Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (12): 1764-1773.doi: 10.3724/SP.J.1006.2018.01764

• SPECIAL SECTION: GRAIN DEHYDRATION AND MECHANICAL GRAIN HARVEST OF MAIZE • Previous Articles     Next Articles

Grain Dehydration Types and Establishment of Mechanical Grain Harvesting Time for Summer Maize in the Yellow-Huai-Hai Rivers Plain

Lu-Lu LI,Bo MING,Rui-Zhi XIE,Ke-Ru WANG,Peng HOU,Shao-Kun LI()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Beijing 100081, China
  • Received:2018-02-08 Accepted:2018-06-12 Online:2018-12-12 Published:2018-08-07
  • Contact: Shao-Kun LI E-mail:lishaokun@caas.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300605);the National Natural Science Foundation of China(31371575);the China Agriculture Research System(CARS-02-25);the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences

Abstract:

The wheat-maize double cropping system limits the heat resources of maize ripening and dewatering, which is the key factor to restrict the development of mechanical grain harvesting in the Yellow-Huai-Hai Rivers Plain. In this paper, methods of the optimum cultivar selection and harvesting time forecast were established to provide guidance for the promotion of mechanical grain harvesting in the double cropping system of the Yellow-Huai-Hai Rivers Plain. Twenty-seven main planting cultivars were selected and divided into four types by using the two-way average method. This method based on two parameters including the accumulated temperature from pollination to physiological maturity and the grain moisture content at physiological maturity. These four types were the later maturing and higher moisture content (I), the earlier maturing and higher moisture content (II), the earlier maturing and lower moisture content (III) and the later maturing and lower moisture content (IV). When grain moisture content reduced to 28% and 25% (suitable for mechanical grain harvesting) the cultivars’ active accumulated temperatures were simulated based on measurements of vegetative growth stage and dynamic change of grain moisture. According to the accumulated temperature and the historical meteorological data, the suitable days for mechanical grain harvesting of different cultivar types were estimated by using the geostatistical analysis method based on the starting points of normal sowing dates in the Yellow-Huai-Hai Rivers Plain, thus establishing the prediction method of optimum dates for mechanical grain harvesting. The accumulated temperatures from sowing to the time reaching grain moisture of 28% and 25% were 2982°C d and 3118°C d (I), 2770°C d and 2873°C d (II), 2729°C d and 2845°C d (III), and 2860°C d and 2980°C d (IV), respectively. The time for the type III cultivar with 28% and 25% moisture content respectively was two to three days and about two days earlier than that for the type II cultivar, seven to nine days and seven to ten days earlier than that for the IV type cultivar, and thirteen to seventeen days and sixteen to seventeen days earlier than that for the type I cultivar. All types of cultivar needed six to eight days to reduce grain moisture from 28% to 25%. Under the current maize cropping pattern and the sowing date of following wheat, all maize cultivars could be planted for mechanical grain harvesting in southern Henan and northern Anhui provinces in the southern Yellow-Huai-Hai Rivers Plain, while no cultivars could be used in the northern Yellow-Huai-Hai Rivers Plain, Guanzhong Area, and Shandong Peninsula where the mechanical grain harvesting of summer maize should be realized by selecting cultivar with the shorter maturing date and the rapid dehydration characteristic. In this study, the method to predict the dynamic change of grain moisture content and the optimum time of mechanical grain harvesting was established by the accumulated temperature. This method provides a feasible technical means for rationally distributing the grain harvesting cultivars and determining the suitable harvesting time.

Key words: maize, grain moisture content, dehydration types, grain harvesting time, spatial distribution

Table 1

Temperature and precipitation during the experiment"

日期 Date (month/day)
6/1-6/30 7/1-7/31 8/1-8/31 9/1-9/30 10/1-10/31 11/1-11/30
2014北京
2014 Beijing
积温
Accumulated temperature (°C)
752.1 870.0 814.6 629.1 434.7
降水Precipitation (mm) 91.8 119.8 50.1 127.6 12.0
2015河南新乡
2015 Xinxiang, Henan
积温
Accumulated temperature (°C)
799.6 862.0 827.7 662.9 510.6 192.5
降水Precipitation (mm) 87.7 77.2 115.0 39.6 36.3 57.6
2016河南新乡
2016 Xinxiang, Henan
积温
Accumulated temperature (°C)
796.3 876.9 850.2 712.5 504.8
降水Precipitation (mm) 136.7 552.3 95.9 32.0 66.4

Table 2

Hybrids weed in the experiment"

年份Year 品种 Hybrid
2014 郑单958, 先玉335, 华美1号, KWS1568, KX9384, 先玉696, 真金8号, 中种8号, 迪卡519
Zhengdan 958 (ZD958), Xianyu 335 (XY335), Huamei 1 (HM1), KWS1568, KX9384, Xianyu 696 (XY696), Zhenjin 8 (ZJ8), Zhongzhong 8 (ZZ8), Dika519 (DK519)
2015 郑单958, 先玉335, 农华101, 农华816, 京农科728, 中单909, 宁玉721, 联创808, 裕丰303, 中科玉505, 禾田1号
Zhengdan 958 (ZD958), Xianyu 335 (XY335), Nonghua 101 (NH101), Nonghua 816 (NH816), Jingnongke 728 (JNK728), Zhongdan 909 (ZD909), Ningyu 721 (NY721), Lianchuang 808 (LC808), Yufeng 303 (YF303), Zhongkeyu 505 (ZKY505), Hetian1 (HT1)
2016 郑单958, 先玉335, 农华101, 农华816, 京农科728, 中单909, 华美1号, 真金323, 新单58, 新单65, 辽单575, 锦华318, 锦华207, 金通152, 迪卡517, 陕单636, 丰垦139
Zhengdan 958 (ZD958), Xianyu 335 (XY335), Nonghua 101 (NH101), Nonghua 816 (NH816), Jingnongke 728 (JNK728), Zhongdan 909 (ZD909), Huamei 1 (HM1), Zhenjin 323 (ZJ323), Xindan 58 (XD58), Xindan 65 (XD65), Liaodan 575 (LD575), Jinhua 318 (JH318), Jinhua 207 (JH207), Jintong 152 (JT152), Dika 517 (DK517), Shaandan 636 (SD636), Fengken 139 (FK139)

Fig. 1

Relationships between grain moisture at physiological maturity and accumulated temperature during filling period Abbreviations of hybrids are the same as those given in Table 2."

Table 3

Demands for accumulated temperature at different stages of different maize varieties (°C d)"

类型
Type
品种
Hybrid
播种-出苗§
Sowing-Emergence
出苗-吐丝§
Emergence-Silking
授粉-生理成熟§
P-PM
授粉-28%#
P-28% MC
授粉-25%#
P-25% MC
I ZD909(2015) 191 1276 1439 1453 1594
XY335(2014) 169 1318 1446 1362 1446
ZD958(2016) 116 1464 1501 1505 1664
ZD909(2016) 116 1435 1501 1526 1684
II DK519(2014) 169 1289 1334 1291 1370
KWS1568(2014) 169 1347 1337 1322 1398
ZJ8(2014) 169 1159 1394 1372 1470
ZZ8(2014) 169 1289 1394 1382 1473
ZD958(2014) 169 1456 1366 1431 1544
HT1(2015) 191 1116 1166 1140 1221
JNK728(2015) 191 1221 1200 1249 1354
NH101(2015) 191 1276 1365 1331 1436
NH816(2015) 191 1304 1316 1363 1474
FK139(2016) 116 1215 1179 1293 1411
HM1(2016) 116 1279 1344 1331 1436
XD58(2016) 116 1279 1394 1388 1521
ZJ323(2016) 116 1403 1389 1410 1544
III KX9384(2015) 169 1120 1257 1065 1156
JNK728(2016) 116 1310 1291 1260 1369
NH816(2016) 116 1403 1389 1356 1476
XD65(2016) 116 1371 1400 1332 1461
LD575(2016) 116 1403 1389 1394 1528
IV HM1(2014) 169 1158 1472 1447 1526
XY696(2014) 169 1151 1533 1534 1627
ZKY505(2015) 191 1304 1410 1307 1417
LC808(2015) 191 1304 1439 1349 1465
XY335(2015) 191 1276 1475 1348 1468
NY721(2015) 191 1304 1485 1431 1575
ZD958(2015) 191 1276 1475 1446 1599
YF303(2015) 191 1276 1553 1489 1630
DK517(2016) 116 1371 1443 1293 1412
NH101(2016) 116 1371 1421 1345 1459
JH207(2016) 116 1403 1457 1314 1434
JT152(2016) 116 1403 1457 1363 1479
XY335(2016) 116 1435 1490 1361 1483
SD636(2016) 116 1310 1459 1417 1540
JH318(2016) 116 1371 1553 1443 1580

Table 4

Demands for accumulated temperature at different stages of different maize types (°C d)"

类型
Type
播种-生理成熟
Sowing-PM
播种-28%含水
Sowing-28% MC
播种-25%含水
Sowing-25% MC
I 2993 2982 3118
II 2760 2770 2873
III 2793 2729 2845
IV 2942 2860 2980

Fig. 2

Interpolation result of summer maize sowing period The black dots represent the location of the county used for spatial interpolation (n=96)."

Fig. 3

Distribution of mechanical harvesting time when grain moisture content reduces to 28% for different summer maize types in the Yellow-Huai-Hai Rivers Plain"

Fig. 4

Distribution of mechanical harvesting time when grain moisture content reduces to 25% for different summer maize types in the Yellow-Huai-Hai Rivers Plain"

[1] 柳枫贺, 王克如, 李健, 王喜梅, 孙亚玲, 陈永生, 王玉华, 韩冬生, 李少昆 . 影响玉米机械收粒质量因素的分析. 作物杂志, 2013, ( 4):116-119
Liu F H, Wang K R, Li J, Wang X M, Sun Y L, Chen Y S, Wang Y H, Han D S, Li S K . Factors affecting corn mechanically harvesting grain quality. Crops, 2013, ( 4):116-119 (in Chinese with English abstract)
[2] 谢瑞芝, 雷晓鹏, 王克如, 郭银巧, 柴宗文, 侯鹏, 李少昆 . 黄淮海夏玉米籽粒机械收获研究初报. 作物杂志, 2014, ( 2):76-79
Xie R Z, Lei X P, Wang K R, Guo Y Q, Chai Z W, Hou P, Li S K . Research on corn mechanically harvesting grain quality in Huang-Huai-Hai plain. Crops, 2014, ( 2):76-79 (in Chinese with English abstract)
[3] 王克如, 李少昆 . 玉米机械粒收破碎率研究进展. 中国农业科学, 2017,50:2018-2026
doi: 10.3864/j.issn.0578-1752.2017.11.007
Wang K R, Li S K . Progresses in research on grain broken rate by mechanical grain harvesting. Sci Agric Sin, 2017,50:2018-2026 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.11.007
[4] 王克如, 李少昆 . 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017,50:2027-2035
doi: 10.3864/j.issn.0578-1752.2017.11.008
Wang K R, Li S K . Analysis of influencing factors on kernel dehydration rate of maize hybrids. Sci Agric Sin, 2017,50:2027-2035 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.11.008
[5] 任佰朝, 高飞, 魏玉君, 董树亭, 赵斌, 刘鹏, 张吉旺 . 冬小麦-夏玉米周年生产条件下夏玉米的适宜熟期与积温需求特性. 作物学报, 2018,44:137-143
Ren B Z, Gao F, Wei Y J, Dong S T, Zhao B, Liu P, Zhang J W . Suitable maturity period and accumulated temperature of summer maize in wheat-maize double cropping system. Acta Agron Sin, 2018,44:137-143 (in Chinese with English abstract)
[6] 杨国航, 张春原, 孙世贤, 刘春阁, 王卫红, 赵久然 . 夏玉米子粒收获期判定方法研究. 作物杂志, 2006, ( 5):11-13
doi: 10.3969/j.issn.1001-7283.2006.05.004
Yang G H, Zhang C Y, Sun S X, Liu C G, Wang W H, Zhao J R . Study on the method of judging the harvest time of summer maize. Crops, 2006, ( 5):11-13 (in Chinese)
doi: 10.3969/j.issn.1001-7283.2006.05.004
[7] 周进宝, 杨国航, 孙世贤, 赵久然 . 黄淮海夏播玉米区玉米生产现状和发展趋势. 作物杂志, 2008, ( 2):4-7
doi: 10.3969/j.issn.1001-7283.2008.02.002
Zhou J B, Yang G H, Sun S X, Zhao J R . Current situation and prospect of maize production in the Huang-Huai-Hai summer maize region. Crops, 2008, ( 2):4-7 (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7283.2008.02.002
[8] 刘京宝, 房志勇, 赵霞, 黄璐, 夏来坤, 冯保荣, 刘麦囤 . 河南省夏玉米最佳收获期研究. 河南农业科学, 2011,40(6):46-48
Liu J B, Fang Z Q, Zhao X, Huang L, Xia L K, Feng B R, Liu M T . Study on optimum harvest date of summer maize in Henan province. J Henan Agric Sci, 2011,40(6):46-48 (in Chinese with English abstract)
[9] 杨茜, 相姝楠 . 一年两熟地区玉米生产机械化中的农机农艺适应性问题初探. 中国农机化学报, 2013,34(2):59-61
Yang Q, Xiang S N . The agricultural machinery & agronomic adaptability solution of the corn production mechanization in the area of two seasoned crops. J Chin Agric Mechanization, 2013,34(2):59-61 (in Chinese with English abstract)
[10] 李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆 . 黄淮海夏玉米生理成熟期子粒含水率研究. 作物杂志, 2017, ( 2):88-92
doi: 10.16035/j.issn.1001-7283.2017.02.015
Li L L, Xie R Z, Wang K R, Ming B, Hou P, Li S K . Kernel moisture content of summer maize at physiological maturity in Huanghuaihai region. Crops, 2017, ( 2):88-92 (in Chinese with English abstract)
doi: 10.16035/j.issn.1001-7283.2017.02.015
[11] 郭庆辰, 康浩冉, 王丽娥, 刘洪泉, 陈艳花, 白光红, 窦秉德 . 黄淮区籽粒机收玉米标准及育种模式探讨. 农业科技通讯, 2016, ( 1):159-162
doi: 10.3969/j.issn.1000-6400.2016.01.053
Guo Q C, Kang H R, Wang L E, Liu H Q, Chen Y H, Bai G H, Dou B D . The standard of corn grain mechanical harvest and breeding mode in Huang-Huai Region. Bull Agric Sci Technol, 2016, ( 1):159-162 (in Chinese)
doi: 10.3969/j.issn.1000-6400.2016.01.053
[12] 李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆 . 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017,50:2044-2051
Li L L, Lei X P, Xie R Z, Wang K R, Hou P, Zhang F L, Li S K . Analysis of influential factors on mechanical grain harvesting quality of summer maize. Sci Agric Sin, 2017,50:2044-2051 (in Chinese with English abstract)
[13] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆 . 玉米机械籽粒收获质量现状及其与水分含量的关系. 中国农业科学, 2017,50:2036-2043
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Hou P, Liu C W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K . Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017,50:2036-2043 (in Chinese with English abstract)
[14] 李璐璐, 薛军, 谢瑞芝, 王克如, 明博, 侯鹏, 高尚, 李少昆 . 夏玉米籽粒含水率对机械粒收质量的影响. 作物学报, 2018,44:1747-1754
Li L L, Xue J, Xie R Z, Wang K R, Ming B, Hou P, Gao S, Li S K . Effects of grain moisture content on mechanical grain harvesting quality of summer maize. Acta Agron Sin, 2018,44:1747-1754 (in Chinese with English abstract)
[15] 李少昆, 王克如, 谢瑞芝, 李璐璐, 明博, 侯鹏, 初振东, 张万旭, 刘朝巍 . 玉米子粒机械收获破碎率研究. 作物杂志, 2017, ( 2):76-80
doi: 10.16035/j.issn.1001-7283.2017.02.013
Li S K, Wang K R, Xie R Z, Li L L, Ming B, Hou P, Chu Z D, Zhang W X, Liu C W . Grain breakage rate of maize by mechanical harvesting in China. Crops, 2017, ( 2):76-80 (in Chinese with English abstract)
doi: 10.16035/j.issn.1001-7283.2017.02.013
[16] 赵明, 李少昆, 董树亭, 张东兴, 王璞, 薛吉全, 高聚林, 孙士明, 张吉旺, 刘鹏, 刘永红, 王永军 . 美国玉米生产关键技术与中国现代玉米生产发展的思考: 赴美国考察报告. 作物杂志, 2011, ( 5):1-3
Zhao M, Li S K, Dong S T, Zhang D X, Wang P, Xue J Q, Gao J L, Sun S M, Zhang J W, Liu P, Liu Y H, Wang Y J . The key technology of American maize production and the development of modern maize production in China: a study report after visiting the United States. Crops, 2011, ( 5):1-3 (in Chinese with English abstract)
[17] 李少昆 . 美国玉米生产技术特点与启示. 玉米科学, 2013,21(3):1-5
doi: 10.3969/j.issn.1005-0906.2013.03.001
Li S K . Characteristics and enlightenment of corn production technologies in the U.S. J Maize Sci, 2013,21(3):1-5 (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-0906.2013.03.001
[18] 李璐璐, 谢瑞芝, 范盼盼, 雷晓鹏, 王克如, 侯鹏, 李少昆 . 郑单958与先玉335子粒脱水特征研究. 玉米科学, 2016,24(2):57-61
Li L L, Xie R Z, Fan P P, Lei X P, Wang K R, Hou P, Li S K . Study on dehydration in kernel between Zhengdan 958 and Xianyu 335. J Maize Sci, 2016,24(2):57-61 (in Chinese with English abstract)
[19] 李璐璐, 明博, 谢瑞芝, 王克如, 侯鹏, 李少昆 . 玉米品种穗部性状差异及其对籽粒脱水的影响. 中国农业科学, 2018,51:1855-1867
Li L L, Ming B, Xie R Z, Wang K R, Hou P, Li S K . Differences of ear characters in maize and their effects on grain dehydration. Sci Agric Sin, 2018,51:1855-1867 (in Chinese with English abstract)
[20] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆 . 夏玉米籽粒脱水特性及与灌浆特性关系的研究. 中国农业科学, 2018,51:1878-1889
Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K . Study on grain dehydration characteristics of maize and its relationship with grain filling. Sci Agric Sin, 2018,51:1878-1889 (in Chinese with English abstract)
[21] China Meteorological Data Sharing Service System. National Meteorological Information Center. Beijing[ 2017-3-15].
[22] 李军, 游松财, 黄敬峰 . 中国1961-2000年月平均气温空间插值方法与空间分布. 生态环境, 2006,15(1):109-114
Li J, You S C, Huang J F . Spatial interpolation method and spatial distribution characteristics of monthly mean temperature in China during 1961-2000. Ecol Environ, 2006,15(1):109-114 (in Chinese with English abstract)
[23] 杨扬, 杨建宇, 李绍明, 张晓东, 朱德海 . 玉米生育期空间插值方法比较. 农业工程学报, 2009,25(9):163-167
doi: 10.3969/j.issn.1002-6819.2009.09.029
Yang Y, Yang J Y, Li S M, Zhang X D, Zhu D H . Comparison of spatial interpolation methods for maize growth period. Trans CSAE, 2009,25(9):163-167 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2009.09.029
[24] 刘勤, 严昌荣, 梅旭荣, 杨建莹, 翟治芬 . 基于地理和气象要素的春玉米生育期栅格化方法. 生态学报, 2011,31:4056-4061
Liu Q, Yan C R, Mei X R, Yang J Y, Zhai Z F . Integrating geographic features and weather data for methodology of rasterizing spring maize growth stages. Acta Ecol Sin, 2011,31:4056-4061 (in Chinese with English abstract)
[25] 佟屏亚 . 中国玉米种植区划. 北京: 中国农业科技出版社, 1992. pp 6-16
Tong P Y. Maize Plant District in China. Beijing: Chinese Agricultural Science and Technology Press, 1992. pp 6-16(in Chinese)
[26] 李萌, 申双和, 吕厚荃, 韩艳, 褚荣浩, 沙修竹 . 气候变化情景下黄淮海区域热量资源及夏玉米温度适宜度. 大气科学学报, 2016,39:391-399
Li M, Shen S H, Lyu H Q, Han Y, Chu R H, Sha X Z . Thermal resources and summer maize temperature suitability in the Huang-Huai-Hai region under future climate change. Trans Atmos Sci, 2016,39:391-399 (in Chinese with English abstract)
[27] 田宏伟 . 黄淮海地区玉米生育期农业气候资源分析. 气象与环境科学, 2016,39(4):56-61
doi: 10.16765/j.cnki.1673-7148.2016.04.009
Tian H W . Study on agricultural climate resources in Huang-Huai-Hai area during summer maize growing season. Meteorol Environ Sci, 2016,39(4):56-61 (in Chinese with English abstract)
doi: 10.16765/j.cnki.1673-7148.2016.04.009
[28] 李新平, 黄进勇 . 黄淮海平原麦玉玉三熟高效种植模式复合群体生态效应研究. 植物生态学报, 2001,25:476-482
Li X P, Huang J Y . Micro-environmental effects and productivity of complex crop communities in the wheat/corn/corn crop patterns in Huang-Huai-Hai plain. Acta Phytoecol Sin, 2001,25:476-482 (in Chinese with English abstract)
[29] 赵秉强, 张福锁, 李增嘉, 李凤超, 劳秀荣, 史春余, 董庆裕, 张骏, 刘嘉军, 杨恩学 . 黄淮海农区集约种植制度的超高产特性研究. 中国农业科学, 2001,34:649-655
Zhao B Q, Zhang F S, Li Z J, Li F C, Lao X R, Shi C Y, Dong Q Y, Zhang J, Liu J J, Yang E X . Studies on the super-high yield characteristics of three intensive multiple cropping systems in Huang-Huai-Hai area. Sci Agric Sin, 2001,34:649-655 (in Chinese with English abstract)
[30] 王海霞 . 黄淮海北部平原区资源节约型种植制度研究. 中国农业科学院硕士学位论文,北京, 2011
Wang H X . Study on Resource-saving Cropping Systems in Northern Region of Huang-Huai-Hai Plain. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing,China, 2011 (in Chinese with English abstract)
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!