Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (12): 2459-2470.doi: 10.3724/SP.J.1006.2021.04252

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of sorghum grain of different parts of panicle

DONG Er-Wei1,2(), WANG Jin-Song1,2, WU Ai-Lian1,2, WANG Yuan1,2, WANG Li-Ge1,2, HAN Xiong1,2, GUO Jun1,2, JIAO Xiao-Yan1,2,*()   

  1. 1College of Resources & Environment, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
    2Institute of Agricultural Environment and Resources, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China
  • Received:2020-11-23 Accepted:2021-03-19 Online:2021-12-12 Published:2021-09-29
  • Contact: JIAO Xiao-Yan E-mail:erwei_dong@163.com;xiaoyan_jiao@126.com
  • Supported by:
    Key Research and Development Program of Shanxi Province(201803D221003-1);China Agriculture Research System(CARS-06-13.5A20)

Abstract:

Row space and plant density not only affect plant phenotype and field ecological environment but also regulate grain yield and the characteristics of grain-filling. The experiments were conducted for two years from 2018 to 2019 to investigate the effects of row space and plant density on grain yield and its composition using ‘Liaoxialiang 1’ as materials, which was bred by Liaoning Academy of Agricultural Sciences. In 2019, the effects of row space and plant density on grain filling characteristics, starch and NPK accumulation per grain of different (upper, middle, and lower) parts of panicles were explored. There were 12 treatments, including three row spaces such as 30, 50, and 60 cm and four plant densities of 135, 165, 195, and 225 thousand-plant hm-2 with each row space. The highest grain yield per hectare and grain yield of three parts of per panicle were produced by the 50 cm row space with 165 thousand-plant hm-2density for 12 treatments. The yield of upper part per panicle was lower than those of other two parts; whereas it had relative high values of weight and starch per grain. Row space 50 cm with density of 165 thousand-plant hm-2 prolonged active grain-filling period of upper part of panicle. It also increased the maximum grain-filling rate and shortened active grain-filling period of lower part of panicle. Both row spaces of 50 cm and 60 cm promoted starch accumulation per grain of three parts of panicle during grain development; whereas 30 cm resulted in a prolonged active grain-filling period of lower part of panicle, which was associated with a reduced grain-filling rate. This might illustrate that relative wide row space accelerate lower part grain maturity and refrain from the effect of early frost on yield, brought about a higher grain-filling rate. Both N and P accumulation per grain increased during grain filling process; Meanwhile K accumulation reached ceiling at 30-40 days after anthesis and declined afterwards, because of K leakage from grain during its maturation. NPK and starch accumulation per grain in upper part of panicle were relatively high than those of other two parts of panicle. It implied the grain of upper panicle had a larger seed size as well. Compared with 30 cm row space, 50 cm and 60 cm row spaces increased NPK accumulation per grain of three parts. High NPK accumulation per grain was produced by the treatment of 50 cm row space with the density of 165 thousand-plant hm-2. In conclusion, wide row space can promote seed size of grain and starch accumulation. The increased grain-filling rate of lower part of panicle (inferior kernels) by wide row space can diminish the risk of natural calamity of early frost.

Key words: sorghum, row space, density, grain-filling rate, active grain-filling period, starch accumulation, NPK accumulation

Fig. 1

Monthly precipitation and average temperature at growing stages in sorghum from 2018 to 2019"

Fig. 2

Effects of row space and planting densities on grain yield, 1000-grain weight, and grains per panicle 13.5: 135 thousand plants hm-2; 16.5: 165 thousand plants hm-2; 19.5: 195 thousand plants hm-2; 22.5: 225 thousand plants hm-2. Values marked with different lowercase letters are significantly different among treatments at P < 0.05."

Fig. 3

Effects of row space and planting densities on grain weight of different portions per panicle 30-13.5: row space 30 cm, density 135 thousand plants hm-2; 30-16.5: row space 30 cm, density 165 thousand plants hm-2; 30-19.5: row space 30 cm, density 195 thousand plants hm-2; 30-22.5: row space 30 cm, density 225 thousand plants hm-2; 50-13.5: row space 50 cm, density 135 thousand plants hm-2; 50-16.5: row space 50 cm, density 165 thousand plants hm-2; 50-19.5: row space 50 cm, density 195 thousand plants hm-2; 50-22.5: row space 50 cm, density 225 thousand plants hm-2; 60-13.5: row space 60 cm, density 135 thousand plants hm-2; 60-16.5: row space 60 cm, density 165 thousand plants hm-2; 60-19.5: row space 60 cm, density 195 thousand plants hm-2; 60-22.5: row space 60 cm, density 225 thousand plants hm-2. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle."

Fig. 4

Effects of row space and planting densities on grain weight of different portions of panicle at grain-filling stage Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle."

Fig. 5

Effects of row space and planting densities on grain filling rate of different portion of panicle at grain-filling stage Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle."

Table 1

Active grain-filling period and average grain-filling rate of different parts of sorghum grain"

行距
Row space
(cm)
密度
Planting density
(×104 hm-2)
上部籽粒
Upper part of panicle
中部籽粒
Middle part of panicle
下部籽粒
Lower part of panicle
T
(d)
G
(mg grain-1 d-1)
T
(d)
G
(mg grain-1 d-1)
T
(d)
G
(mg grain-1 d-1)
30 13.5 19.71 b 0.61 c 40.69 cde 0.58 de 43.25 ab 0.51 e
16.5 18.87 b 0.77 b 38.41 e 0.58 de 44.64 a 0.46 f
19.5 18.86 b 0.78 b 40.07 de 0.61 cd 43.82 ab 0.47 f
22.5 19.82 b 0.72 d 40.55 cde 0.57 e 41.64 bc 0.45 f
50 13.5 22.19 a 0.73 d 43.15 bc 0.63 c 39.26 d 0.64 cd
16.5 22.84 a 0.78 b 38.66 de 0.72 a 40.65 cd 0.64 cd
19.5 18.90 b 0.79 b 38.76 de 0.68 b 38.03 de 0.63 d
22.5 14.88 c 0.85 a 35.46 f 0.71 ab 33.85 f 0.72 a
60 13.5 19.67 b 0.79 b 45.60 ab 0.59 de 33.82 f 0.72 a
16.5 18.85 b 0.77 b 42.98 c 0.63 c 34.12 f 0.70 a
19.5 18.68 b 0.81 ab 46.46 a 0.55 e 35.85 ef 0.67 bc
22.5 19.16 b 0.77 b 41.10 cd 0.64 c 39.40 d 0.61 d
F
F-value
行距Row space ns ** ** ** ** **
密度Density ** ** ** ** ns *
行距×密度
Row space×Density
** ** ** ** ** **

Fig. 6

Effects of row space and planting densities on starch accumulation per grain at grain-filling stage Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle."

Fig. 7

Effects of row space and planting densities on starch accumulation rate per grain at grain-filling stage Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle."

Fig. 8

Effects of row space and planting densities on starch content of grain at grain-filling stage Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle."

Fig. 9

Effects of row space and planting densities on N accumulation per grain at grain-filling stage Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle."

Fig. 10

Effects of row space and planting densities on P accumulation per grain at grain-filling stage Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle."

Fig. 11

Effects of row space and planting densities on K accumulation per grain at grain-filling stage Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle."

[1] Peltonen-Sainio P, Kangas A, Salo Y, Jauhiainen L. Grain number dominates grain weight in temperate cereal yield determination: evidence based on 30 years of multi-location trials. Field Crops Res, 2006, 100:179-188.
doi: 10.1016/j.fcr.2006.07.002
[2] 王荣焕, 徐田军, 陈传永, 王元东, 吕天放, 刘月娥, 蔡万涛, 刘秀芝, 赵久然. 不同熟期类型玉米品种籽粒灌浆和脱水特性. 作物学报, 2021, 47:149-158.
doi: 10.3724/SP.J.1006.2021.93008
Wang R H, Xu T J, Chen C Y, Wang Y D, Lyu T F, Liu Y E, Cai W T, Liu X Z, Zhao J R. Grain filling and dehydrating characteristics of maize hybrids with different maturity. Acta Agron Sin, 2021, 47:149-158 (in Chinese with English abstract).
[3] Wang T, Li F M, Turner N C, Wang B R, Wu F, Anten N P R, Du Y L. Accelerated grain-filling rate increases seed size and grain yield of recent naked oat cultivars under well-watered and water-deficit conditions. Eur J Agron, 2020, 116:126047.
doi: 10.1016/j.eja.2020.126047
[4] 丁锦峰, 游蕊, 丁永刚, 王妍, 张明伟, 朱敏, 李春燕, 朱新开, 郭文善. 基于不同栽培模式的小麦强、弱势粒灌浆特性研究. 麦类作物学报, 2020, 40(11):1-9.
Ding J F, You R, Ding Y G, Wang Y, Zhang M W, Zhu M, Li C Y, Zhu X K, Guo W S. Grain filling characters of superior and inferior grains in wheat based on different cultivation patterns. J Triticeae Crops, 2020, 40(11):1-9 (in Chinese with English abstract).
[5] 徐田军, 吕天放, 赵久然, 王荣焕, 张勇, 蔡万涛, 刘月娥, 刘秀芝, 陈传永, 邢锦丰, 王元东, 刘春阁. 不同播期条件下黄淮海区主推夏播玉米品种籽粒灌浆特性. 作物学报, 2021, 47:566-574.
doi: 10.3724/SP.J.1006.2021.03023
Xu T J, Lyu T F, Zhao J R, Wang R H, Zhang Y, Cai W T, Liu Y E, Liu X Z, Chen C Y, Xing J F, Wang Y D, Liu C G. Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai region. Acta Agron Sin, 2021, 47:566-574 (in Chinese with English abstract).
[6] 于宁宁, 赵子航, 任佰朝, 赵斌, 刘鹏, 张吉旺. 综合农艺管理促进夏玉米氮素吸收、籽粒灌浆和品质提高. 植物营养与肥料学报, 2020, 26:797-805.
Yu N N, Zhao Z H, Ren B Z, Zhao B, Liu P, Zhang J W. Integrated agronomic management practices improve nitrogen absorption, grain filling and nutritional qualities of summer maize. J Plant Nutr Fert, 2020, 26:797-805 (in Chinese with English abstract).
[7] 胡健, 杨连新, 周娟, 王余龙, 朱建国. 开放式空气CO2浓度增高(FACE)对水稻灌浆动态的影响. 中国农业科学, 2007, 40:2443-2451.
Hu J, Yang L X, Zhou J, Wang Y L, Zhu J G. Effect of free-air CO2 enrichment (FACE) on grain filling dynamics of rice. Sci Agric Sin, 2007, 40:2443-2451 (in Chinese with English abstract).
[8] 张亚洁, 许德美, 孙斌, 刁广华, 林强森, 杨建昌. 种植方式对陆稻和水稻籽粒灌浆及垩白的影响. 中国农业科学, 2005, 39:257-264.
Zhang Y J, Xu D M, Sun B, Diao G H, Lin Q S, Yang J C. Effects of cultivation methods on grain-filling and chalky grains of upland and paddy rice. Sci Agric Sin, 2005, 39:257-264 (in Chinese with English abstract).
[9] 何冬冬, 杨恒山, 张玉芹. 扩行距、缩株距对春玉米冠层结构和产量的影响. 中国生态农业学报, 2018, 26:397-408.
He D D, Yang H S, Zhang Y Q. Effects of line-spacing expansion and row-spacing shrinkage on canopy structure and yield of spring corn. Chin J Eco-Agric, 2018, 26:397-408 (in Chinese with English abstract).
[10] 张春雨, 白晶, 丁相鹏, 张吉旺, 刘鹏, 任佰朝, 赵斌. 错株增密种植对夏玉米光合特性及产量的影响. 中国农业科学, 2020, 53:3928-3941
Zhang C Y, Bai J, Ding X P, Zhang J W, Liu P, Ren B Z, Zhao B. Effects of staggered planting with increased density on the photosynthetic characteristics and yield of summer maize. Sci Agric Sin, 2020, 53:3928-3941 (in Chinese with English abstract).
[11] Jia Q M, Yang L Y, An H Y, Dong S, Chang S H, Zhang C, Liu Y J, Hou F J. Nitrogen fertilization and planting models regulate maize productivity, nitrate and root distributions in semi-arid regions. Soil Tillage Res, 2020, 200:104636.
doi: 10.1016/j.still.2020.104636
[12] 董二伟, 王劲松, 焦晓燕, 武爱莲, 南江宽, 郭珺, 王立革. 栽培模式对晋杂34产量及氮素吸收利用的调控效应. 华北农学报, 2019, 34(1):196-203.
Dong E W, Wang J S, Jiao X Y, Wu A L, Nan J K, Guo J, Wang L G. Effects of cultivation patterns on yield and nitrogen uptake and utilization of Jinza 34. Acta Agric Boreali-Sin, 2019, 34(1):196-203 (in Chinese with English abstract).
[13] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应. 作物学报, 2021, 47:507-519.
doi: 10.3724/SP.J.1006.2021.03024
Zhu Y L, Wang C G, Yang M, Zheng X H, Zhao C F, Zhang R H. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density. Acta Agron Sin, 2021, 47:507-519 (in Chinese with English abstract).
[14] 山仑, 徐炳成. 论高粱的抗旱性及在旱区农业中的地位. 中国农业科学, 2009, 42:2342-2348.
Shan L, Xu B C. Discussion on drought resistance of sorghum and its status in agriculture in arid and semiarid regions. Sci Agric Sin, 2009, 42:2342-2348 (in Chinese with English abstract).
[15] Subudhi P K, Nguyen H T. Linkage group alignment of sorghum RFLP maps using a RIL mapping population. Genome, 2000, 43:240-249.
pmid: 10791811
[16] Singh S P. Sources of cold tolerance in grain sorghum. Can J Plant Sci, 1985, 65:251-257.
doi: 10.4141/cjps85-037
[17] 中国报告网. 2017年全国高粱播种面积为506.5千公顷(附各省市数量). [2019-08-02] http://data.chinabaogao.com/nonglinmuyu/2019/0R43PB2019.html.
China Reports Network. In 2017, the sown area of Sorghum in China was 506.5 thousand hectares (with the number of provinces and cities attached). [2019-08-02] http://data.chinabaogao.com/nonglinmuyu/2019/0R43PB2019.html. (in Chinese).
[18] 李娜. 山西霜冻灾害特征及其对农作物影响的研究. 兰州大学硕士学位论文, 甘肃兰州, 2018.
Li N. Characteristics of Frost Disaster in Shanxi and Its Impact on Crops. MS Thesis of Lanzhou University. Lanzhou, Gansu, China, 2018 (in Chinese with English abstract).
[19] 柯福来, 朱凯, 邹剑秋. 密度对高粱品种辽杂19群体子粒灌浆的效应. 作物杂志, 2016, (5):141-146.
Ke F L, Zhu K, Zou J Q. Effect of plants densities on population grain filling characteristic of sorghum hybrid Liaoza 19. Crops, 2016, (5):141-146 (in Chinese with English abstract).
[20] 王劲松, 董二伟, 焦晓燕, 武爱莲, 白文斌, 王立革, 郭珺, 韩雄, 柳青山. 不同种植模式对高粱晋糯3号产量和养分吸收的影响. 作物杂志, 2019, (5):166-172
Wang J S, Dong E W, Jiao X Y, Wu A L, Bai W B, Wang L G, Guo J, Han X, Liu Q S. Effects of different planting patterns on yield and nutrient absorption of sorghum Jinnuo 3. Crops, 2019, (5):166-172 (in Chinese with English abstract).
[21] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 3:182-192.
Zhu Q S, Cao X Z, Luo Y Q. Growth analysis on the process of grain filling in rice. Acta Agron Sin, 1988, 3:182-192 (in Chinese with English abstract).
[22] Wang Z Q, Xu Y J, Chen T T, Zhang H, Yang J C, Zhang J H. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. Planta, 2015, 241:1091-1107.
doi: 10.1007/s00425-015-2245-0
[23] 中华人民共和国农业部. 谷物籽粒粗淀粉测定方法, NY/T 11-1985, 1985.
Ministry of Agriculture, The People’s Republic of China. Determination of Crude Starch in Cereals Seeds, NY/T 11-1985, 1985 (in Chinese).
[24] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. pp 265-271.
Lu R K. Analytical Methods for Soil and Agro-chemistry. Beijing: China Agricultural Science and Technology Press, 1999. pp 265-271(in Chinese).
[25] 黄明, 吴金芝, 李友军, 王贺正, 陈明灿, 付国占. 旱地不同产量水平小麦的产量构成及氮素吸收利用效率. 麦类作物学报, 2019, 39(2):163-170.
Huang M, Wu J Z, Li Y J, Wang H Z, Chen M C, Fu G Z. Differences of yield components and nitrogen uptake and utilization in winter wheat with different yield levels in drylands. J Triticeae Crops, 2019, 39(2):163-170 (in Chinese with English abstract).
[26] 吕丽华, 陶洪斌, 王璞, 刘明, 赵明, 王润正. 种植密度对夏玉米碳氮代谢和氮利用率的影响. 作物学报, 2008, 34:718-723.
Lyu L H, Tao H B, Wang P, Liu M, Zhao M, Wang R Z. Carbon and nitrogen metabolism and nitrogen use efficiency in summer maize under different planting densities. Acta Agron Sin, 2008, 34:718-723 (in Chinese with English abstract).
[27] 徐娇, 孟亚利, 睢宁, 宋为超, 周治国. 种植密度对转基因棉氮、磷、钾吸收和利用的影响. 植物营养与肥料学报, 2013, 19:174-181.
Xu J, Meng Y L, Sui N, Song W C, Zhou Z G. Effects of planting density on uptake and utilization of N, P and K of transgenic cotton. J Plant Nutr Fert, 2013, 19:174-181 (in Chinese with English abstract).
[28] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019, 45:1868-1879.
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agron Sin, 2019, 45:1868-1879 (in Chinese with English abstract).
[29] 蒯婕, 孙盈盈, 左青松, 廖庆喜, 冷锁虎, 程雨贵, 曹石, 吴江生, 周广生. 机械收获模式下直播冬油菜密度与行距的优化. 作物学报, 2016, 42:898-908.
Kuai J, Sun Y Y, Zuo Q S, Liao Q X, Leng S H, Cheng Y G, Cao S, Wu J S, Zhou G S. Optimization of plant density and row spacing for mechanical harvest in winter rapeseed ( Brassica napus L.). Acta Agron Sin, 2016, 42:898-908 (in Chinese with English abstract).
[30] 朱凯, 张飞, 柯福来, 王艳秋, 邹剑秋. 种植密度对适宜机械化栽培高粱品种产量及生理特性的影响. 作物杂志, 2018, (1):83-87.
Zhu K, Zhang F, Ke F L, Wang Y Q, Zou J Q. Effects of planting density on yield and physiological characteristics of sorghum hybrids suitable for mechenization. Crops, 2018, (1):83-87 (in Chinese with English abstract).
[31] 陈婷婷, 谈桂露, 褚光, 刘立军, 杨建昌. 超级稻花后强、弱势粒灌浆相关蛋白质表达的差异. 作物学报, 2012, 38:1471-1482.
Chen T T, Tan G L, Chu G, Liu L J, Yang J C. Differential expressions of the proteins related to grain filling between superior and inferior spikelets of super rice after anthesis. Acta Agron Sin, 2012, 38:1471-1482 (in Chinese with English abstract).
[32] Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot, 2007, 100:959-966.
doi: 10.1093/aob/mcm121
[33] 徐云姬. 三种禾谷类作物强、弱势粒灌浆差异机理及其调控技术. 兰州大学博士学位论文, 甘肃兰州, 2016.
Xu Y J. Mechanism in the Filling Difference between Superior and Inferior Caryopses of Three Cereal Crops and Its Regulation Techniques. PhD Dissertation of Lanzhou University, Lanzhou, Gansu, China, 2016 (in Chinese with English abstract).
[34] 肖万欣, 刘晶, 史磊, 赵海岩, 王延波. 氮密互作对不同株型玉米形态、光合性能及产量的影响. 中国农业科学, 2017, 50:3690-3701.
Xiao W X, Liu J, Shi L, Zhao H Y, Wang Y B. Effect of nitrogen and density interaction on morphological traits, photosynthetic property and yield. Sci Agric Sin, 2017, 50:3690-3701 (in Chinese with English abstract).
[35] 张仁和, 王博新, 杨永红, 杨晓军, 马向峰, 张兴华, 郝引川, 薛吉全. 陕西灌区高产春玉米物质生产与氮素积累特性. 中国农业科学, 2017, 50:2238-2246.
Zhang R H, Wang B X, Yang Y H, Yang X J, Ma X F, Zhang X H, Hao Y C, Xue J Q. Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi. Sci Agric Sin, 2017, 50:2238-2246 (in Chinese with English abstract).
[36] 徐丽娜, 闫艳, 梅沛沛, 陈士林, 王小龙. 种植密度对不同玉米品种籽粒灌浆特性的影响. 山东农业科学, 2020, 52(7):20-23.
Xu L N, Yan Y, Mei P P, Chen S L, Wang X L. Effects of planting density on grain filling characteristics of different maize varieties. Shandong Agric Sin, 2020, 52(7):20-23 (in Chinese with English abstract).
[37] Zhang H, Li H, Yuan L, Wang Z, Yang J, Zhang J. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. J Exp Bot, 2012, 63:215-227.
doi: 10.1093/jxb/err263 pmid: 21926094
[38] Liang W, Zhang Z, Wen X X, Liao Y C, Liu Y. Effect of no-structural carbohydrate accumulation in the stem pre-anthesis on grain filling of wheat inferior grain. Field Crops Res, 2017, 211:66-76.
doi: 10.1016/j.fcr.2017.06.016
[39] 徐莹, 王林林, 陈炜, 李红兵, 邓西平. 施氮量对旱地小麦强势粒和弱势粒灌浆及产量的影响. 麦类作物学报, 2013, 33:489-494.
Xu Y, Wang L L, Chen W, Li H B, Deng X P. Effects of different nitrogen levels on grain-filling characteristics and yield of two dryland wheat cultivars for superior and inferior grain. J Triticeae Crops, 2013, 33:489-494 (in Chinese with English abstract).
[40] Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res, 2011, 123:170-182.
doi: 10.1016/j.fcr.2011.05.015
[41] Panda B B, Badoghar A K, Sekhar S, Shaw B P, Mohapatra P K. 1-MCP treatment enhanced expression of genes controlling endosperm cell division and starch biosynthesis for improvement of grain filling in a dense-panicle rice cultivar. Plant Sci, 2016, 246:11-25.
doi: S0168-9452(16)30016-4 pmid: 26993232
[42] Wang T, Du Y L, He J, Turner N C, Wang B R, Zhang C, Cui T, Li F M. Recently-released genotypes of naked oat ( Avena nuda L.) out-yield early releases under water-limited conditions by greater reproductive allocation and desiccation tolerance. Field Crops Res, 2017, 204:169-179.
doi: 10.1016/j.fcr.2017.01.017
[43] 卢庆善. 高粱学. 北京: 中国农业出版社, 1999. pp 69-70.
Lu Q S. Sorghum. Beijing: China Agricultural Press, 1999. pp 69-70(in Chinese).
[44] Ananda N, Vadlani P V, Prasad P V V. Evaluation of drought and heat stressed grain sorghum ( Sorghum bicolor) for ethanol production. Ind Crops Prod, 2011, 33:779-782.
doi: 10.1016/j.indcrop.2011.01.007
[45] 王媛, 王劲松, 董二伟, 武爱莲, 焦晓燕. 长期施用不同剂量氮肥对高粱产量、氮素利用特性和土壤硝态氮含量的影响. 作物学报, 2021, 47:342-350.
doi: 10.3724/SP.J.1006.2021.04091
Wang Y, Wang J S, Dong E W, Wu A L, Jiao X Y. Effects of long term nitrogen fertilization with different levels on sorghum grain yield, nitrogen use characteristics and soil nitrate distribution. Acta Agron Sin, 2021, 47:342-350 (in Chinese with English abstract).
[46] Gaju O, Allard V, Martre P, Le Gouis J, Moreau D, Bogard M, Hubbart S, Foulke M J. Nitrogen partitioning and remobilization in relation to leaf senescence: grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Res, 2014, 155:213-223.
doi: 10.1016/j.fcr.2013.09.003
[47] Wei H H, Meng T Y, Li X Y, Dai Q G, Zhang H C, Yin X Y. Sink-source relationship during rice grain filling is associated with grain nitrogen concentration. Field Crops Res, 2018, 215:23-38.
doi: 10.1016/j.fcr.2017.09.029
[48] 杨宁, 赵护兵, 王朝辉, 张达斌, 高亚军. 豆科作物-小麦轮作方式下旱地小麦花后干物质及养分累积、转移与产量的关系. 生态学报, 2012, 32:4827-4835.
Yang N, Zhao H B, Wang Z H, Zhang D B, Gao Y J. Accumulation and translocation of dry matter and nutrients of wheat rotated with legumes and its relation to grain yield in a dryland area. Acta Ecol Sin, 2012, 32:4827-4835 (in Chinese with English abstract).
[49] 王劲松, 焦晓燕, 丁玉川, 董二伟, 白文斌, 王立革, 武爱莲. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应. 作物学报, 2015, 41:1269-1278.
Wang J S, Jiao X Y, Ding Y C, Dong E W, Bai W B, Wang L G, Wu A L. Response of nutrient uptake, yield and quality of grain sorghum to nutrition of nitrogen, phosphorus and potassium. Acta Agron Sin, 2015, 41:1269-1278 (in Chinese with English abstract).
[1] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[2] LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740.
[3] CHEN Yun, LIU Kun, ZHANG Hong-Lu, LI Si-Yu, ZHANG Ya-Jun, WEI Jia-Li, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars [J]. Acta Agronomica Sinica, 2021, 47(8): 1540-1550.
[4] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[5] WANG Yuan, WANG Jin-Song, DONG Er-Wei, WU Ai-Lian, JIAO Xiao-Yan. Effects of long-term nitrogen fertilization with different levels on sorghum grain yield, nitrogen use characteristics and soil nitrate distribution [J]. Acta Agronomica Sinica, 2021, 47(2): 342-350.
[6] ZHANG Jin-Dan, FAN Hong, DU Jin-Yong, YIN Wen, FAN Zhi-Long, HU Fa-Long, CHAI Qiang. Synchronously higher planting density can increase yield via optimizing interspecific interaction of intercropped wheat and maize [J]. Acta Agronomica Sinica, 2021, 47(12): 2481-2489.
[7] LEI Wei, WANG Rui-Li, WANG Liu-Yan, YUAN Fang, MENG Li-Jiao, XING Ming-Li, XU Lu, TANG Zhang-Lin, LI Jia-Na, CUI Cui, ZHOU Qing-Yuan. Genome-wide association study of seed density and its related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(11): 2099-2110.
[8] REN Yuan-Yuan, ZHANG Li, YU Yao-Chuang, ZHANG Yan-Jun, ZHANG Sui-Qi. Competitive effect of soybean density on yield formation in maize/soybean intercropping systems [J]. Acta Agronomica Sinica, 2021, 47(10): 1978-1987.
[9] LI Min, LUO De-Qiang, JIANG Xue-Hai, JIANG Ming-Jin, JI Guang-Mei, LI Li-Jiang, ZHOU Wei-Jia. Regulations of controlled irrigations and increased densities on yield formation of hybrid indica rice under nitrogen-reduction conditions [J]. Acta Agronomica Sinica, 2020, 46(9): 1430-1447.
[10] ZHANG Rui-Dong,XIAO Meng-Ying,XU Xiao-Xue,JIANG Bing,XING Yi-Fan,CHEN Xiao-Fei,LI Bang,AI Xue-Ying,ZHOU Yu-Fei,HUANG Rui-Dong. Responses of sorghum hybrids to germination temperatures and identification of low temperature resistance [J]. Acta Agronomica Sinica, 2020, 46(6): 889-901.
[11] Li-Ge BAO,Ping LU,Meng-Sha SHI,Yue XU,Min-Xuan LIU. Screening and identification of Chinese sorghum landraces for salt tolerance at germination and seedling stages [J]. Acta Agronomica Sinica, 2020, 46(5): 734-744.
[12] ZHAO Xiao-Hong,BAI Yi-Xiong,WANG Kai,YAO You-Hua,YAO Xiao-Hua,WU Kun-Lun. Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties [J]. Acta Agronomica Sinica, 2020, 46(4): 586-595.
[13] JIN Rong,LI Zhong,YANG Yun,ZHOU Fang,DU Lun-Jing,LI Xiao-Long,KONG Fan-Lei,YUAN Ji-Chao. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan [J]. Acta Agronomica Sinica, 2020, 46(4): 614-630.
[14] Fei-Na ZHENG,Jin-Peng CHU,Xiu ZHANG,Li-Wei FEI,Xing-Long DAI,Ming-Rong HE. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar [J]. Acta Agronomica Sinica, 2020, 46(3): 423-431.
[15] Shi-Hong WANG,Zhong-Xu YANG,Jia-Liang SHI,Hai-Tao LI,Xian-Liang SONG,Xue-Zhen SUN. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton [J]. Acta Agronomica Sinica, 2020, 46(3): 395-407.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!