Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (5): 904-914.doi: 10.3724/SP.J.1006.2021.02050

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River

LIU Qiu-Yuan1,2(), ZHOU Lei1, TIAN Jin-Yu1, CHENG Shuang1, TAO Yu1, XING Zhi-Peng1, LIU Guo-Dong1, WEI Hai-Yan1,*(), ZHANG Hong-Cheng1,*()   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Agricultural College, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China
  • Received:2020-07-20 Accepted:2020-11-13 Online:2021-05-12 Published:2020-12-15
  • Contact: WEI Hai-Yan,ZHANG Hong-Cheng E-mail:joss85@163.com;wei_haiyan@163.com;hczhang@yzu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300503);National Natural Science Foundation of China(31971841);China Agriculture Research System(CARS-01-27);Key Research Program of Jiangsu Province(BE2018355);Earmarked Fund for Jiangsu Agricultural Industry Technology System(JATS[2018]298);Open Program of Jiangsu Key Laboratory of Crop Genetics and Physiology(YCSL201907)

Abstract:

In 2017 and 2018, 90 and 105 inbred middle-ripe japonica rice varieties (lines) in the middle and lower reaches of Yangtze River were collected and planted in a unified way, and grain yield, rice quality and nitrogen uptake of each variety were measured at mature stage. The relationships among grain yield, rice quality and nitrogen uptake were analyzed, so as to clarify the coordinated improvement path of grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River. The results indicated that grain yield was significantly positive correlated with spikelet per panicle and 1000-grain weight, and negatively correlated with percentage of filled grains. There was no significant correlation between grain yield and the number of effective panicles. Spikelet per panicle had the greatest direct path coefficient to grain yield, the number of effective panicles had the greatest limiting effect on yield formation through other yield components, and 1000-grain weight had the least limiting effect on yield formation through other yield components. The total nitrogen uptake was significantly positive correlated with the dry matter weight of stem, leaf and panicle. Path analysis showed that increasing biomass had a positive effect on increasing nitrogen uptake. Amylose and protein were significantly correlated with rice milling quality, appearance quality and taste value. Reducing amylose and protein content was beneficial to improve eating quality, but not conducive to the improvement of milling and appearance quality. The results of correlation analysis showed that there was a significant positive correlation between 1000-grain weight, spikelet per panicle, dry weight of stem, leaf and panicle. There was no significant correlation between dry weight of stem, leaf and panicle, 1000-grain weight, spikelet per panicle and amylose content, but they were significantly negatively correlated with protein content. To sum up, the selection of varieties with low amylose content among those with large biomass, suitable population spikelet and higher 1000-grain weight would be an effective way to realize the coordinated improvement of grain yield, nitrogen uptake and eating quality of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River. However, this may not be conducive to the improvement of milling and appearance quality and it needs to be further studied.

Key words: grain yield, nitrogen, rice quality, japonica

Table 1

List of tested varieties (lines)"

年度Year 品种(系) Variety (line)
2017 JD 6602, JD 6614, JD 6619, 常软07-1, 常软07-11, 常软07-2,常软07-3, 常软07-4, 常软07-5, 常软07-6, 丰粳1606, 沪香粳165, 沪早软粳, 沪早香软1号, 沪早香软2号, 华丰1502, 华粳295, 华粳5号, 华粳8号, 淮330, 淮稻5号, 连粳11号, 连粳12号, 连粳13, 连粳13264, 连粳15, 连粳15113, 连粳7号, 南繁1604, 南繁1605, 南繁1609, 南繁1610, 南粳2728, 南粳505, 南粳5711, 南粳5833, 南粳9108, 南粳3818, 南粳5718, 宁5720, 宁9003, 宁9022, 宁9039, 宁粳040, 宁粳4号, 宁粳7号, 圣稻1647, 圣稻18-15, 圣稻18-4, 圣稻19, 圣稻20, 圣稻22, 圣稻2620, 泗15-234, 泗15-301, 泗稻14-211, 泗稻15号, 松早香1号, 苏1795, 苏粳815, 苏香粳3号, 苏秀867, 泰粳1152, 泰粳2340, 皖垦粳3号, 武4610, 武6267, 武粳004, 武育粳3号, 武运5020, 武运5051, 武运粳21, 武运粳27号, 武运粳32号, 武运粳80, 新稻22, 新科稻31, 徐36618, 徐41368, 徐稻9号, 徐农33202, 盐粳16号, 扬粳1612, 扬粳239, 扬粳3012, 扬粳3491, 扬粳5515, 扬育粳2号, 镇9471, 镇稻99
JD6602, JD6614, JD6619, Changruan 07-1, Changruan 07-11, Changruan 07-2, Changruan 07-3, Changruan 07-4, Changruan 07-5, Changruan 07-6, Fengjing 1606, Huxiangjing 165, Huzaoruanjing, Huzaoxiangruan 1, Huzaoxiangruan 2, Huafeng 1502, Huajing 295, Huajing 5, Huajing 8, Huai 330, Huaidao 5, Lianjing 11, Liangjing 12, Liangjing 13, Lianjing 13264, Lianjing 15, Lianjing 15113, Liangjing 7, Nanfan 1604, Nanfan 1605, Nanfan 1609, Nanfan 1610, Nanjing 2728, Nanjing 505, Nanjing 5711, Nanjing 5833, Nanjing 9108, Nanjing 3818, Nanjing 5718, Ning 5720, Ning 9003, Ning 9022, Ning 9039, Ningjing 040, Ningjing 4, Ningjing 7, Shendao 1647, Shendao 18-15, Shendao 18-4, Shendao 19, Shendao 20, Shendao 22, Shendao 2620, Si 15-234, Si 15-301, Sidao 14-211, Sidao 15, Songzaoxiang 1, Su 1795, Sujing 815, Suxiangjing 3, Suxiu 867, Taijing 1152, Taijing 2340, Wankenjing 3, Wu 4610, Wu 6267, Wujing 004, Wuyujing 3, Wuyun 5020, Wuyun 5051, Wuyunjing 21, Wuyunjing 27, Wuyunjing 32, Wuyunjing 80, Xindao 22, Xinkedao 31, Xu 36618, Xu 41368, Xudao 9, Xunong 33202, Yanjing 16, Yangjing 1612, Yangjing 239, Yangjing 3012, Yangjing 3491, Yangjing 5515, Yangyujing 2, Zhendao 9471, Zhendao 99
2018 早香粳1号, 福粳1601, 福粳1608, 沪早香181, 宁9036, 申粳1221, 圣稻18, 圣稻23, 圣稻24, 圣香66, 苏1785, 武育粳36号, 武运4326, 徐40398, 徐稻10号
Zaoxiangjing 1, Fujing 1601, Fujing 1608, Huzaoxiang 181, Ning 9036, Shenjing 1221, Shendao 18, Shendao 23, Shendao 24, Shenxiang 66, Su 1785, Wuyujing 36, Wuyun 4326, Xu 40398, Xudao 10

Table 2

Variation of tested varieties (lines) in rice quality traits"

指标
Trait
2017 2018
最小值 Minimum 最大值
Maximum
平均值
Mean
变异系数
CV (%)
最小值 Minimum 最大值
Maximum
平均值
Mean
变异系数
CV (%)
糙米率 BR (%) 82.00 86.58 85.52 0.93 83.43 86.75 85.28 0.90
精米率 MR (%) 67.50 78.10 73.97 2.70 63.74 75.54 70.09 3.65
整精米率 HR (%) 47.18 74.86 63.89 8.47 39.22 70.79 58.14 12.09
垩白粒率 CKR (%) 10.23 88.70 35.80 51.18 11.20 90.73 33.98 49.89
垩白大小 CA (%) 15.44 41.29 26.19 17.01 20.54 50.77 28.03 16.97
垩白度 CKD (%) 1.57 36.63 9.75 64.22 2.29 46.07 9.89 68.44
蛋白质 PC (%) 8.25 10.30 9.17 4.12 7.20 10.05 8.53 6.99
直链淀粉 AC (%) 6.59 20.13 14.07 28.74 7.35 19.98 14.60 27.54
食味值 Taste value 45.07 76.00 58.96 13.10 42.83 80.67 61.59 12.36

Fig. 1

Distribution of chalkiness degree, head rice rates and amylose content of tested varieties (lines)"

Table 3

Simple correlation and partial correlation analysis of rice quality index"

指标
Trait
糙米率
BR
精米率
MR
整精米率
HR
垩白粒率
CKR
垩白大小
CA
垩白度
CKD
蛋白质
PC
直链淀粉
AC
食味值 Taste value
SCC PCC
糙米率 BR 1 0.560** 0.057 0.160 0.183 0.167 0.083 0.082 0.072
精米率 MR 0.299** 1 -0.035 0.423** 0.158 0.364** 0.035 -0.389** 0.458**
整精米 HR -0.064 0.380** 1 -0.258* -0.081 -0.264* 0.330** 0.317** -0.335** -0.057
垩白粒率 CKR 0.184 0.025 -0.307* 1 0.461** 0.944** -0.205 -0.638** 0.498** 0.189
垩白大小 CA 0.026 -0.045 -0.013 0.444** 1 0.682** 0.171 -0.025 -0.096
垩白度 CKD 0.097 -0.016 -0.251** 0.932** 0.694** 1 -0.128 -0.530** 0.365** -0.208
蛋白质 PC 0.171 0.187 0.326** -0.005 0.310* 0.115 1 0.350** -0.571** -0.480**
直链淀粉 AC -0.060 -0.210* 0.300** -0.598** -0.224* -0.533** 0.165 1 -0.797** -0.668**
食味值
Taste value
SCC 0.009 0.079 -0.331** 0.435** -0.018 0.311** -0.661** -0.701** 1
PCC 0.128 0.173 -0.091 -0.758** -0.700**

Table 4

Grain yield and its component of tested varieties (lines)"

指标
Trait
2017 2018
变幅
Range
平均值
Mean
变异系数CV (%) 变幅
Range
平均值
Mean
变异系数CV (%)
有效穗数
Number of effective panicles (×104 hm-2)
302.58-467.52 365.20 8.16 268.51-456.36 350.82 8.58
千粒重 1000-grain weight (g) 20.60-29.88 26.38 5.87 20.78-30.17 26.62 6.57
穗粒数 Spikelet per panicle 75.38-136.08 103.21 10.48 74.19-134.88 103.31 11.08
结实率 Percentage of filled grains (%) 82.43-95.77 89.43 3.39 86.84-98.56 94.60 2.62
产量 Grain yield (t hm-2) 6.80-9.89 8.42 8.11 6.82-10.28 8.58 8.49
收获指数 Harvest index 0.44-0.49 0.46 2.39 0.44-0.49 0.47 2.34

Table 5

Correlation and path analysis of yield and yield components"

指标
Trait
简单相关系数
Simple
correlation
coefficient
直接通径
系数
Direct path coefficients
间接通径系数Indirect path coefficients 决策系数
Decision coefficient
有效穗数
Number of
effective panicles
千粒重
1000-grain weight
穗粒数
Spikelet per panicle
结实率
Percentage of filled grain
合计
Total
2017
有效穗数
Number of effective panicles
0.083 0.976 -0.163 -0.742 0.013 -0.893 -0.791
千粒重
1000-grain weight
0.287** 0.720 -0.222 -0.180 -0.032 -0.433 -0.105
穗粒数
Spikelet per panicle
0.538** 1.354 -0.535 -0.096 -0.184 -0.814 -0.376
结实率
Percentage of filled grains
-0.253** 0.398 0.031 -0.058 -0.626 -0.652 -0.360
2018
有效穗数
Number of effective panicles
0.002 0.968 -0.194 -0.790 0.018 -0.967 -0.933
千粒重
1000-grain weight
0.303** 0.752 -0.250 -0.242 0.042 -0.450 -0.110
穗粒数
Spikelet per panicle
0.549** 1.399 -0.547 -0.130 -0.173 -0.850 -0.421
结实率
Percentage of filled grains
-0.181 0.359 0.048 0.087 -0.676 -0.540 -0.259

Table 6

Dry matter accumulation and nitrogen absorption of tested varieties (lines)"

指标
Trait
2017 2018
变幅
Range
平均值
Mean
变异系数CV (%) 变幅
Range
平均值
Mean
变异系数CV (%)
茎干重 SDM (t hm-2) 4.62-7.44 6.01 9.29 4.78-7.09 5.99 8.34
叶干重 LDM (t hm-2) 2.24-4.37 3.28 12.34 2.15-3.83 3.05 11.43
穗干重 PDM (t hm-2) 6.94-10.99 9.00 8.93 7.20-11.63 9.21 9.72
总干重 TDM (t hm-2) 14.56-21.25 18.29 7.89 14.77-21.23 18.25 7.94
茎含氮率 SNR (%) 0.80-1.19 1.02 8.94 0.71-1.18 0.94 9.64
叶含氮率 LNR (%) 1.33-1.86 1.59 8.50 1.09-1.65 1.39 7.92
穗含氮率 PNR (%) 1.24-1.56 1.36 4.66 1.06-1.50 1.28 6.32
茎吸氮量 SNC (kg hm-2) 43.92-84.95 61.50 12.71 37.94-73.85 55.97 11.60
叶吸氮量 LNC (kg hm-2) 36.62-70.98 52.00 12.57 25.96-58.01 42.33 13.61
穗吸氮量 PNC (kg hm-2) 89.19-149.51 121.92 8.60 89.37-144.78 117.32 9.73
总吸氮量 TNC (kg hm-2) 194.77-270.38 235.42 6.50 175.72-246.13 215.63 6.80

Table 7

Correlation and path analysis of total nitrogen uptake content and its components"

指标
Trait
简单相关系数
Simple correlation coefficient
直接通径系数
Direct path coefficients
间接通径系数 Indirect path coefficients 决策系数
Decision coefficient
茎干重
SDM
叶干重
LDM
穗干重
PDM
茎含氮率
SNR
叶含氮率
LNR
穗含氮率
PNR
合计
Total
2017
茎干重SDM 0.669** 0.382 0.159 0.376 -0.016 -0.094 -0.139 0.287 0.365
叶干重LDM 0.693** 0.428 0.142 0.327 0.052 -0.093 -0.164 0.265 0.410
穗干重PDM 0.803** 0.692 0.208 0.202 -0.042 -0.147 -0.110 0.111 0.632
茎含氮率SNR 0.214* 0.354 -0.017 0.063 -0.083 -0.006 -0.097 -0.140 0.026
叶含氮率LNR -0.342** 0.273 -0.132 -0.146 -0.373 -0.008 0.043 -0.615 -0.261
穗含氮率PNR -0.261* 0.358 -0.148 -0.196 -0.212 -0.096 0.033 -0.619 -0.315
2018
茎干重SDM 0.611** 0.312 0.202 0.294 -0.055 -0.029 -0.112 0.300 0.284
叶干重LDM 0.768** 0.353 0.178 0.444 0.026 -0.012 -0.221 0.415 0.418
穗干重PDM 0.811** 0.753 0.122 0.208 -0.055 -0.066 -0.151 0.059 0.654
茎含氮率SNR 0.059 0.356 -0.048 0.025 -0.117 0.040 -0.198 -0.297 -0.085
叶含氮率LNR -0.106 0.205 -0.044 -0.020 -0.241 0.069 -0.075 -0.311 -0.085
穗含氮率PNR -0.155 0.487 -0.072 -0.160 -0.233 -0.145 -0.031 -0.642 -0.388

Table 8

Correlation coefficients of key indexes affecting grain yield, nitrogen uptake and rice quality"

指标 茎干重
SDM
叶干重
LDM
穗干重
PDM
蛋白质
PC
直链淀粉
AC
千粒重
1000-grain weight
穗粒数
Spikelet per panicle
茎干重 SDM 1 0.371** 0.544** -0.190 0.013 0.258* 0.337**
叶干重 LDM 0.583** 1 0.473** -0.346** -0.002 0.276** 0.310**
穗干重 PDM 0.400** 0.590** 1 -0.144 -0.107 0.248* 0.484**
蛋白质 PC -0.227* -0.563** -0.358** 1 0.250* 0.044 -0.085
直链淀粉 AC 0.042 -0.026 -0.039 0.165 1 0.121 0.097
千粒重 1000-grain weight 0.366** 0.424** 0.212* -0.190 0.023 1 -0.133
穗粒数 Spikelet per panicle 0.280** 0.387** 0.544** -0.231* 0.144 -0.173 1
[1] 肖国樱, 肖友伦, 李锦江, 邓力华, 翁绿水, 孟秋成, 于江辉. 高效是当前水稻育种的主导目标. 中国水稻科学, 2019,33:287-292.
Xiao G Y, Xiao Y L, Li J J, Deng L H, Weng L S, Meng Q C, Yu J H. High efficiency is a dominant target for current rice breeding. Chin J Rice Sci, 2019,33:287-292 (in Chinese with English abstract).
[2] 张启发. 绿色超级稻培育的设想. 分子植物育种, 2005,3:601-602.
Zhang Q F. Strategies for developing green super rice. Mol Plant Breed, 2005,3:601-602 (in Chinese).
[3] Fitzgerald M A, McCouch S R, Hall R D. Not just a grain of rice: the request for quality. Trends Plant Sci, 2009,14:133-139.
[4] 张宏根, 朱国永, 封智蔷, 许明, 吉健安, 裴艳, 钱凯, 汤述翥, 顾铭洪. 近30年江苏省迟熟中粳品种产量与品质分析. 中国水稻科学, 2014,28:327-334.
Zhang H G, Zhu G Y, Feng Z Q, Xu M, Ji J A, Pei Y, Qian K, Tang S Z, Gu M H. Analysis on yield and quality of the late maturity medium japonica rice varieties released in Jiangsu province in the last 30 years. Chin J Rice Sci, 2014,28:327-334 (in Chinese with English abstract).
[5] Gu J F, Chen J, Chen L, Wang Z Q, Zhang H, Yang J C. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s. Crop J, 2015,3:285-297.
[6] 王远征, 王晓菁, 李源, 徐海, 王嘉宇, 赵明辉, 唐亮, 马殿荣, 徐正进, 陈温福. 北方粳稻产量与品质性状及其相互关系分析. 作物学报, 2015,41:910-918.
Wang Y Z, Wang X J, Li Y, Xu H, Wang J Y, Zhao M H, Tang L, Ma D R, Xu Z J, Chen W F. Analysis of yield and quality traits and their relationship in japonica rice in northern china. Acta Agron Sin, 2015,41:910-918 (in Chinese with English abstract).
[7] 徐正进, 陈温福, 张树林, 张文忠, 马殿荣, 刘丽霞, 周淑清. 辽宁水稻穗型指数品种间差异及其与产量和品质的关系. 中国农业科学, 2005,38:1926-1930.
Xu Z J, Chen W F, Zhang S L, Zhang W Z, Ma D R, Liu L X, Zhou S Q. Differences of panicle trait index among varieties and its relationship with yield and quality of rice in Liaoning. Sci Agric Sin, 2005,38:1926-1930 (in Chinese with English abstract).
[8] 胡蕾, 朱盈, 徐栋, 陈志峰, 胡兵强, 韩超, 裘实, 吴培, 张洪程, 魏海燕. 南方稻区优良食味与高产协同的单季晚粳稻品种特点研究. 中国农业科学, 2019,52:215-227.
Hu L, Zhu Y, Xu D, Chen Z F, Hu B Q, Han C, Qiu S, Wu P, Zhang H C, Wei H Y. Characteristics of good taste and high yield type of single cropping late japonica rice in southern china. Sci Agric Sin, 2019,52:215-227 (in Chinese with English abstract).
[9] Zhu D W, Zhang H C, Guo B W, Xu K, Dai Q G, Wei H Y, Gao H, Hu Y J, Cui P Y, Huo Z Y. Effects of nitrogen level on yield and quality of japonica soft super rice. J Integr Agric, 2017,16:1018-1027.
[10] 刘立军, 桑大志, 刘翠莲, 王志琴, 杨建昌, 朱庆森. 实时实地氮肥管理对水稻产量和氮素利用率的影响. 中国农业科学, 2003,36:1456-1461.
Liu L J, Sang D Z, Liu C L, Wang Z Q, Yang J C, Zhu Q S. Effects of real-time and site-specific nitrogen managements on rice yield and nitrogen use efficiency. Sci Agric Sin, 2003,36:1456-1461 (in Chinese with English abstract).
[11] Rakotoson T, Dusserre J, Letourmy P, Ramonta I R, Cao T V, Ramanantsoanirina A, Roumet P, Ahmadi N, Raboin L M. Genetic variability of nitrogen use efficiency in rainfed upland rice. Field Crops Res, 2017,213:194-203.
[12] 江立庚, 曹卫星, 甘秀芹, 韦善清, 徐建云, 董登峰, 陈念平, 陆福勇, 秦华东. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. 中国农业科学, 2004,37:490-496.
Jiang L G, Cao W X, Gan X Q, Wei S Q, Xu J Y, Dong D F, Chen N P, Lu F Y, Qin H D. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice. Sci Agric Sin, 2004,37:490-496 (in Chinese with English abstract).
[13] 张洪程, 王秀芹, 戴其根, 霍中洋, 许轲. 施氮量对杂交稻两优培九产量、品质及吸氮特性的影响. 中国农业科学, 2003,36:800-806.
Zhang H C, Wang X Q, Dai Q G, Huo Z Y, Xu K. Effects of N-application rate on yield, quality and characters of nitrogen uptake of hybrid rice. Sci Agric Sin, 2003,36:800-806 (in Chinese with English abstract).
[14] 徐大勇, 董明辉, 胡曙运, 王学红, 杨建昌, 朱庆森. 水稻品种氮素代谢特性与稻米主要品质性状关系的研究. 西南农业学报, 2005,18:522-528.
Xu D Y, Dong M H, Hu S Y, Wang X H, Yang J C, Zhu Q S. Study on rice plant nitrogen metabolisms and their relationships with grain quality. Southwest China J Agric Sci, 2005,18:522-528 (in Chinese with English abstract).
[15] 中华人民共和国国家标准(GB/T17891-2017)《优质稻谷》. 北京: 中国标准出版社, 2017.
National Standards of P.R.C. (GB/T17891-2017) “High Quality Paddy”. Beijing: Standards Press of China, 2017 (in Chinese).
[16] 中华人民共和国国家标准(GB 5009.5-2016)《食品中蛋白质的测定》. 北京: 中国标准出版社, 2016.
National Standards of P.R.C. (GB 5009.5-2016) “Determination of Protein in Foods”. Beijing: Standards Press of China, 2016 (in Chinese).
[17] 宋小园, 朱仲元, 刘艳伟, 赵宏瑾. 通径分析在SPSS逐步线性回归中的实现. 干旱区研究, 2016,33(1):108-113.
Song X Y, Zhu Z Y, Liu Y W, Zhao Ho J. Application of path analysis in stepwise linear regression SPSS. Arid Zone Res, 2016,33(1):108-113 (in Chinese with English abstract).
[18] 朱庆森, 张祖建, 杨建昌, 曹显祖, 郎有忠, 王增春. 亚种间杂交稻产量源库特征. 中国农业科学, 1997,30:52-59.
Zhu Q S, Zhang Z J, Yang J C, Cao X Z, Lang Y Z, Wang Z C. Source-sink characteristics related to the yield in intersubspecific hybrid rice. Sci Agric Sin, 1997,30:52-59 (in Chinese with English abstract).
[19] 吴桂成, 张洪程, 钱银飞, 李德剑, 周有炎, 徐军, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 徐宗进, 钱宗华, 孙菊英, 赵品恒. 粳型超级稻产量构成因素协同规律及超高产特征的研究. 中国农业科学, 2010,43:266-276.
Wu G C, Zhang H C, Qian Y F, Li D J, Zhou Y Y, Xu J, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Xu Z J, Qian Z H, Sun J Y, Zhao P H. Rule of grain yield components from high yield to super high yield and the characters of super-high yielding japonica super rice. Sci Agric Sin, 2010,43:266-276 (in Chinese with English abstract).
[20] 吴文革, 张洪程, 吴桂成, 翟超群, 钱银飞, 陈烨, 徐军, 戴其根, 许轲. 超级稻群体籽粒库容特征的初步研究. 中国农业科学, 2007,40:250-257.
Wu W G, Zhang H C, Wu G C, Zhai C Q, Qian Y F, Chen Y, Xu J, Dai Q G, Xu K. Preliminary study on super rice population sink characters. Sci Agric Sin, 2007,40:250-257 (in Chinese with English abstract).
[21] 龚金龙, 胡雅杰, 龙厚元, 常勇, 李杰, 张洪程, 马荣荣, 王晓燕, 戴其根, 霍中洋, 许轲, 魏海燕, 邓张泽, 明庆龙. 大穗型杂交粳稻产量构成因素协同特征及穗部性状. 中国农业科学, 2013,46:686-700.
Gong J L, Hu Y J, Long H Y, Chang Y, Li J, Zhang H C, Ma R R, Wang X Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Deng Z Z, Ming Q L. Study on collaborating characteristics of grain yield components and panicle traits of large panicle hybrid japonica rice. Sci Agric Sin, 2013,46:686-700 (in Chinese with English abstract).
[22] Tirol-Padre A, Ladha J K, Singh U, Laureles E, Punzalan G, Akita S. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res, 1996,46:127-143.
[23] Inthapanya I P, Sihavong P, Sihathep V, Chanphengsay M, Ukai S F, Basnayake J. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilised and non-fertilised conditions. Field Crops Res, 2000,65:57-68.
[24] 董桂春, 王熠, 于小凤, 周娟, 彭斌, 李进前, 田昊, 张燕, 袁秋梅, 王余龙. 不同生育期水稻品种氮素吸收利用的差异. 中国农业科学, 2011,44:4570-4582.
Dong G C, Wang Y, Yu X F, Zhou J, Peng B, Li J Q, Tian H, Zhang Y, Yuan Q M, Wang Y L. Differences of nitrogen uptake and utilization of conventional rice varieties with different growth duration. Sci Agric Sin, 2011,44:4570-4582 (in Chinese with English abstract).
[25] Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for indica and japonica rice under Mediterranean conditions. Field Crops Res, 2002,74:93-101.
[26] Jiang L G, Dai T B, Jiang D, Cao W X, Gan X Q, Wei S Q. Charactering physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Res, 2004,88:239-250.
[27] 吴越, 胡静, 陈琛, 张家星, 李万元, 唐东南, 仲军, 羊彬, 朱正康, 姚友礼, 王余龙, 董桂春. 江苏省早熟晚粳高产水稻新品种氮素吸收利用特征及成因分析. 中国水稻科学, 2017,31:63-74.
Wu Y, Hu J, Chen C, Zhang J X, Li W Y, Tang D N, Zhong J, Yang B, Zhu Z K, Yao Y L, Wang Y L, Dong G C. Nitrogen absorption and utilization characteristics of the newly approved early-maturity late japonica rice cultivars in Jiangsu province. Chin J Rice Sci, 2017,31:63-74 (in Chinese with English abstract).
[28] Balindong J L, Ward R M, Rose T J, Liu L, Raymond C A, Snell P J, Ovenden B W, Waters D L E. Rice grain protein composition influences head rice yield. Cereal Chem, 2018,95, 1-11.
[29] Zhang C Q, Chen S J, Ren X Y, Lu Y, Liu D R, Cai X L, Li Q F, Gao J P, Liu Q Q. Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity. J Agric Food Chem, 2017,65:2222-2232.
[30] Zhou L J, Liang S S, Ponce K, Marundon S, Ye G Y, Zhao X Q. Factors affecting head rice yield and chalkiness in indica rice. Field Crops Res, 2015,172:1-10.
[31] Isshiki M, Nakajima M, Satoh H, Shimamoto K. Dull: rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. Plant J, 2000,23:451-460.
[32] 吴殿星, 夏英武, 李旭晨. 水稻胚乳外观云雾性状形成基础及其快速识别条件分析. 中国水稻科学, 2001,15:192-196.
Wu D X, Xia Y W, Li X C. Formation basis of rice mist endosperm appearance and its rapid identifying factors. Chin J Rice Sci, 2001,15:192-196 (in Chinese with English abstract).
[33] 陆彦, 张晓敏, 祁琰, 张昌泉, 凌裕平, 刘巧泉. 不同透明度水稻籽粒横断面扫描电镜分析. 中国水稻科学, 2018,32:189-199.
Lu Y, Zhang X M, Qi Y, Zhang C Q, Ling Y P, Liu Q Q. Scanning electron microscopic analysis of grain cross-section from rice with different transparency. Chin J Rice Sci, 2018,32:189-199 (in Chinese with English abstract).
[34] 伍时照, 黄超武, 欧烈才, 刘建昭. 水稻品种种性研究: III. 水稻品种品质性状的研究. 中国农业科学, 1985,8:1-7.
Wu S Z, Huang C W, Ou L C, Liu J Z. Studies on varietal characteristics in cultivars of Oryza sativa: III. A study on grain quality characters of rice varieties. Sci Agric Sin, 1985,8:1-7 (in Chinese with English abstract).
[35] Lin J H, Singh H, Chang Y T, Chang Y H. Factor analysis of the functional properties of rice flours from mutant genotypes. Food Chem, 2011,126:1108-1114.
[36] Suwannaporn P, Linnemann A. Rice eating quality among consumers in different rice grain preference countries. J Sens Stud, 2008,23:1-13.
[37] Li H Y, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem, 2016,196:702-711.
[38] Martin M, Fitzgerald M A. Proteins in rice grains influence cooking properties. J Cereal Sci, 2002,36:285-294.
[39] Jang E H, Lee S J, Hong J Y, Chung H J, Lee Y T, Kang B S, Lim S T. Correlation between physicochemical properties of japonica and indica rice starches. Food Sci Technol, 2016,66:530-537.
[40] Gayin J, Abdel-Aal E S M, Manful J, Bertoft E, Ragaee S. Physical, cooking and thermal properties of African rice ( Oryza glaberrima) and its starch digestibility in vitro. Food Sci Technol, 2017,75:481-487.
[41] 陈温福, 徐正进, 张龙步, 张文忠, 马殿荣. 北方粳型稻超高产育种理论与实践. 中国农业科学, 2007,40:869-874.
Chen W F, Xu Z J, Zhang L B, Zhang W Z, Ma D R. Theories and practices of breeding japonica rice for super high yield. Sci Agric Sin, 2007,40:869-874 (in Chinese with English abstract).
[42] 何道根, 潘晓飚, 屈为栋. 杂交早稻产量和品质性状间的典型相关分析. 杂交水稻, 1998,14(1):36-38.
He D G, Pan X P, Qu W D. Canonical correlation analysis between quality and yield characters of early indica hybrid rice. Hybrid Rice, 1998,14(1):36-38 (in Chinese with English abstract).
[43] 徐正进, 陈温福, 马殿荣, 吕英娜, 周淑清, 刘丽霞. 稻谷粒形与稻米主要品质性状的关系. 作物学报, 2004,30:894-900.
Xu Z J, Chen W F, Ma D R, Lyu Y N, Zhou S Q, Liu L X. Correlations between rice grain shapes and main qualitative characteristics. Acta Agron Sin, 2004,30:894-900 (in Chinese with English abstract).
[44] 王康君, 熊溢伟, 葛立立, 张耗, 王志琴, 杨建昌, 刘立军. 籽粒蛋白质含量不同的转基因水稻株系产量形成特点. 作物学报, 2013,39:1266-1275.
Wang K J, Xiong Y W, Ge L L, Zhang H, Wang Z Q, Yang J C, Liu L J. Yield formation characteristics of transgenic rice strains with different protein contents in grains. Acta Agron Sin, 2013,39:1266-1275 (in Chinese with English abstract).
[45] Tadashi T, Sumiyo N, Yuri M. Cultivar differences in the grain protein accumulation ability in rice ( Oryza sativa L.). Field Crops Res, 2016,192:110-117.
[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[3] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[4] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[5] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[6] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[7] LI Xin-Ge, GAO Yang, LIU Xiao-Jun, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, CAO Qiang. Effects of sowing dates, sowing rates, and nitrogen rates on growth and spectral indices in winter wheat [J]. Acta Agronomica Sinica, 2022, 48(4): 975-987.
[8] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[9] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[10] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[11] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[12] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[13] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[14] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
[15] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!