation at maturity stage, which was resulted from the smaller leaf area index, lower photosynthetic potential, crop growth rate, and net assimilation rate in main growth stages; and due to less total number of spikelets, which was caused by significant decreasing in panicle number per hectare and number of spikelets per panicle. Compared with CK, the different modes of comprehensive planting-breeding in paddy fields significantly reduced the head milled rice rate by 2.40%-4.37%, decreased the chalkiness by 8.14%-11.14%, increased the amylose content by 9.35%-13.80%, reduced the protein content by 6.29%-10.01%, and raised the taste value by 3.91%-11.69%. Compared with CK, the peak viscosity, hot viscosity, final viscosity, and breakdown of RVA parameters of rice starch were increased by 2.75%-12.65%, 3.24%-19.63%, 2.47%-14.79%, and 1.67%-5.78%, respectively, while the setback was decreased by 2.54%-15.15%. The economic benefits of different modes of comprehensive planting-breeding in paddy fields were 80.93%-511.52% higher than CK, which was mainly due to the increase in the income of aquatic (poultry) breeding products and the increase in the price of rice quality. In conclusion, comprehensive planting-breeding in paddy fields was an alternative rice planting mode, that could guarantee a stable rice yield, improve rice quality, and increase the comprehensive benefits.

Key words: comprehensive planting-breeding in paddy fields, rice yield, characteristics of photosynthetic matter production, quality, economic benefit

Table 1

Rice yield and yield components under different modes of comprehensive planting-breeding in paddy fields"

年度
Year
模式
Type
穗数
Number of panicles
(×104 m-2)
每穗粒数
Number of spikelets per panicle
群体颖花量
Total number of spikelets
(×104 hm-2)
结实率
Filled grain percentage (%)
千粒重
1000-grain weight (g)
实产
Actual yield
(t hm-2)
2018 稻虾 RC 356.60 bc 108.13 b 3855.93 c 92.48 a 26.61 a 9.05 c
稻锦鲤 RK 350.04 c 106.20 b 3717.41 c 91.82 a 26.14 a 8.84 c
稻鳖 RT 360.39 bc 108.30 b 3903.06 bc 92.60 a 26.28 a 9.16 bc
稻鳅 RL 353.60 c 108.32 b 3830.21 c 92.12 a 26.35 a 8.96 c
稻鲶鱼 RF 359.70 bc 107.27 b 3894.49 b 92.77 a 26.10 a 9.25 b
稻鸭 RD 364.71 b 110.21 b 4019.43 b 92.80 a 26.47 a 9.52 b
对照 CK 378.57 a 117.02 a 4430.02 a 91.26 a 25.42 b 9.83 a
2019 稻虾 RC 360.49 bc 109.40 b 3943.71 bc 91.58 a 26.58 a 9.24 bc
稻锦鲤 RK 352.31 c 107.22 b 3781.17 c 91.18 a 26.51 a 9.04 c
稻鳖 RT 361.41 bc 109.47 b 3956.26 bc 91.67 a 26.30 a 9.35 bc
稻鳅 RL 359.44 c 108.90 b 3914.25 c 91.68 a 26.66 a 9.18 c
稻鲶鱼 RF 362.83 bc 109.68 b 3979.36 b 91.77 a 26.07 a 9.43 b
稻鸭 RD 364.04 b 112.41 b 4092.37 b 91.87 a 26.44 a 9.73 b
对照 CK 379.28 a 118.26 a 4485.42 a 90.53 a 25.19 b 10.01 a

Table 2

Leaf area index and decreasing rates of leaf area of rice at main growth stages under different modes of comprehensive planting-breeding in paddy fields"

年度
Year
模式
Type
栽后25 d
25 days after planting
拔节期
Jointing
抽穗期
Heading
成熟期
Maturity
叶面积衰减率
Decreasing rate of leaf area (LAI d-1)
2018 稻虾 RC 1.72 b 3.25 c 6.70 c 2.73 b 0.0662 c
稻锦鲤 RK 1.71 b 3.23 c 6.64 c 2.59 c 0.0675 b
稻鳖 RT 1.76 b 3.26 c 6.81 c 2.73 b 0.0669 bc
稻鳅 RL 1.78 b 3.24 c 6.68 c 2.69 b 0.0676 b
稻鲶鱼 RF 1.74 b 3.29 bc 6.91 b 2.76 b 0.0692 b
稻鸭 RD 1.81 b 3.36 b 7.07 ab 2.80 ab 0.0700 ab
对照 CK 1.89 a 3.51 a 7.22 a 2.92 a 0.0717 a
2019 稻虾 RC 1.77 b 3.31 c 6.90 bc 2.75 b 0.0692 b
稻锦鲤 RK 1.75 b 3.30 c 6.80 c 2.66 c 0.0690 bc
稻鳖 RT 1.80 b 3.35 c 6.91 bc 2.78 b 0.0689 c
稻鳅 RL 1.75 b 3.30 c 6.84 c 2.73 b 0.0685 bc
稻鲶鱼 RF 1.81 b 3.38 c 7.17 ab 2.77 b 0.0705 b
稻鸭 RD 1.87 b 3.49 b 7.19 ab 2.88 b 0.0712 ab
对照 CK 1.94 a 3.61 a 7.30 a 2.98 a 0.0725 a

Table 3

Dry matter accumulation and harvest index of rice at main growth stages under different modes of comprehensive planting-breeding in paddy fields"

年度
Year
模式
Type
栽后25 d
25 days after planting
(t hm-2)
拔节期
Jointing
(t hm-2)
抽穗期
Heading
(t hm-2)
成熟期
Maturity
(t hm-2)
收获指数
Harvest index
(%)
2018 稻虾 RC 1.85 b 4.15 c 11.13 c 18.05 c 50.14 a
稻锦鲤 RK 1.79 b 4.03 c 10.90 c 17.52 d 50.46 a
稻鳖 RT 1.84 b 4.11 c 11.15 c 18.13 c 50.52 a
稻鳅 RL 1.79 b 4.04 c 10.92 c 17.61 cd 50.88 a
稻鲶鱼 RF 1.81 b 4.12 c 11.17 c 18.27 c 50.63 a
稻鸭 RD 1.91 b 4.23 b 11.56 b 18.85 b 50.50 a
对照 CK 2.00 a 4.58 a 12.32 a 20.19 a 48.69 b
2019 稻虾 RC 1.93 b 4.26 c 11.55 c 18.55 c 49.81 a
稻锦鲤 RK 1.87 b 4.11 c 11.32 c 18.06 d 50.06 a
稻鳖 RT 1.92 b 4.21 c 11.55 bc 18.60 c 50.27 a
稻鳅 RL 1.86 b 4.12 c 11.35 c 18.14 d 50.61 a
稻鲶鱼 RF 1.87 b 4.14 c 11.57 bc 18.84 c 50.05 a
稻鸭 RD 1.96 b 4.32 b 11.96 b 19.39 b 50.18 a
对照 CK 2.08 a 4.64 a 12.61 a 20.52 a 48.78 b

Table 4

Dry matter accumulation and rate at different main growth stages of rice under different modes of comprehensive planting-breeding in paddy fields"

年度
Year
模式
Type
播种-拔节期
Sowing-Jointing
拔节-抽穗期
Jointing-Heading
抽穗-成熟期
Heading-Maturity
积累量
Dry matter accumulation
(t hm-2)
比例
Ratio
(%)
积累量
Dry matter accumulation
(t hm-2)
比例
Ratio (%)
积累量
Dry matter accumulation
(t hm-2)
比例
Ratio (%)
2018 稻虾 RC 4.15 b 22.88 6.96 c 38.39 6.95 c 38.48
稻锦鲤 RK 4.03 b 22.99 6.87 c 39.15 6.62 d 37.79
稻鳖 RT 4.11 b 22.69 7.04 c 38.82 6.98 c 38.50
稻鳅 RL 4.04 b 22.99 6.88 c 39.12 6.79 cd 38.34
稻鲶鱼 RF 4.12 b 22.94 6.98 c 38.84 7.03 c 38.61
稻鸭 RD 4.23 b 22.44 7.33 b 38.86 7.29 b 38.67
对照 CK 4.58 a 22.74 7.74 a 38.42 7.82 a 38.83
2019 稻虾 RC 4.26 b 22.71 7.30 c 38.91 7.00 c 37.74
稻锦鲤 RK 4.11 b 22.63 7.21 c 39.67 6.84 d 37.67
稻鳖 RT 4.21 b 22.59 7.34 c 39.39 7.05 c 37.90
稻鳅 RL 4.12 b 22.63 7.22 c 39.66 6.90 cd 37.81
稻鲶鱼 RF 4.14 b 22.40 7.31 c 39.51 7.10 c 38.03
稻鸭 RD 4.32 b 22.27 7.64 b 39.41 7.43 b 38.32
对照 CK 4.64 a 22.59 7.98 a 38.86 7.91 a 38.55

Table 5

Photosynthetic potential, crop growth rate, and net assimilation rate of rice at main growth stages under different modes of comprehensive planting-breeding in paddy fields"

年份
Year
模式
Type
光合势
Photosynthetic potential (×104 m2 d hm-2)
群体生长率
Crop growth rate (g m-2 d-1)
净同化率
Net assimilation rate (g m-2 d-1)
播种-
拔节期
Sowing-
Jointing
拔节-
抽穗期
Jointing-
Heading
抽穗-
成熟期
Heading-
Maturity
播种-
拔节期
Sowing-
Jointing
拔节-
抽穗期
Jointing-
Heading
抽穗-
成熟期
Heading-
Maturity
播种-
拔节期
Sowing-
Jointing
拔节-
抽穗期
Jointing-
Heading
抽穗-
成熟期
Heading-
Maturity
2018 稻虾 RC 113.75 b 134.33 b 282.90 b 5.93 b 25.85 b 11.53 b 2.15 b 5.42 b 2.61 b
稻锦鲤 RK 113.05 b 133.25 b 276.42 c 5.76 b 25.44 c 11.03 c 2.09 b 5.38 c 2.56 c
稻鳖 RT 114.10 b 135.95 b 286.20 b 6.05 b 26.07 b 11.63 b 2.19 b 5.41 b 2.61 b
稻鳅 RL 103.68 b 128.96 b 276.90 c 5.94 b 25.48 c 11.34 c 2.16 b 5.36 bc 2.58 bc
稻鲶鱼 RF 115.15 ab 137.70 b 290.10 b 5.89 b 26.11 b 11.83 b 2.13 b 5.35 b 2.62 b
稻鸭 RD 117.60 ab 141.35 b 297.30 ab 6.04 b 27.14 b 12.15 b 2.18 b 5.43 b 2.64 b
对照 CK 122.85 a 149.80 a 303.30 a 6.54 a 28.67 a 13.12 a 2.34 a 5.59 a 2.76 a
2019 稻虾 RC 115.85 b 137.84 b 289.50 bc 6.09 b 27.00 b 11.67 b 2.26 b 5.57 b 2.59 bc
稻锦鲤 RK 115.50 b 136.35 b 283.79 c 5.87 b 26.70 c 11.23 c 2.12 b 5.51 b 2.55 c
稻鳖 RT 117.25 ab 138.50 b 290.59 b 6.19 b 27.19 b 11.75 b 2.23 b 5.53 b 2.59 b
稻鳅 RL 105.60 b 131.82 b 287.10 c 5.97 b 26.78 bc 11.51 bc 2.13 b 5.52 b 2.57 c
稻鲶鱼 RF 118.30 ab 142.43 b 298.20 b 5.91 b 27.52 b 12.12 b 2.14 b 5.54 b 2.62 bc
稻鸭 RD 122.15 a 144.15 b 300.91 ab 6.17 b 28.30 b 12.38 b 2.21 b 5.53 b 2.64 b
对照 CK 126.35 a 152.79 a 308.60 a 6.63 a 29.52 a 13.18 a 2.36 a 5.64 a 2.73 a

Table 6

Milling and appearance quality of rice under different modes of comprehensive planting-breeding in paddy fields"

年度
Year
模式
Type
糙米率
BR (%)
精米率
MR (%)
整精米率
HMR (%)
垩白粒率
CP (%)
垩白度
CD (%)
2018 稻虾 RC 83.38 b 74.04 b 63.64 c 12.31 c 4.19 c
稻锦鲤 RK 84.34 b 74.77 b 64.55 bc 12.51 b 4.26 b
稻鳖 RT 83.79 b 74.16 b 64.43 bc 12.50 b 4.23 bc
稻鳅 RL 83.40 b 74.11 b 64.31 bc 12.43 bc 4.22 bc
稻鲶鱼 RF 83.30 b 73.65 b 63.49 c 12.26 c 4.17 c
稻鸭 RD 84.31 b 75.09 ab 64.77 b 12.54 b 4.28 b
对照 CK 86.17 a 76.78 a 66.39 a 13.62 a 4.63 a
2019 稻虾 RC 84.78 b 74.41 b 63.93 c 12.24 c 4.14 c
稻锦鲤 RK 83.59 b 75.34 ab 64.84 bc 12.47 b 4.21 b
稻鳖 RT 83.69 b 74.54 b 64.72 bc 12.46 b 4.20 bc
稻鳅 RL 84.08 b 74.48 b 64.60 bc 12.43 b 4.18 bc
稻鲶鱼 RF 83.66 b 74.02 b 63.78 c 12.23 c 4.13 c
稻鸭 RD 84.63 b 75.47 ab 65.06 b 12.51 b 4.23 b
对照 CK 86.38 a 77.18 a 66.66 a 13.58 a 4.58 a

Table 7

Amylose content, protein content, and taste value of rice under different modes of comprehensive planting-breeding in paddy fields"

年度
Year
模式
Type
直链淀粉含量
AC (%)
蛋白质含量
PC (%)
食味值
Comprehensive
外观
Appearance
硬度
Hardness
黏度
Viscosity
平衡度
Balance degree
2018 稻虾 RC 10.58 a 7.20 c 79.02 a 8.1 b 5.7 b 8.1 ab 8.1 ab
稻锦鲤 RK 10.28 b 7.41 b 75.76 b 7.8 b 5.8 ab 7.7 b 7.8 b
稻鳖 RT 10.34 b 7.36 b 76.36 b 7.5 bc 6.1 a 7.6 b 7.5 bc
稻鳅 RL 10.51 a 7.24 c 78.93 a 7.8 b 5.9 ab 7.8 b 7.8 b
稻鲶鱼 RF 10.64 a 7.17 c 80.80 a 8.5 a 5.6 b 8.7 a 8.6 a
稻鸭 RD 10.25 b 7.45 b 75.71 b 8.0 b 5.8 ab 8.2 ab 8.1 ab
对照 CK 9.35 c 7.95 a 72.34 c 7.2 c 6.2 a 7.2 b 7.2 c
2019 稻虾 RC 10.74 a 7.13 c 78.18 a 8.2 b 5.8 b 8.0 b 8.1 b
稻锦鲤 RK 10.43 b 7.33 b 74.69 b 7.8 b 5.9 ab 7.4 bc 7.6 b
稻鳖 RT 10.50 b 7.28 b 75.09 b 7.7 b 6.0 a 7.4 bc 7.5 bc
稻鳅 RL 10.69 a 7.23 bc 78.14 a 7.8 b 5.9 ab 7.7 b 7.7 b
稻鲶鱼 RF 10.82 a 7.10 c 79.94 a 8.6 a 5.5 c 8.6 a 8.6 a
稻鸭 RD 10.41 b 7.37 b 74.46 b 8.1 b 5.8 b 7.8 b 7.9 b
对照 CK 9.52 c 7.88 a 71.66 c 7.3 c 6.2 a 7.1 c 7.2 c

Table 8

Characteristic value of RVA parameters of rice starch under different modes of comprehensive planting-breeding in paddy fields"

年度
Year
模式
Type
峰值黏度
Peak viscosity (cP)
热浆黏度
Through viscosity (cP)
崩解值
Break-down (cP)
最终黏度
Final viscosity (cP)
消减值
Setback (cP)
糊化温度
Pasting
temperature (℃)
2018 稻虾 RC 2568 a 1538 a 1030 ab 2100 a -467 a 72.58 a
稻锦鲤 RK 2460 b 1411 b 1050 a 1963 b -497 b 73.32 a
稻鳖 RT 2469 b 1429 b 1040 a 1975 b -494 b 73.01 a
稻鳅 RL 2491 b 1439 b 1052 a 1993 ab -498 b 72.87 a
稻鲶鱼 RF 2582 a 1553 a 1029 ab 2111 a -472 a 72.34 a
稻鸭 RD 2359 c 1340 c 1019 ab 1894 b -465 a 73.67 a
对照 CK 2292 c 1298 c 994 b 1839 c -454 a 73.90 a
2019 稻虾 RC 2541 a 1519 a 1022 a 2122 a -419 a 72.64 a
稻锦鲤 RK 2435 b 1396 bc 1039 a 1987 b -449 b 73.41 a
稻鳖 RT 2444 b 1410 bc 1035 a 1995 b -450 b 73.03 a
稻鳅 RL 2525 a 1470 b 1055 a 2090 b -435 ab 72.80 a
稻鲶鱼 RF 2556 a 1537 a 1019 ab 2148 a -408 a 72.42 a
稻鸭 RD 2345 c 1331 c 1014 ab 1939 b -406 a 73.86 a
对照 CK 2283 c 1285 c 997 b 1892 c -390 a 74.01 a

Table 9

Economic benefits of different modes of comprehensive planting-breeding in paddy fields (Yuan hm-2)"

模式
Type
产值
Production value
投入
Investment
利润
Profit
产投比
Ratio of production to investment
稻谷
Paddy
水产(禽)
Aquatic products (poultry)
种子
Seed
苗雏
Fry
肥料
Fertilizer
农药
Pesticide
饲料
Forage
机械
Machinery
劳动力
Labor
其他
Other
稻虾 RC 36,822 79,800 540 25,950 1950 2205 750 2565 3000 1088 78,574 2.33
稻锦鲤 RK 36,084 22,500 540 19,500 1950 2205 900 2565 3000 1088 26,836 1.34
稻鳖 RT 35,604 108,000 540 40,350 1950 2205 1200 2565 3000 1088 90,706 2.21
稻鳅 RL 35,407 87,000 540 66,300 1950 2205 900 2400 3600 1088 43,424 1.35
稻鲶鱼 RF 36,504 36,750 540 13,500 1950 2205 900 2100 3000 1088 47,972 1.96
稻鸭 RD 38,018 13,500 540 6750 1950 2205 300 2100 3000 1088 38,416 1.88
对照 CK 25,483 600 2325 2400 1650 2100 675 15,733 1.17
[1] 唐建军, 李巍, 吕修涛, 王岳钧, 丁雪燕, 蒋军, 汤亚斌, 李坚明, 张金保, 杜军, 游宇, 李晓东, 李斌, 成永旭, 窦志, 高辉, 陈欣. 中国稻渔综合种养产业的发展现状与若干思考. 中国稻米, 2020, 26(5):1-10.
Tang J J, Li W, Lyu X T, Wang Y J, Ding X Y, Jiang J, Tang Y B, Li J M, Zhang J B, Du J, You Y, Li X D, Li B, Cheng Y X, Dou Z, Gao H, Chen X. Development status and rethinking of the integrated rice-fish system in China. China Rice, 2020, 26(5):1-10 (in Chinese with English abstract).
[2] 隆斌庆, 陈灿, 黄璜, 向继恩. 稻田生态种养的发展现状与前景分析. 作物研究, 2017, 31:607-612
Long B Q, Chen C, Huang H, Xiang J E. Analysis on the development status and prospect of ecological breeding in paddy fields. Crop Res, 2017, 31:607-612 (in Chinese).
[3] 陈丹梅, 袁玲, 黄建国, 冀建华, 侯红乾, 刘益仁. 长期施肥对南方典型水稻土养分含量及真菌群落的影响. 作物学报, 2017, 43:286-295.
Chen D M, Yuan L, Huang J G, Ji J H, Hou H Q, Liu Y R. Influence of long-term fertilizations on nutrients and fungal communities in typical paddy soil of south China. Acta Agron Sin, 2017, 43:286-295 (in Chinese with English abstract).
[4] Matsuyama N, Saigusa M, Sakaiya E, Tamakawa K. Acidification and soil productivity of allophanic andosols affected by heavy application of fertilizers. Soil Sci Plant Nutr, 2005, 51:117-123
doi: 10.1111/j.1747-0765.2005.tb00014.x
[5] 曾勇军, 周庆红, 吕伟生, 谭雪明, 潘晓华, 石庆华. 土壤酸化对双季早、晚稻产量的影响. 作物学报, 2014, 40:899-907.
Zeng Y J, Zhou Q H, Lyu W S, Tan X M, Pan X H, Shi Q H. Effects of Soil Acidification on the Yield of Double Season Rice. Acta Agron Sin, 2014, 40:899-907 (in Chinese with English abstract).
[6] 曹凑贵, 江洋, 汪金平, 袁鹏丽, 陈松文. 稻虾共作模式的“双刃性”及可持续发展策略. 中国生态农业学报, 2017, 25:1245-1253.
Cao C G, Jiang Y, Wang J P, Yuan P L, Chen S W. “Dual character” of rice-crayfish culture and strategies for its sustainable development. Chin J Eco-Agric, 2017, 25:1245-1253 (in Chinese with English abstract).
[7] 朱兆良, 孙波, 杨林章, 张林秀. 我国农业面源污染的控制政策和措施. 科技导报, 2005, 23(4):47-51.
Zhu Z L, Sun B, Yang L Z, Zhang L X. Policy and countermeasures to control non-point pollution of agriculture in China. Sci Technol Rev, 2005, 23(4):47-51 (in Chinese with English abstract).
[8] 中国稻渔综合种养产业发展报告(2019). 中国水产, 2020, (1):16-22.
Report on the development of integrated rice and fishery breeding industry in China(2019). Chin Fisher, 2020, (1):16-22 (in Chinese).
[9] 杨志辉, 黄璜, 王华. 稻-鸭复合生态系统稻田土壤质量研究. 土壤通报, 2004, 35(2):22-26.
Yang Z H, Huang H, Wang H. Paddy soil quality of a wetland rice-duck complex ecosystem. Chin J Soil Sci, 2004, 35(2):22-26 (in Chinese with English abstract).
[10] 佀国涵, 彭成林, 徐祥玉, 徐大兵, 袁家富, 李金华. 稻虾共作模式对涝渍稻田土壤理化性状的影响. 中国生态农业学报, 2017, 25:61-68.
Si G H, Peng C L, Xu X Y, Xu D B, Yuan J F, Li J H. Effect of integrated rice-crayfish farming system on soil physicochemical properties in waterlogged paddy soils. Chin J Eco-Agric, 2017, 25:61-68 (in Chinese with English abstract).
[11] 禹盛苗, 欧阳由男, 张秋英, 彭钢, 许德海, 金千瑜. 稻鸭共育复合系统对水稻生长与产量的影响. 应用生态学报, 2005, 16:1252-1256.
Yu S M, Ou-Yang Y N, Zhang Q Y, Peng G, Xu D H, Jin Q Y. Effects of rice-duck farming system on Oryza sativa growth and its yield. Chin J Appl Ecol, 2005, 16:1252-1256 (in Chinese with English abstract).
[12] 罗衡. 养殖鳖的引入对稻田水稻生长、产量及土壤微生物群落的影响. 上海海洋大学硕士学位论文, 上海 2017.
Luo H. The Influence of Cultured Turtle Introduction on Rice Growth, Yield and Soil Microbial Community. MS Thesis of Shanghai Ocean University, Shanghai, China, 2017 (in Chinese with English abstract).
[13] 寇祥明, 谢成林, 韩光明, 张家宏, 姚义, 王守红, 王桂良, 唐鹤军, 朱凌宇, 徐荣, 毕建花, 吴雷明, 陆佩玲. 3种稻田生态种养模式对稻米品质、产量及经济效益的影响. 扬州大学学报(农业与生命科学版), 2018, 39(3):70-74.
Kou X M, Xie C L, Han G M, Zhang J H, Yao Y, Wang S H, Wang H L, Tang H J, Zhu L Y, Xu R, Bi J H, Wu L M, Lu P L. The effects of three different ecological farming patterns on rice quality yield and economic benefit. J Yangzhou Univ (Nat Sci Edn), 2018, 39(3):73-77 (in Chinese with English abstract).
[14] 王强盛, 黄丕生, 甄若宏, 荆留明, 唐和宝, 张春阳. 稻鸭共作对稻田营养生态及稻米品质的影响. 应用生态学报, 2004, 15:639-645.
Wang Q S, Huang P S, Zhen R H, Jing L M, Tang H B, Zhang C Y. Effect of rice-duck mutualism on nutrition ecology of paddy field and rice quality. Chin J Appl Ecol, 2004, 15:639-645 (in Chinese with English abstract).
[15] 陈灿, 郑华斌, 黄璜, 何斌, 龙攀. 稻田养鳅模式对稻米品质和经济效益的影响. 中国稻米, 2015, 21(4):124-127
Chen C, Zheng H B, Huang H, He B, Long P. Effects of rice-loach symbiosis ecosystems on rice quality and economic benefit. China Rice, 2015, 21(4):124-127 (in Chinese with English abstract).
[16] 郑华斌, 扈婷, 陈杨, 黄璜. 稻-野鸭复合生态种养技术水稻产量及经济效益分析. 作物研究, 2012, 26:127-130.
Zheng H B, Hu T, Chen Y, Huang H. Analysis of grain yield & economic benefits of rice-mallard complex ecosystem in paddy field. Crop Res, 2012, 26:127-130 (in Chinese with English abstract).
[17] 张苗苗, 宗良纲, 谢桐洲. 有机稻鸭共作对土壤养分动态变化和经济效益的影响. 中国生态农业学报, 2010, 18:256-260
Zhang M M, Zong L G, Xie T Z. Effect of integrated organic duck-rice farming on the dynamics of soil nutrient and associated economic benefits. Chin J Eco-Agric, 2010, 18:256-260 (in Chinese with English abstract).
[18] 禹盛苗, 朱练峰, 欧阳由男, 许佳莹, 张均华, 许德海, 金千瑜. 稻鸭种养模式对稻田土壤理化性状、肥力因素及水稻产量的影响. 土壤通报, 2014, 45:151-156.
Yu S M, Zhu L F, Ou-Yang Y N, Xu J Y, Zhang J H, Xu D H, Jin Q Y. Influence of rice-duck farming system on soil physical properties, fertility factors and yield in paddy fields. Chin J Soil Sci, 2014, 45:151-156 (in Chinese with English abstract).
[19] Frei M, Becker K. A greenhouse experiment on growth and yield effects in integrated rice-fish culture. Aquaculture, 2005, 244:119-128
doi: 10.1016/j.aquaculture.2004.11.014
[20] Li K. Rice-fish culture in China: a review. Aquaculture, 1988, 71:173-186.
doi: 10.1016/0044-8486(88)90257-8
[21] 章家恩, 许荣宝, 全国明, 赵本良. 鸭稻共作对水稻植株生长性状与产量性状的影响. 资源科学, 2011, 33:1053-1059 (in Chinese with English abstract).
Zhang J E, Xu R B, Quan G M, Zhao B L. Influence of rice-duck integrated farming on rice growth and yield characteristics. Resour Sci, 2011, 33:1053-1059.
[22] 常培恩, 陈灿, 黄璜, 杨飞翔. 稻田养鳖对水稻产量形成及稻米品质的影响. 作物研究, 2019, 33:388-391.
Chang P E, Chen C, Huang H, Yang F F. Effect of raising turtle in paddy field on yield formation and rice quality. Crop Res, 2019, 33(5):388-391 (in Chinese with English abstract).
[23] 程方民, 钟连进. 不同气候生态条件下稻米品质性状的变异及主要影响因子分析. 中国水稻科学, 2001, 15:187-191.
Cheng F M, Zhong L J. Variation of rice quality traits under different climate conditions and its main affected factors. Chin J Rice Sci, 2001, 15:187-191 (in Chinese with English abstract).
[24] 全国明, 章家恩, 杨军, 陈瑞, 许荣宝. 稻鸭共作对稻米品质的影响. 生态学报, 2008, 28:3475-3483.
Quan G M, Zhang J E, Yang J, Chen R, Xu R B. Impacts of integrated rice-duck farming system on rice quality. Acta Ecol Sin, 2008, 28:3475-3483 (in Chinese with English abstract).
[25] 陈灿, 黄璜, 郑华斌, 何斌. 稻田不同生态种养模式对稻米品质的影响. 中国稻米, 2015, 21(2):17-19.
Chen C, Huang H, Zheng H B, He B. Effects of different mode of ecological planting and raising on rice quality. China Rice, 2015, 21(2):17-19 (in Chinese with English abstract).
[26] 甄若宏, 王强盛, 何加骏, 周建涛, 郑建初, 卞新民. 稻鸭共作对水稻产量和品质的影响. 农业现代化研究, 2008, 29:615-617.
Zhen R H, Wang Q S, He J J, Zhou J T, Zheng J C, Bian X M. Effects of rice-duck integrated farming on rice yield and quality. Res Agric Modern, 2008, 29:615-617 (in Chinese with English abstract).
[27] 叶全宝, 张洪程, 李华, 霍中洋, 魏海燕, 夏科, 戴其根, 许轲. 施氮水平和栽插密度对粳稻淀粉RVA谱特性的影响. 作物学报, 2005, 31:124-130.
Ye Q B, Zhang H C, Li H, Huo Z Y, Wei H Y, Xia K, Dai Q G, Xu K. Effects of amount of nitrogen applied and planting density on RVA profile characteristic of japonica rice. Acta Agron Sin, 2005, 31:124-130 (in Chinese with English abstract).
[28] 李敏, 张洪程, 李国业, 马群, 杨雄, 魏海燕. 生育类型与施氮水平对粳稻淀粉RVA谱特性的影响. 作物学报, 2012, 38:293-300.
Li M, Zhang H C, Li G Y, Ma Q, Yang X, Wei H Y. Effects of growth-period type and nitrogen application level on the RVA profile characteristics for japonica rice genotypes. Acta Agron Sin, 2012, 38:293-300 (in Chinese with English abstract).
[29] Berg H. Rice monoculture and integrated rice-fish farming in the Mekong Delta, Vietnam—economic and ecological considerations. Ecol Econ, 2002, 41:95-107.
doi: 10.1016/S0921-8009(02)00027-7
[30] 袁伟玲, 曹凑贵, 李成芳, 展茗, 蔡明历, 汪金平. 稻鸭、稻鱼共作生态系统CH4和N2O温室效应及经济效益评估. 中国农业科学, 2009, 42:2052-2060.
Yuan W L, Cao C G, Li C F, Zhan M, Cai M, Wang J P. Methane and nitrous oxide emissions from rice-fish and rice-duck complex ecosystems and the evaluation of their economic significance. Sci Agric Sin, 2009, 42:2052-2060 (in Chinese with English abstract).
[31] 刘小燕, 刘大志, 陈艳芬, 黄璜, 钟蕾, 余建波. 稻-鸭-鱼共栖生态系统中水稻根系特性及经济效益. 湖南农业大学学报(自然科学版), 2005, 31:314-316.
Liu X Y, Liu D Z, Chen Y F, Huang H, Zhong L, Yu J B. The Character of rice roots in rice-duck-fish commensalisms ecosystem and its economic benefit. J Hunan Agric Univ (Nat Sci Edn), 2005, 31:314-316 (in Chinese with English abstract).
[32] 王华, 黄璜. 湿地稻田养鱼、鸭复合生态系统生态经济效益分析. 中国农学通报, 2002, 18(1):71-75.
Wang H, Huang H. Analysis on ecological and economic benefits of complex ecosystem in wetland paddy fields. Chin Agric Sci Bull, 2002, 18(1):71-75 (in Chinese with English abstract).
[33] 谢乐强, 陈仕贵, 黄璜, 廖晓兰, 罗宽, 童泽霞, 陈文军. 稻鸭复合系统的生态经济效益分析. 湖南农业科学, 2005, (4):93-95.
Xie L Q, Chen S G, Huang H, Liao X L, Luo K, Tong Z X, Chen W J. Ecological and economical effect of rice-duck complex system. Hunan Agric Sci, 2005, (4):93-95 (in Chinese with English abstract).
[1] LIU Jia-Xin, LAN Yu, XU Qian-Yu, LI Hong-Ye, ZHOU Xin-Yu, ZHAO Xuan, GAN Yi, LIU Hong-Bo, ZHENG Yue-Ping, ZHAN Yi-Hua, ZHANG Gang, ZHENG Zhi-Fu. Creation and identification of peanut germplasm tolerant to triazolopyrimidine herbicides [J]. Acta Agronomica Sinica, 2022, 48(4): 1027-1034.
[2] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[3] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[4] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[5] ZHANG Jun, ZHOU Dong-Dong, XU Ke, LI Bi-Zhong, LIU Zhong-Hong, ZHOU Nian-Bing, FANG Shu-Liang, ZHANG Yong-Jin, TANG Jie, AN Li-Zheng. Nitrogen fertilizer reduction and precise application model on mechanical transplanting japonica rice with good taste quality under straw returning in Huaibei Area [J]. Acta Agronomica Sinica, 2022, 48(2): 410-422.
[6] JIAN Shu-Lian, LI Shu-Xin, LIU Sheng-Qun, LI Xiang-Nan. Research advances of cover crops and their important roles [J]. Acta Agronomica Sinica, 2022, 48(1): 1-14.
[7] SU Da, YAN Xiao-Jun, CAI Yuan-Yang, LIANG Tian, WU Liang-Quan, MUHAMMAD Atif Muneer, YE De-Lian. Effects of phosphorus fertilizer on kernel phytic acid and zinc bioavailability in sweet corn [J]. Acta Agronomica Sinica, 2022, 48(1): 203-214.
[8] LI Bo, ZHANG Chi, ZENG Yu-Ling, LI Qiu-Ping, REN Hong-Chao, LU Hui, YANG Fan, CEHN Hong, WANG Li, CHEN Yong, REN Wan-Jun, DENG Fei. Effects of sowing date on eating quality of indica hybrid rice in Sichuan Basin [J]. Acta Agronomica Sinica, 2021, 47(7): 1360-1371.
[9] DENG Yan, WANG Juan-Ling, WANG Chuang-Yun, ZHAO Li, ZHANG Li-Guang, GUO Hong-Xia, GUO Hong-Xia, QIN Li-Xia, WANG Mei-Xia. Effects of combined application of bio-bacterial fertilizer and inorganic fertilizer on agronomic characters, yield, and quality in quinoa [J]. Acta Agronomica Sinica, 2021, 47(7): 1383-1390.
[10] ZHAO Jie, LI Shao-Ping, CHENG Shuang, TIAN Jin-Yu, XING Zhi-Peng, TAO Yu, ZHOU Lei, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, GAO Hui, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield and quality of dry direct seeding rice under “solo-stalk” cultivation mode [J]. Acta Agronomica Sinica, 2021, 47(6): 1162-1174.
[11] LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng. Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(5): 904-914.
[12] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[13] WANG Ke-Ru, LI Lu-Lu, GAO Shang, WANG Yi-Zhou, HUANG Zhao-Fu, XIE Rui-Zhi, MING Bo, HOU Peng, XUE Jun, ZHANG Guo-Qiang, HOU Liang-Yu, LI Shao-Kun. Analysis of main quality index of corn harvesting with combine in China [J]. Acta Agronomica Sinica, 2021, 47(12): 2440-2449.
[14] WANG Ye, LIU Zhao, XIAO Shuang, LI Fang-Jun, WU Xia, WANG Bao-Min, TIAN Xiao-Li. Effects of PSAG12-IPT gene expression on leaf senescence, yield, and fiber quality in cotton [J]. Acta Agronomica Sinica, 2021, 47(11): 2111-2120.
[15] TIAN Jing-Shan, ZHANG Xu-Yi, WANG Wen-Min, YANG Yan-Long, SUI Long-Long, ZHANG Peng-Peng, ZHANG Ya-Li, ZHANG Wang-Feng, GOU Ling. A method of defoliant application based on fiber damage and boll growth period of machine-harvested cotton [J]. Acta Agronomica Sinica, 2020, 46(9): 1388-1397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!