Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (12): 2440-2449.doi: 10.3724/SP.J.1006.2021.03046


Analysis of main quality index of corn harvesting with combine in China

WANG Ke-Ru(), LI Lu-Lu, GAO Shang, WANG Yi-Zhou, HUANG Zhao-Fu, XIE Rui-Zhi, MING Bo, HOU Peng, XUE Jun, ZHANG Guo-Qiang, HOU Liang-Yu, LI Shao-Kun*()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2020-07-25 Accepted:2021-04-14 Online:2021-12-12 Published:2021-07-09
  • Contact: LI Shao-Kun E-mail:wangkeru@caas.cn;lishaokun@caas.cn
  • Supported by:
    China Agriculture Research System(CARS-02-25);Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences


Mechanical harvest of corn grains is of major importance for China’s corn production. In this study, we used data from a total of 155 experimental sites to study mechanical grain harvest in 21 major corn producing provinces, cities, or autonomous regions in China from 2012 to 2019. Corn hybrids suitable for mechanical grain harvest were selected and field tests of mechanical harvest quality were carried out. A total of 865 corn varieties (hybrid combinations) were tested, and 8961 samples of mechanically harvested grain were obtained from 2987 tests. The harvested grains were assessed for grain quality to provide a basis for developing mechanical harvest corn in China. Results showed that, on the average, moisture content of harvested grain was 25.91%, grain breakage rate was 7.96%, impurity rate was 1.18%, and loss rate was 3.54%. Additionally, the ear loss accounted for 76.5% of the total harvest losses. Compared with the test data from 2012 to 2015, the quality of corn harvest in China had been significantly improved in recent years, with the average moisture content of harvested grains decreasing by an average of 0.78 percentage point every year and the average grain breakage rate decreasing by an average of 0.51 percent every year between 2015 and 2019. Compared with data of corn harvest of the United States between 2011 and 2019, the average moisture content of harvested corn from the present study was 9.5 percentage points higher, and the breakage rate and impurity rate were also significantly higher. Further analysis showed that both grain breakage rate and impurity rate were positively correlated with the grain moisture content. Additionally, grain breakage rate was the lowest when grain moisture content was 19.06%. Cross regarding different corn producing regions, the grain moisture content and grain breakage rate were the highest in the Huang-Huai-Hai summer corn region and lowest in the Northern China spring corn region, with medium values in the Northwestern China spring corn region and the Northeastern China spring corn region. The findings suggested that, in China, it was necessary to reduce the grain breakage rate, impurity rate, combine losses, and improve the harvest quality by breeding corn varieties with fast grain dehydration, low grain moisture content, and strong stalk stand ability at harvest stage, as well as by appropriately matching the dehydration characteristics of corn varieties with regional climate characteristics, improving the performance of harvesting machinery, and harvesting at the most appropriate time.

Key words: corn, mechanical harvesting, harvest quality, grain moisture content, grain breakage rate

Fig. 1

Distribution of the experimental sites in major corn production areas of China from 2012 to 2019"

Table 1

Statistics of the quality of mechanically harvested corn from 2012 to 2019"

No. of samples
Grain moisture at
harvest (%)
Broken corn (%)
material (%)
Grain loss
(kg hm-2)
Grain loss
(kg hm-2)
Whole loss
(kg hm-2)
Whole loss rate (%)
2012 84 21.71 7.85 0.29 103.1 126.0 229.1 1.47
2013 128 25.00 5.34 1.12 256.8 332.4 268.4 1.95
2014 231 26.31 8.72 2.04 79.8 402.0 338.3 4.10
2015 436 26.85 8.43 1.16 163.1 282.8 331.2 2.93
2016 390 26.71 8.64 1.01 62.0 332.9 228.9 2.16
2017 817 27.28 8.79 1.46 86.4 442.1 327.5 3.31
2018 465 24.85 7.83 1.25 140.0 434.9 541.2 4.81
2019 436 23.88 6.48 0.76 127.1 287.4 344.9 5.36
平均值Average 25.91 7.96 1.18 113.6 351.2 345.2 3.54
最大值Max. 44.60 33.94 13.24 3133.8 8960.1 9288.5 58.88
最小值Min. 10.63 0.05 0.00 0.0 0.0 0.0 0.00
极差Range 33.97 33.89 13.24 3133.8 8960.1 9288.5 58.88
标准误SE 5.03 4.81 1.53 12.1 47.1 42.2 6.42
变异系数CV (%) 19.40 60.38 129.82 159.84 200.99 183.45 181.53

Fig. 2

Frequency distribution of the moisture content and breakage rate of mechanically harvested corn grains from 2012 to 2019 (n=2987)"

Fig. 3

Comparison of the moisture content of corn grains at harvest stage in different regions from 2012 to 2019 The red line shows the upper limit of grain moisture content which is suitable for combine harvesting (25%)."

Fig. 4

Comparison of grain breakage rates among different corn production regions from 2012 to 2019"

Fig. 5

Comparison of impurity rates in different corn production regions from 2012 to 2019"

Fig. 6

Comparison of mechanical loss rates among different corn production regions from 2012 to 2019"

Table 2

Pearson correlation coefficient between grain moisture content, broken corn, foreign material, grains loss, and ears loss from 2012 to 2019"

Broken corn
Foreign material
Grain loss rate
Ear loss rate
Whole loss rate
籽粒含水率Grain moisture content 0.480** 0.386** -0.031ns -0.071** -0.103**
破碎率Broken corn 0.211** -0.022ns 0.101** 0.039ns
杂质率Foreign material 0.073** 0.071** 0.036ns
落粒率Grains loss 0.180** 0.567**
落穗率Ears loss 0.931**

Fig. 7

Relationship between grain moisture content and grain breakage rate (2012-2019, n=2987)"

Fig. 8

The change trends of average grain moisture content and average grain broken rate from 2015 to 2019"

Table 3

Statistics of the main attributes of mechanical corn harvest quality in the United States from 2011 to 2019 (%)"

No. of samples
Broken corn
Foreign material
Total damage
Stress cracks
Whole kernels
2011 474 15.6 (9.5-22.0) 0.8 (0.0-10.1) 0.2 (0.0-3.0) 1.1 (0.0-12.0) 3 (0-40) 93.8 (57.0-99.8)
2012 566 15.3 (8.9-24.7) 0.7 (0.1-4.8) 0.2 (0.0-2.5) 0.8 (0.0-12.7) 4 (0-63) 94.4 (68.0-100.0)
2013 610 17.7 (10.9-28.2) 0.7 (0.1-3.9) 0.2 (0.0-2.5) 0.9 (0.0-13.6) 9 (0-86) 92.4 (73.6-99.6)
2014 629 16.6 (10.9-29.9) 0.6 (0.1-3.3) 0.2 (0.0-5.5) 1.7 (0.0-17.3) 8 (0-100) 93.6 (63.6-99.8)
2015 620 15.7 (11.0-23.6) 0.4 (0.0-7.5) 0.3 (0.0-4.5) 1.4 (0.0-13.2) 3 (0-75) 94.9 (78.4-99.8)
2016 624 16.1 (11.2-23.7) 0.5 (0.0-3.8) 0.1 (0.0-1.6) 2.6 (0.0-23.1) 4 (0-84) 95.2 (80.6-100.0)
2017 627 16.6 (9.0-24.4) 0.6 (0.0-3.5) 0.2 (0.0-6.3) 1.3 (0.0-13.6) 5 (0-90) 89.9 (67.0-99.2)
2018 618 16.6 (10.1-25.0) 0.5 (0.0-3.6) 0.2 (0.0-7.3) 1.5 (0.0-19.3) 5 (0-88) 93.0 (66.0-98.6)
2019 623 17.5 (11.0-30.0) 0.7 (0.2-5.3) 0.3 (0.0-3.3) 2.7 (0.0-50.5) 8 (0-95) 90.8 (74.7-97.6)
平均值Average 16.4 0.6 0.2 1.6 6 93.1
最大值Max. 30.0 10.1 7.3 23.1 100 100.0
最小值Min. 8.9 0.0 0.0 0.0 0 57.0
极差Range 21.1 10.1 7.3 23.1 100 43.0
标准误SE 0.8 0.1 0.1 0.7 2 1.8
变异系数CV (%) 5.03 20.04 25.44 43.85 42.03 1.94
[1] 李少昆. 美国玉米生产特点及启示. 玉米科学, 2013, 21(3):1-5.
Li S K. Characteristics and enlightenment of corn production technologies in the U.S. J Maize Sci, 2013, 21(3):1-5 (in Chinese with English abstract).
[2] Yang L, Cui T, Qu Z, Li K H, Yin X W, Han D D, Yan B X, Zhao D Y, Zhang D X. Development and application of mechanized maize harvesters. Int J Agric Biol Eng, 2016, 9:15-28.
[3] Hilbert J H. Machine and Machine Operator Characteristics Associated with Corn Harvest Kernel Damage. PhD Dissertation of Iowa State University, Iowa, America, 1972.
[4] Miu P I. Combine Harvesters: Theory, Modeling, and Design. BocaTaton: CRC Press Inc. 2015. pp 3-25.
[5] 柳枫贺, 王克如, 李健, 王喜梅, 孙亚玲, 陈永生, 王玉华, 韩冬生, 李少昆. 影响玉米机械粒收质量的因素分析. 作物杂志, 2013, (4):116-119.
Liu F H, Wang K R, Li J, Wang X M, Sun Y L, Chen Y S, Wang Y H, Han D S, Li S K. Factors affecting corn mechanically harvesting grain quality. Crops, 2013, (4):116-119 (in Chinese with English abstract).
[6] 李少昆, 谢瑞芝, 王克如, 明博, 侯鹏. 专题导读加强籽粒脱水与植株倒伏特性研究、推动玉米机械粒收技术应用. 作物学报, 2018, 44:1743-1746.
Li S K, Xie R Z, Wang K R, Ming B, Hou P. Editorial: strengthening the research of grain dehydration and lodging characteristics to promote the application of corn mechanical grain harvest technology. Acta Agron Sin, 2018, 44:1743-1746 (in Chinese with English abstract).
[7] 李璐璐, 王克如, 谢瑞芝, 明博, 赵磊, 李姗姗, 侯鹏, 李少昆. 玉米生理成熟后田间脱水期间籽粒重量与含水率变化研究. 中国农业科学, 2017, 50:2052-2060.
Li L L, Wang K R, Xie R Z, Ming B, Zhao L, Li S S, Hou P, Li S K. Study on corn grain weight and moisture content after physiological maturity in field. Sci Agric Sin, 2017, 50:2052-2060 (in Chinese with English abstract).
[8] 李璐璐, 明博, 谢瑞芝, 王克如, 侯鹏, 李少昆. 玉米品种穗部性状差异及其对籽粒脱水的影响. 中国农业科学, 2018, 51:1855-1867.
Li L L, Ming B, Xie R Z, Wang K R, Hou P, Li S K. Differences of ear characters in corn and their effects on grain dehydration. Sci Agric Sin, 2018, 51:1855-1867 (in Chinese with English abstract).
[9] 高尚, 明博, 李璐璐, 谢瑞芝, 薛军, 侯鹏, 王克如, 李少昆. 黄淮海夏玉米籽粒脱水与气象因子的关系. 作物学报, 2018, 44:1755-1763.
Gao S, Ming B, Li L L, Xie R Z, Xue J, Hou P, Wang K R, Li S K. Relationship between grain dehydration and meteorological factors in the Yellow-Huai-Hai Rivers summer corn. Acta Agron Sin, 2018, 44:1755-1763 (in Chinese with English abstract).
[10] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018, 51:1878-1889.
Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K. Study on grain dehydration characters of summer corn and its relationship with grain filling. Sci Agric Sin, 2018, 51:1878-1889 (in Chinese with English abstract).
[11] 李璐璐, 明博, 谢瑞芝, 王克如, 侯鹏, 李少昆. 黄淮海夏玉米品种脱水类型与机械粒收时间的确立. 作物学报, 2018, 44:1764-1773.
Li L L, Ming B, Xie R Z, Wang K R, Hou P, Li S K. Grain dehydration types and establishment of mechanical grain harvesting time for summer corn in the Yellow-Huai-Hai Rivers Plain. Acta Agron Sin, 2018, 44:1764-1773 (in Chinese with English abstract).
[12] 张万旭, 王克如, 谢瑞芝, 侯鹏, 明博, 刘朝巍, 肖春花, 张国强, 陈江鲁, 杨京京, 柳枫贺, 李少昆. 玉米机械收获子粒破碎率与含水率关系的品种间差异. 玉米科学, 2018, 26(4):74-78.
Zhang W X, Wang K R, Xie R Z, Hou P, Ming B, Liu C W, Xiao C H, Zhang G Q, Chen J L, Yang J J, Liu F H, Li S K. Relationship between corn grain broken rate and moisture content as well as the differences among cultivars. J Maize Sci, 2018, 26(4):74-78 (in Chinese with English abstract).
[13] 董朋飞, 郭亚南, 王克如, 谢瑞芝, 明博, 侯鹏, 侯俊峰, 李潮海, 李少昆. 玉米子粒耐破碎性及其评价与测试方法. 玉米科学, 2018, 26(4):116-121.
Dong P F, Guo Y N, Wang K R, Xie R Z, Ming B, Hou P, Hou J F, Li C H, Li S K. Study on the breakage tolerance of corn grain by grinding method. J Maize Sci, 2018, 26(4):116-121 (in Chinese with English abstract).
[14] Hou J F, Zhang Y, Jin X L, Dong P F, Guo X Y, Wang K R, Fan Y H, Li S K. Structural parameters for X-ray micro-computed tomography (μCT) and their relationship with the breakage rate of corn varieties. Plant Methods. 2019, 15:161.
doi: 10.1186/s13007-019-0538-1
[15] Wang Y Z, Li L L, Gao S, Guo Y N, Zhang G Q, Ming B, Xie R Z, Xue J, Hou P, Wang K R, Li S K. Evaluation of grain breakage sensitivity of maize varieties mechanically-harvested by combine harvester. Int J Agric Biol Eng, 2020, 13:8-16.
[16] 张万旭, 明博, 王克如, 刘朝巍, 侯鹏, 陈江鲁, 张国强, 杨京京, 车淑玲, 谢瑞芝, 李少昆. 基于品种熟期和籽粒脱水特性的机收粒玉米适宜播期与收获期分析. 中国农业科学, 2018, 51:1890-1898.
Zhang W X, Ming B, Wang K R, Liu CW, Hou P, Chen J L, Zhang G Q, Yang J J, Che S L, Xie R Z, Li S K. Analysis of sowing and harvesting allocation of corn based on cultivar maturity and grain dehydration characteristics. Sci Agric Sin, 2018, 51:1890-1898 (in Chinese with English abstract).
[17] 黄兆福, 明博, 王克如, 谢瑞芝, 杨飞, 王志刚, 肖春华, 李少昆. 辽河流域玉米籽粒脱水特点及适宜收获期分析. 作物学报, 2019, 45:922-931.
Huang Z F, Ming B, Wang K R, Xie R Z, Yang F, Wang Z G, Xiao C H, Li S K. Characteristics of corn grain dehydration and prediction of suitable harvest period in Liao River Basin. Acta Agron Sin, 2019, 45:922-931 (in Chinese with English abstract).
[18] 薛军, 李璐璐, 谢瑞芝, 王克如, 侯鹏, 明博, 张万旭, 张国强, 高尚, 白氏杰, 初振东, 李少昆. 倒伏对玉米机械粒收田间损失和收获效率的影响. 作物学报, 2018, 44:1774-1781.
Xue J, Li L L, Xie R Z, Wang K R, Hou P, Ming B, Zhang W X, Zhang G Q, Gao S, Bai S J, Chu Z D, Li S K. Effect of lodging on corn grain losing and harvest efficiency in mechanical grain harvest. Acta Agron Sin, 2018, 44:1774-1781 (in Chinese with English abstract).
[19] 薛军, 王群, 李璐璐, 张万旭, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆. 玉米生理成熟后倒伏变化及其影响因素. 作物学报, 2018, 44:1782-1792.
Xue J, Wang Q, Li L L, Zhang W X, Xie R Z, Wang K R, Ming B, Hou P, Li S K. Changes of corn lodging after physiological maturity and its influencing factors. Acta Agron Sin, 2018, 44:1782-1792 (in Chinese with English abstract).
[20] Xue J, Ming B, Xie R Z, Wang K R, Hou P, Li S K. Evaluation of maize lodging resistance based on the critical wind speed of stalk breaking during the late growth stage. Plant Methods, 2020, 16:148.
doi: 10.1186/s13007-020-00689-z
[21] 王克如, 李璐璐, 郭银巧, 范盼盼, 柴宗文, 侯鹏, 谢瑞芝, 李少昆. 不同机械作业对玉米子粒收获质量的影响. 玉米科学, 2016, 24(1):114-116.
Wang K R, Li L L, Guo Y Q, Fan P P, Chai Z W, Hou P, Xie R Z, Li S K. Effects of different mechanical operation on corn grain harvest quality. J Maize Sci, 2016, 24:114-116 (in Chinese with English abstract).
[22] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50:2036-2043
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Ming B, Hou P, Liu C W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K. Current status of corn mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017, 50:2036-2043 (in Chinese with English abstract).
[23] Shouse S C, Hurburgh C R, Jr. Hanna H M, Petersen D. Farm energy: improving corn drying efficiency. Agric Environ Exten Publ, 2011, 198. http://lib.dr.iastate.edu/extension_ag_pubs/198.
[24] Ali R M. Distribution of Damage in Corn Combine Cylinder and Relationship between Physico-Rheological Properties of Shelled Grain and Damage. PhD Dissertation of Iowa State University, Iowa, America, 1972.
[25] U. S. Grains Council. Corn harvest quality report 2019/2020. 2020. https://grains.org/corn_report/corn-harvest-quality-report-2019-2020/.
[26] Hall G E, Johnson W H. Corn grain crackage induced by mechanical shelling. Trans ASAE, 1970, 13:51-55.
doi: 10.13031/2013.38533
[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[3] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[4] SU Da, YAN Xiao-Jun, CAI Yuan-Yang, LIANG Tian, WU Liang-Quan, MUHAMMAD Atif Muneer, YE De-Lian. Effects of phosphorus fertilizer on kernel phytic acid and zinc bioavailability in sweet corn [J]. Acta Agronomica Sinica, 2022, 48(1): 203-214.
[5] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[6] YAN Xiao-Jun, YE De-Lian, SU Da, LI Fang, ZHENG Chao-Yuan, WU Liang-Quan. Effects of phosphorus application on phosphorus uptake and utilization of sweet corn [J]. Acta Agronomica Sinica, 2021, 47(1): 169-176.
[7] NIU Xin-Ning,WANG Bu-Jun. Evaluation of matrix reference material of Fumonisins FB1 in corn flour [J]. Acta Agronomica Sinica, 2020, 46(7): 1128-1133.
[8] XUE Yan-Tao,LU Ping,SHI Meng-Sha,SUN Hao-Yue,LIU Min-Xuan,WANG Rui-Yun. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu [J]. Acta Agronomica Sinica, 2019, 45(10): 1511-1521.
[9] Ting-Lu FAN,Shu-Ying WANG,Chuang-Ye XU,Shang-Zhong LI,Jia-Xi WANG,Ke-Ru WANG,Gang ZHAO,Wan-Li CHENG,Jian-Jun ZHANG,Lei WANG,Yi DANG. Relationship between Grain Moisture and Maize Mechanical Harvesting Qualities in Dry Highland of Loess Plateau [J]. Acta Agronomica Sinica, 2018, 44(9): 1411-1429.
[10] Lu-Lu LI,Bo MING,Rui-Zhi XIE,Ke-Ru WANG,Peng HOU,Shao-Kun LI. Grain Dehydration Types and Establishment of Mechanical Grain Harvesting Time for Summer Maize in the Yellow-Huai-Hai Rivers Plain [J]. Acta Agronomica Sinica, 2018, 44(12): 1764-1773.
[11] Ming-Gang XIAO, Feng-Jing SONG, Bing SUN, Xin ZUO, Guang-Shan ZHAO, Ai-Hua XIN, Zhu-Gang LI. Exploration of Foreign Maize Inbred Lines with Broad Spectrum Resistance to Northern Corn Leaf Blight and Preliminary Identification of Resistance Genes [J]. Acta Agronomica Sinica, 2018, 44(04): 614-619.
[12] ZHOU Yu,SU Wang,WANG Jian, QU Yang,GAO Xiao-Li,YANG Pu,FENG Bai-Li. Effects of Mulching and Nitrogen Application on Photosynthetic Characteristicsand Yield Traits in Broomcorn Millet [J]. Acta Agron Sin, 2016, 42(06): 873-885.
[13] KUAI Jie,SUN Ying-Ying,ZUO Qing-So,LIAO Qing-Xi,LENG Suo-Hu,CHENG Yu-Gui,CAO Shi,WU Jiang-Sheng,ZHOU Guang-Sheng. Optimization of Plant Density and Row Spacing for Mechanical Harvest in Winter Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2016, 42(06): 898-908.
[14] YU Yong-Tao,LI Gao-Ke,QI Xi-Tao,LI Chun-Yan,MAO Ji-Hua,HU Jian-Guang*. Mapping and Epistatic Interactions of QTLs for Pericarp Thickness in Sweet Corn [J]. Acta Agron Sin, 2015, 41(03): 359-366.
[15] FENG Fa-Qiang,WANG Guo-Hua,WANG Qing-Feng,YANG Rui-Chun,LI Xiao-Qin. Variation of Provitamin A and Vitamin E Components at Milk Stage of Kernel Development in Sweet Corn [J]. Acta Agron Sin, 2014, 40(07): 1227-1234.
Full text



No Suggested Reading articles found!