Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (2): 289-296.doi: 10.3724/SP.J.1006.2019.01105


Effects of different types of biochar on soil microorganism and rhizome diseases occurrence of flue-cured tobacco

Cheng-Jiang LI1,Da-Fei LI2,Gui-Su ZHOU1,Long XU2,Tian-Yang XU2,Zheng-Xiong ZHAO1,*()   

  1. 1 College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2 Wenshan Tobacco Company, Yunnan Tobacco Company, Wenshan 663000, Yunnan, China
  • Received:2018-05-30 Accepted:2018-10-08 Online:2019-02-12 Published:2018-11-01
  • Contact: Zheng-Xiong ZHAO E-mail:zhaozx0801@163.com
  • Supported by:
    This study was supported by the Science and Technology Project of Yunnan Tobacco Company(2016YN14)


A field experiment was carried out to study effects of rice husk biochar and wood biochar application respectively on rhizosphere microorganisms, rhizome diseases occurrence, and leaf yield of flue-cured tobacco. The application of biochar significantly affected the amount of rhizosphere microorganisms and the use of carbon sources of flue-cured tobacco. In turn, as well as the occurrences of granville wilt and tobacco black shank, also the yield and output value of tobacco leaf, which varied with the types of biochar. The treatment of wood biochar significantly increased the number of bacteria at vigorous growth stage and actinomycete at mature stage in flue-cured tobacco by 11.7% and 12.8% respectively, while the treatment of rice husk biochar significantly increased the number of fungus in both stages. Compared with the control, the application of biochar significantly reduced the number of Ralstonia solanacearm and Phytophthora parasitica var. nicotianac and the percentage to total microorganism. But rhizosphere microorganisms of flue-cured tobacco had the opposite effect on the carbon use ability in vigorous growing stage; before mature stage, phenolic acids and amines used by rhizosphere microorganisms were the lowest. The effect above, was more obvious in treatment of wood biochar than in treatment of rice husk biochar. Compared with control, the treatment of wood biochar decreased the incidence and disease index of granville wilt by 24.3% and 33.3%, and those of tobacco black shank decreased by 23.9% and 14.9%, while increased the output and output value by 4.7% and 21.1%. In rice husk biochar treatment, the incidence and disease index of granville wilt decreased by 18.1% and 23.9%, the incidence and disease index of tobacco black shank decreased by 15.9% and 6.0%, and the output and output value increased by 2.2% and 12.0%. In summary, the application of biochar can significantly impactive the situations of rhizosphere microorganisms of flue-cured tobacco and the utilization of different types of biochar, reducing the occurrence of granville wilt and black shank, and increasing the yield and output value of tobacco leaf. The effect of wood biochar is better.

Key words: biochar, flue-cured tobacco, root-zone microorganisms, granville wilt, tobacco black shank, yield, output value

Table 1

Properties of biochar in pot experiment"

pH 有机质
Organic matter
(g kg-1)
Total N
(g kg-1)
Total P
(g kg-1)
Total K
(g kg-1)
Electric conductivity
(mS cm-1)
稻壳炭 Rice husk biochar 9.46 17.33 0.28 28.32 39.08 4.79
木屑炭 Wood biochar 6.35 51.60 0.35 16.63 11.12 6.03

Table 2

Rhizosphere soil microbe amount"

Tested assay
Vigorous growing stage
Mature stage
Bacteria (×106 cfu g-1)
CK 5.28±0.23 b 3.17±2.15 a
RB 5.45±0.98 b 3.49±2.23 a
WB 5.90±0.49 a 3.52±2.17 a
Fungi (×104 cfu g-1)
CK 3.75±1.90 b 6.11±2.17 b
RB 5.00±2.43 a 10.38±2.19 a
WB 3.97±2.55 b 8.17±2.56 b
Actinomycets (×105 cfu g-1)
CK 15.58±1.90 a 17.55±1.00 b
RB 15.90±1.12 a 18.03±1.28 b
WB 15.98±0.97 a 19.80±1.59 a
Total microorganisms amount (×106 cfu g-1)
CK 6.85±0.21 b 5.02±0.15 b
RB 7.05±0.21 ab 5.33±0.15 a
WB 7.49±0.21 a 5.62±0.15 a

Fig. 1

Average well color development of rhizosphere microorganisms at different treatments CK: no biochar; RB: rice husk biochar; WB: wood biochar."

Table 3

Utilization of six categories of carbon sources by rhizosphere microorganisms in different treatments"

Measurement period
Amino acid
Vigorous growing stage
CK 0.41±0.07 b 0.32±0.04 b 0.38±0.06 b 0.10±0.01 c 0.11±0.01 c 0.38±0.10 b
RB 0.43±0.06 b 0.55±0.02 b 0.40±0.04 b 0.22±0.02 b 0.33±0.03 b 0.40±0.04 ab
WB 0.69±0.02 a 0.99±0.06 a 0.89±0.17 a 0.45±0.05 a 0.53±0.04 a 0.55±0.12 a
Mature stage
CK 0.41±0.03 b 0.57±0.13 b 0.32±0.10 b 0.26±0.10 a 0.55±0.03 b 0.70±0.04 a
RB 0.55±0.14 ab 0.77±0.05 a 0.67± 0.04 a 0.16±0.08 a 0.43±0.04 b 0.71±0.04 a
WB 0.62±0.10 a 0.84±0.02 a 0.79± 0.03 a 0.12±0.03 a 0.35±0.05 a 0.60±0.08 a

Fig. 2

Number and percentage of Ralstonia solanacearum E. F. Smith and Phytophthora parasitica var. nicotianac in rhizosphere microorganisms of different treatments Bars respective indicated by different letters are significant by different at P<0.05. Growing stage: vigorous growing stage; Phytophthora parasitica: Phytophthora parasitica var. nicotianac. CK: no biochar; RB: rice husk biochar; WB: wood biochar."

Table 4

Effects of biochar on main diseases of flue-cured tobacco"

旺长期 Vigorous growing stage 采烤前 Mature stage
Granvillel wilt
Tobacco black shank
Granville wilt
Tobacco black shank
Incidence rate (%)
CK 3.37 a 1.76 a 4.67 a 2.63 a
RB 2.76 b 1.48 b 3.53 b 2.24 b
WB 2.55 c 1.34 c 3.50 b 2.20 b
Disease index (%)
CK 2.34 a 1.34 a 4.36 a 2.34 a
RB 1.78 b 1.26 a 2.98 b 1.52 b
WB 1.56 c 1.14 c 2.73 b 1.49 b

Table 5

Effects of biochar on economic characters of flue-cured tobacco"

Yield (kg hm-2)
Output value (yuan hm-2)
Proportion of high grade tobacco leaf (%)
CK 2092.5 b 48576.0 b 51.1 a
RB 2139.0 a 54415.5 a 53.1 a
WB 2190.5 a 58821.0 a 54.3 a
[1] 周启星 . 健康土壤学: 土壤健康质量与农产品安全. 北京: 科学出版社, 2005. pp 149-162.
Zhou Q X. Science of Health Soil: Quality of Health. Soil and Safety of Agricultural Product. Beijing: Science Press, 2005. pp 149-162(in Chinese).
[2] 胡可, 李华兴, 卢维盛, 刘远金, 王利宾 . 生物有机肥对土壤微生物活性的影响. 中国生态农业学报, 2010,18:303-306.
doi: 10.3724/SP.J.1011.2010.00303
Hu K, Li H X, Lu W S, Liu Y J, Wang L B . Effect of microbial organic fertilizer application on soil microbial activity. Chin J Eco-Agric, 2010,18:303-306 (in Chinese with English abstract).
doi: 10.3724/SP.J.1011.2010.00303
[3] 刘晓燕, 金继运, 任天志, 何萍 . 中国有机肥料养分资源潜力和环境风险分析. 应用生态学报, 2010,21:2092-2098.
Liu X Y, Jin J Y, Ren T Z, He P . Potential of organic manures nutrient resources and their environmental risk in China. Chin J Appl Ecol, 2010,21:2092-2098 (in Chinese with English abstract).
[4] Ren L X, Su S M, Yang X M, Xu Y C, Huang Q W, Shen Q R . Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biol & Biochem, 2008,40:834-844.
doi: 10.1016/j.soilbio.2007.11.003
[5] 王璐, 赵保卫, 许仁智, 李烨炜 . 生物炭的基本特性及其应用领域的研究进展. 广东化工, 2016,43(7):93-94.
doi: 10.3969/j.issn.1007-1865.2016.07.043
Wang L, Zhao B W, Xu R Z, Li Y W . Research on the basic characteristic and application fields of biochar. Guangdong Chem Ind, 2016,43(7):93-94 (in Chinese with English abstract).
doi: 10.3969/j.issn.1007-1865.2016.07.043
[6] Thassitou P K, Arvanitoyannis I S . Bioremediation: a novel approach to food waste management. Trends in Food Sci & Technol, 2001,12(5/6):185-196.
doi: 10.1016/S0924-2244(01)00081-4
[7] 陈温福, 张伟明, 孟军 . 农用生物炭研究进展与前景. 中国农业科学, 2013,46:3324-3333.
doi: 10.3864/j.issn.0578-1752.2013.16.003
Chen W F, Zhang W M, Meng J . Advances and prospects in research of biochar utilization in agriculture. Sci Agric Sin, 2013,46:3324-3333 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2013.16.003
[8] 万惠霞, 冯小虎, 张文梅, 裴建锋, 焦永吉, 李铭, 蒋士君 . 生态炭肥防治烟草青枯病及其土壤微生态学机理分析. 江西农业学报, 2015, ( 6):92-97.
Wan H X, Feng X H, Zhang W M, Pei J F, Jiao Y J, Li M, Jiang S J . Control effect of ecobio-char on tobacco bacterial wilt and its soil microecological mechanism. Acta Agric Jiangxi, 2015, ( 6):92-97 (in Chinese with English abstract).
[9] 管恩娜 . 生物质炭对土壤理化性质、烤烟生长及烟草黑胫病的影响. 中国农业科学院硕士学位论文, 北京, 2016.
Guan N N . Effects of Biochar on Soil Physicochemical Properties Tobacco Growth and Tobacco Blackshank. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[10] 叶协锋, 于晓娜, 李志鹏, 周涵君, 张晓帆, 宋显峰, 付仲毅, 凌天孝, 郑好 . 两种生物炭对植烟土壤生物学特性的影响. 中国烟草学报, 2016,22(6):78-84.
doi: 10.16472/j.chinatobacco.2015.519
Ye X F, Yu X N, Li Z P, Zhou H J, Zhang X F, Song X F, Fu Z Y, Ling X T, Zheng H . Effect of two biochars on biological characteristics of tobacco growing soil. Acta Tab Sin, 2016,22(6):78-84 (in Chinese with English abstract).
doi: 10.16472/j.chinatobacco.2015.519
[11] 王成己, 陈庆荣, 陈曦, 唐莉娜, 刘岑薇, 宋铁英, 黄毅斌 . 烟秆生物质炭对烟草根际土壤养分及细菌群落的影响. 中国烟草科学, 2017,38(1):42-47.
doi: 10.13496/j.issn.1007-5119.2017.01.007
Wang C J, Chen Q R, Chen X, Tang L N, Liu C W, Song T Y, Huang Y B . Effects of tobacco stalk derived biochar on root zone soil nutrients and bacterial communities in the tobacco field. China Tob Sci, 2017,38(1):42-47 (in Chinese with English abstract).
doi: 10.13496/j.issn.1007-5119.2017.01.007
[12] 张继旭, 张继光, 张忠锋, 王瑞, 高林, 戴衍晨, 孟贵星, 王树键, 马强, 许晴, 申国明 . 秸秆生物炭对烤烟生长发育、土壤有机碳及酶活性的影响. 中国烟草科学, 2016,37(5):16-21.
doi: 10.13496/j.issn.1007-5119.2016.05.004
Zhang J X, Zhang J G, Zhang Z F, Wang R, Gao L, Dai Y C, Meng G X, Wang S J, Ma Q, Xu Q, Shen G M . Effects of straw biochar on tobacco growth, soil organic carbon and soil enzyme activities. China Tob Sci, 2016,37(5):16-21 (in Chinese with English abstract)
doi: 10.13496/j.issn.1007-5119.2016.05.004
[13] 王金星, 李高坡, 符云鹏, 王念磊, 程玉渊, 谭阳 . 施用生物炭、黄腐酸钾对云烟87烤烟产质量的影响. 山东农业科学, 2017,49(6):83-87.
doi: 10.14083/j.issn.1001-4942.2017.06.018
Wang J X, Li G P, Fu Y P, Wang N L, Cheng Y Y, Tan Y . Effects of applying biochar and potassium flavate on the yield and quality of Yunyan 87 flue-cured tobacco. Shandong Agric Sci, 2017,49(6):83-87 (in Chinese with English abstract).
doi: 10.14083/j.issn.1001-4942.2017.06.018
[14] 刘卉, 周清明, 刘勇军, 黎娟, 张黎明, 张明发 . 生物炭对烤烟生长及烟叶质量的影响. 中国农业科技导报, 2017,19(10):73-81.
Liu H, Zhou Q M, Liu Y J, Li J, Zhang L M, Zhang M F . Effects of biochar on the growth of flue cured tobacco and quality of tobacco. J Agric Sci Tech, 2017,19(10):73-81 (in Chinese with English abstract).
[15] 李静静 . 生物炭与氮肥配施对植烟土壤特性、烤烟生长及烟叶品质的影响. 河南农业大学硕士学位论文,河南郑州, 2016.
Li J J . Effects of Combined Application of Biochar and Nitrogen Fertilizers on Soil Properties Growth and Quality of Flue-cured Tobacco. MS Thesis of Henan Agricultural University, Zhengzhou, Henan,China, 2016 (in Chinese with English abstract).
[16] 饶霜 . 生物炭对番茄青枯病抗性、土壤微生物活性及有机酸含量的影响. 华南农业大学硕士学位论文,广州广东, 2016.
Rao X . Effect of Biochar on Bacterial Wilt Resistance of Tomato, Soil Microbial Activity and Organic Acid. MS Thesis of South China Agricultural University, Guangzhou, Guangdong,China, 2016 (in Chinese with English abstract).
[17] 王光飞, 马艳, 郭德杰, 王秋君 . 秸秆生物炭对辣椒疫病的防控效果及机理研究. 土壤, 2015,47:1107-1114.
Wang G F, Ma Y, Guo D J, Wang Q J . Effect and mechanism of straw biochar on disease control of Phytophthora blight of chili pepper. Soils, 2015,47:1107-1114 (in Chinese with English abstract).
[18] 马艳, 王光飞 . 生物炭防控植物土传病害研究进展. 中国土壤与肥料, 2014, ( 6):14-20.
doi: 10.11838/sfsc.20140603
Ma Y, Wang G F . Review of biochar utilization on soil-borne disease control. Soil & Fert Sci, 2014, ( 6):14-20 (in Chinese with English abstract).
doi: 10.11838/sfsc.20140603
[19] Jaiswal A K, Elad Y, Graber E R, Frenkel O . Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature feedstock and concentration. Soil Biol & Biochem, 2014,69:110-118.
doi: 10.1016/j.soilbio.2013.10.051
[20] Guijarro M B, Mattner S W, Wiechel T J. Suppession of damping-off of radish caused by Rhizoctonia solani AG2.1 with soil carbon amendments. In: the 6th Australasian Soilborne Diseases Symposium. Queensland, Australia, 2010. p 49.
[21] 林先贵 . 土壤微生物研究原理与方法. 北京: 高等教育出版社, 2010. pp 1-13.
Lin X G. Principles and Methods of Soil Microbiology Research. Beijing: Higher Education Press, 2010. pp 1-13(in Chinese).
[22] Borrero C, Ordova’s J, Trillas M I . Tomato fusarium wilt suppressive: the relationship between the organic plant growth media and their microbial communities as characterised by Biolog®. Soil Biol & Biochem, 2006,38:1631-1637.
doi: 10.1016/j.soilbio.2005.11.017
[23] Xiang Z, Zhang L, Zhang Q . Soil nutrients and microbial functional diversity of different stand types in Qinghai province. Sci Silvae Sin, 2014,50(4):22-31.
doi: 10.11707/j.1001-7488.20140404
[24] 赵兰凤, 张新明, 程根, 张丽娟, 刘小峰, 李华兴 . 生物炭对菜园土壤微生物功能多样性的影响. 生态学报, 2017,37:4754-4762.
doi: 10.5846/stxb201604220758
Zhao L F, Zhang X M, Cheng G, Zhang L J, Liu X F, Li H X . Effects of biochar on microbial functional diversity of vegetable garden soil. Acta Ecol Sin, 2017,37:4754-4762 (in Chinese with English abstract).
doi: 10.5846/stxb201604220758
[25] 万川, 蒋珍茂, 赵秀兰, 魏世强, 李玲, 马冠华, 徐畅, 陈益银 . 深翻和施用土壤改良剂对烟草青枯病发生的影响. 烟草科技, 2015,49(11):14-20.
doi: 10.16135/j.issn1002-0861.20150203
Wan C, Jiang Z M, Zhao X L, Wei S Q, Li L, Ma G H, Xu C, Cheng Y Y . Effects of deep ploughing and soil amendment application on incidence of tobacco bacterial wilt. Tobacco Sci Tech, 2015,49(11):14-20 (in Chinese with English abstract).
doi: 10.16135/j.issn1002-0861.20150203
[26] 姚玲丹, 程广焕, 王丽晓, 陈环宇, 楼莉萍 . 施用生物炭对土壤微生物的影响. 环境化学, 2015,34:697-704.
doi: 10.7524/j.issn.0254-6108.2015.04.2014072802
Yao L D, Cheng G H, Wang L X, Chen H Y, Lou L P . Effects of biochar application to micro organisms in soil. Environ Chem, 2015,34:697-704 (in Chinese with English abstract).
doi: 10.7524/j.issn.0254-6108.2015.04.2014072802
[27] 杨宇虹, 陈冬梅, 晋艳, 王海斌, 段玉琪, 郭徐魁, 何海斌, 林文雄 . 不同肥料种类对连作烟草根区土壤微生物功能多样性的影响. 作物学报, 2011,37:105-111.
doi: 10.3724/SP.J.1006.2011.00105
Yang Y H, Chen D M, Jin Y, Wang H B, Duan Y Q, Guo X K, He H B, Lin W X . Effects of different fertilizers on functional diversities of microbial flora in rhizospheric soil of monoculture tobacco. Acta Agron Sin, 2011,37:105-111 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.00105
[28] 张云伟, 徐智, 汤利, 李艳红, 宋建群, 徐健钦 . 不同有机肥对烤烟根际土壤微生物的影响. 应用生态学报, 2013,24:2551-2556.
Zhang Y W, Xu Z, Tang L, Li Y H, Song J Q, Xu J Q . Effects of different organic fertilizers on the microbes in rhizospheric soil of flue-cured tobacco. Chin J App Ecol, 2013,24:2551-2556 (in Chinese with English abstract).
[29] 袁英英 . 生物有机肥对番茄青枯病及土壤微生物的影响. 华南农业大学硕士学位论文, 广州广东, 2011.
Yuan Y Y . Effect of Biological Organic Fertilizer on Tomato Bacterial Wilt and Soil Microorganism. MS Thesis of South China Agricultural University, Guangzhou, Guangdong,China, 2011 (in Chinese with English abstract).
[30] Bastida F, Hernandez T, Albaladejo J . Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil Biol & Biochem, 2013,22:12-21.
doi: 10.1016/j.soilbio.2013.04.022
[31] 张淑香, 高子勤, 刘海玲 . 连作障碍与根际微生态研究: Ⅲ. 土壤酚酸物质及其生物学效应. 应用生态学报, 2000,11:741-744.
doi: 10.1088/0256-307X/17/9/008
Zhang S X, Gao Z Q, Liu H L . Continuous cropping obstacle and rhizospheric microecology: III. Soil phenolic acids and their biological effect. Chin J App Ecol, 2000,11:741-744 (in Chinese with English abstract).
doi: 10.1088/0256-307X/17/9/008
[32] Irikiin Y, Nishiyama M, Otsuka S . Rhizobacterial community-level, sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Appl Soil Ecol, 2006,34:27-32.
doi: 10.1016/j.apsoil.2005.12.003
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Full text



No Suggested Reading articles found!