Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2008, Vol. 34 ›› Issue (03): 397-402.doi: 10.3724/SP.J.1006.2008.00397


Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein

WANG Yan,QIU Li-Ming,XIE Wen-Juan,HUANG Wei,YE Feng,ZHANG Fu-Chun,MA Ji*   

  1. Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China
  • Received:2007-05-30 Revised:1900-01-01 Online:2008-03-12 Published:2008-03-12
  • Contact: MA Ji

Abstract: Most of crops are susceptible to cold and frost. When temperature decreases to -1℃, ice makes plant cells desiccated and cellular membrane shrinked. Expression of insect antifreeze protein genes with very high thermal hysterisis activity in plants is a possible way for increasing the cold tolerance of cold-sensitive plants. The MPAFP149 gene from Xinjiang desert insect Microdera punctipennis dzhunarica was constructed to the plant expression vector pCAMBIA1302 by sub-cloning, and then the recombined vector pCAMBIA1302-MPAFP149 was transformed into Agrobacterium tumefacines EHA105. Transgenic tobacco was obtained via leaf-disc method by Agrobacterium-mediated transformation. PCR and PCR-Southern analysis showed that the MPAFP149 gene was successfully integrated into the tobacco genome. The result of RT-PCR also verified that MPAFP149 gene was transcripted at mRNA level. The relative conductivity of T0 generation of transgenic tobacco at -1℃ for 48 h was 28.83%, significantly lower than that of wild tobacco which was 82.91%. Meanwhile, the phenotype of transgenic tobacco was superior to that of wild tobacco, suggesting that transgenic tobacco had better cold tolerance than wild tobacco. Recovering experiment at the room temperature indicated that transgenic tobacco was able to recover from cold stress and regenerate. The results proved that transgenic tobacco carrying MPAFP149 gene was more cold tolerant than wild tobacco, which provided a theoretical and applied foundation for relieving cold damage to cold-sensitive crops in spring.

Key words: Antifreeze proteins, Plant expression vector, Tobacco, Cold tolerance

[1] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[2] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[3] JIANG Shu-Kun,WANG Li-Zhi,YANG Xian-Li,LI Bo,MU Wei-Jie,DONG Shi-Chen,CHE Wei-Cai,LI Zhong-Jie,CHI Li-Yong,LI Ming-Xian,ZHANG Xi-Juan,JIANG Hui,LI Rui,ZHAO Qian,LI Wen-Hua. Detection of QTLs controlling cold tolerance at bud bursting stage by using a high-density SNP linkage map in japonica rice [J]. Acta Agronomica Sinica, 2020, 46(8): 1174-1184.
[4] LIU Qing-Li,JIANG Yu-Zhou,ZOU Yan,ZHANG Yun-Gui,ZHANG Heng,SHI Jun-Xiong,LI Zhi-Hong. The study of carbon budget on field-tobacco ecosystem [J]. Acta Agronomica Sinica, 2020, 46(8): 1258-1265.
[5] DONG Qing-Yuan,MA De-Qing,YANG Xue,LIU Yong,HUANG Chang-Jun,YUAN Cheng,FANG Dun-Huang,YU Hai-Qin,TONG Zhi-Jun,SHEN Jun-Ru,XU Yin-Lian,LUO Mei-Zhong,LI Yong-Ping,ZENG Jian-Min. Construction and characterization of a BAC library for flue-cured tobacco line with high resistance to blank shank [J]. Acta Agronomica Sinica, 2020, 46(6): 869-877.
[6] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[7] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[8] Xiao-Han MA,Jie ZHANG,Huan-Wei ZHANG,Biao CHEN,Xin-Yi WEN,Zi-Cheng XU. Exogenous MeJA improves cold tolerance of tobacco by inhibiting H2O2 accumulation [J]. Acta Agronomica Sinica, 2019, 45(3): 411-418.
[9] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[10] Cheng-Jiang LI,Da-Fei LI,Gui-Su ZHOU,Long XU,Tian-Yang XU,Zheng-Xiong ZHAO. Effects of different types of biochar on soil microorganism and rhizome diseases occurrence of flue-cured tobacco [J]. Acta Agronomica Sinica, 2019, 45(2): 289-296.
[11] Jian-Fei ZHOU,Yun-Jie WU,Gang XUE,An-Qian ZHANG,Pei TIAN,Yu-Fu PENG,Tie-Zhao YANG. Relationship between GS isoenzyme activity and nitrogen transportation in flue-cured tobacco leaves [J]. Acta Agronomica Sinica, 2019, 45(1): 111-117.
[12] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
[13] Jian-Wei WANG,Xiao-Lan HE,Wen-Xu LI,Xin-Hong CHEN. Molecular Cloning and Functional Analysis of 1-FFT in Wheat Relatives [J]. Acta Agronomica Sinica, 2018, 44(6): 814-823.
[14] FANG Yan,SUN Wan-Cang,WU Jun-Yan,LIU Zi-Gang,DONG Yun,MI Chao,MA Li,CHEN Qi,HE Hui-Li. Response of Membrane Fatty Acid Composition and ATPase Activity in Brassica rapa L. to Temperature in North China [J]. Acta Agron Sin, 2018, 44(01): 95-104.
[15] ZHONG Si-Rong,CHEN Ren-Xiao,TAO Yao,GONG Si-Yu,HE Kuan-Xin,ZHANG Qi-Ming,ZHANG Shi-Chuan,LIU Qi-Yuan. Screening of Tobacco Genotypes with Tolerance to Low-Nitrogen and Analysis of Their Nitrogen Efficiency [J]. Acta Agron Sin, 2017, 43(07): 993-1002.
Full text



No Suggested Reading articles found!