Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (2): 276-288.doi: 10.3724/SP.J.1006.2019.84050

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Leaf photosynthesis and matter production dynamic characteristics of peanut varieties with high yield and high oil content

Si-Long CHEN,Zeng-Shu CHENG,Ya-Hui SONG,Jin WANG,Yi-Jie LIU,Peng-Juan ZHANG,Yu-Rong LI()   

  1. Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences / Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, Hebei, China
  • Received:2018-04-03 Accepted:2018-10-08 Online:2019-02-12 Published:2019-01-01
  • Contact: Yu-Rong LI E-mail:hbhuasheng@163.com
  • Supported by:
    his study was supported the National Natural Science Foundation of China(31771843);his study was supported the National Natural Science Foundation of China(31201239);the Hebei Province Talent Training Project(2017-192);the China Agriculture Research System(CARS-13);the Hebei Modern Agricultural Science and Technology Innovation and Research Project(494-0402-YBN-XGHI);and the Hebei Province Science and Technology R&D Plan(16226301D)

Abstract:

The pod yield and seed oil content are important factors affecting oil yield in peanut varieties. Obviously, it is essential for high oil yield to explore the dry matter accumulate, yield, seed oil content and leaf photosynthesis characteristics. In order to clarify the formation mechanisms for high yield and high oil content in peanut varieties and to provide a theoretical base for peanut high quality and high yield cultivation techniques, a field experiment was conducted to evaluate three widely cultivated peanut varieties (Jihua 2 and Luhua 12, the high-yield and normal-oil; Jihua 4, the high-yield and high-oil). The dry matter accumulation, pod yield, seed oil content accumulation, and leaf photosynthetic characteristics were determined, showing that the pod yield and seed oil content of Jihua 4 were the highest among the three varieties used. The average rate of dry matter accumulation and the maximum rate of dry matter accumulation showed a trend of Jihua 4 > Jihua 2 > Luhua 12. The maximum weight of dry matter of Jihua 4 was moderate. The maximum seed oil accumulation rate and average seed oil accumulation rate showed a trend of Jihua 4 > Luhua 12 > Jihua 2, the active seed oil accumulation stage of Jihua 2 was the longest, while that of Jihua 4 was the shortest among the three varieties. The leaf photosynthesis potential of Jihua 4 in the entire growth period was above 20% higher than that of Jihua 2 and Luhua 12, respectively. The photosynthesis potential in pod-setting stage was very important to peanut yield, accounting for 80% over whole growing season. The leaf photosynthetic rate of Jihua 4 at pod-setting stage was more than 24% higher than that of Jihua 2 and Luhua 12. There was a significant difference in photosynthesis parameters among the three varieties. The light saturation point and CO2 saturation point of Jihua 4 were the highest. The pod yield was positively significantly correlated with average plant dry matter accumulation rate, leaf photosynthetic rate and total leaf area duration, respectively. The seed oil content was positively significantly correlated with average plant dry matter accumulation rate, average seed oil accumulation rate, light saturation point, CO2 saturation point. Furthermore, there existed a weak but significant correlation between pod yield and seed oil content. In conclusion, Jihua 4 has higher economic coefficient, photosynthesis potential after pod-setting stage, leaf photosynthetic rate, light saturation point and CO2 saturation point, average accumulation rate of dry matter and seed oil, which is the main reason for higher productivity potential in yield and oil in Jihua 4.

Key words: peanut, dry matter accumulation, yield, oil accumulation, photosynthetic characteristics

Fig. 1

Dry matter accumulation dynamics and accumulation rate in different peanut varieties Data are means ± standard error (SE, n = 3). Vertical bars indicate the ±SE. The dotted lines represent the simulation results using Logistic regression in 2014, and the solid lines represent the simulation results in 2015."

Table 1

Equation and parameters of dry matter accumulation dynamics of different peanut varieties"

品种
Variety
模拟方程
Simulation equation
最大积累速率
MAR (g d-1)
MAR出现时间
Day of MAR (d)
平均积累速率
ARMAR (g d-1)
活跃积累期
AAS (d)
2014
冀花2号Jihua 2 Y=61.33/(1+40.72e-0.06t) 0.96 59.5 0.64 42.31
冀花4号Jihua 4 Y=57.77/(1+38.75e-0.07t) 0.97 54.6 0.65 39.35
鲁花12号Luhua 12 Y=46.24/(1+36.36e-0.06t) 0.74 56.0 0.50 41.04
2015
冀花2号Jihua 2 Y=62.88/(1+97.39e-0.07t) 1.18 61.2 0.78 35.21
冀花4号Jihua 4 Y=56.20/(1+644.30e-0.11t) 1.58 57.6 1.05 23.45
鲁花12号Luhua 12 Y=48.67/(1+92.02e-0.08t) 0.97 56.9 0.64 33.14

Fig. 2

Dynamics of pod dry weight per plant and harvest index in different varieties Data are means ± standard error (SE, n = 3). Vertical bars indicate the ±SE. The dotted lines represent the results in 2014, and the solid lines represent the results in 2015."

Table 2

Peanut pod yield and yield components of the tested peanut varieties"

品种
Variety
单株果数
Pods per plant
饱果率
Rate of full-pod
(%)
出仁率
Shelling
percentage (%)
千克果数
Pods per kg
千克仁数
Seeds per kg
荚果产量
Pod yield (kg hm-2)
2014
冀花2号Jihua 2 8±0.46 c 59.7±3.55 c 73.08±0.16 b 684±19.73 a 1444±10.07 c 4040.75±84.79 b
冀花4号Jihua 4 11±0.67 a 73.2±4.36 a 77.85±0.23 a 737±19.74 a 1569±15.72 b 4350.35±83.03 a
鲁花12号Luhua 12 9±0.54 b 67.8±4.03 b 76.51±0.77 a 749±26.59 a 1699±34.67 a 3002.00±35.27 c
2015
冀花2号Jihua 2 12±1.49 b 74.2±0.59 c 72.10±0.10 b 659±4.00 b 1504±41.67 b 5050.10±366.01 a
冀花4号Jihua 4 14±0.80 a 82.1±3.06 a 73.50±1.44 a 779±1.73 a 1335±24.43 c 5162.36±141.52 a
鲁花12号Luhua 12 11±0.81 b 79.4±1.50 b 72.87±0.37 b 778±13.33 a 1891±83.00 a 4108.11±321.81 b
变异来源 Source of variation?
品种Variety (V) 0.034 * 0.001 ** 0.002 ** 0.000 ** 0.000 ** 0.000 **
年份Year (Y) 0.031 * 0.000 ** 0.000 ** 0.287 NS 0.000 ** 0.000 **
互作V×Y 0.826 NS 0.085 NS 0.073 NS 0.148 NS 0.000 ** 0.785 NS

Fig. 3

Seed oil content accumulation dynamics and oil accumulation rate in different peanut varieties Data are means ± standard error (SE, n = 3). Vertical bars indicate the ±SE. The dotted lines represent the results in 2014, and the solid lines represent the results in 2015."

Table 3

Parameters of Richards model for seed oil content accumulation in different peanut varieties"

参数
Parameter
冀花2号Jihua 2 冀花4号Jihua 4 鲁花12号Luhua 12
2014 2015 2014 2015 2014 2015
R2 0.9835 0.9971 0.9876 0.9984 0.9870 0.9989
A 52.79 51.91 55.39 54.93 50.95 51.65
B 0.79 4.05E+8 1.01 3.11E+8 0.22 7.74E+8
K 0.0535 0.2602 0.0586 0.2668 0.0598 0.2541
N 0.0551 7.2635 0.0513 5.6420 0.0168 6.6660
Gmax 1.012 1.222 1.164 1.577 1.112 1.261
$\bar{G}$ 0.688 0.729 0.791 0.959 0.756 0.757
Tmax.G 50.8 68.5 49.7 66.8 43.1 64.0
T 76.7 71.2 67.4 57.3 70.0 68.2
Wmax 19.94 38.82 20.89 39.27 18.90 38.05

Fig. 4

Dynamics of leaf area index (LAI) and photosynthetic potential (leaf area duration, LAD) of different peanut varieties at different periods The data are means ± standard error (SE, n = 3). Error bars indicate ±SE. Bars superscripted by different letters are significantly different at the 0.05 probability level. The dotted lines represent the results in 2014, and the solid lines represent the results in 2015."

Fig. 5

Chlorophyll content in different peanut varieties The data are means ± standard error (SE; n = 3). Error bars indicate ±SE. Bars superscripted by different letters are significantly different at the 0.05 probability level."

Table 4

Photosynthetic characteristics of different peanut varieties at pod-setting stage"

品种
Variety
光合速率
Pn
(μmol CO2 m-2 s-1)
气孔导度
Gs
(mol H2O m-2 s-1)
胞间CO2浓度
Ci
(μmol CO2 m-2 s-1)
蒸腾速率
Tr
(mmol H2O m-2 s-1)
叶片水分利用效率
LWUE
(μmol CO2 / mmol H2O)
2014
冀花2号Jihua 2 16.47±0.49 b 0.42±0.02 b 256.35±6.88 a 7.12±0.24 a 2.32±0.05 a
冀花4号Jihua 4 21.01±0.96 a 0.57±0.03 a 252.64±9.52 a 8.48±0.78 a 2.55±0.22 a
鲁花12号Luhua 12 13.69±1.12 b 0.39±0.05 b 260.56±5.36 a 7.91±0.48 a 1.72±0.05 b
2015
冀花2号Jihua 2 15.55±0.89 b 0.38±1.23 c 243.03±20.69 b 6.76±1.55 b 2.36±0.03 a
冀花4号Jihua 4 19.30±1.25 a 0.54±1.07 a 245.04±11.10 b 8.14±0.85 a 2.42±0.05 a
鲁花12号Luhua 12 15.52±2.02 b 0.47±0.65 b 253.63±18.52 a 8.08±0.64 a 1.90±0.01 b

Fig. 6

Response of photosynthetic rate and water use efficiency (WUE) in peanut leaves to different light intensities in different peanut varieties The dotted lines represent the results in 2014, and the solid lines represent the results in 2015. Error bars indicate ±SE."

Table 5

Parameters of light response in different peanut varieties"

品种
Variety
暗呼吸速率
DkRR
(μmol m-2 s-1)
初始量子效率
IQE
最大光合速率
MPRl
(μmol m-2 s-1)
光补偿点
LCP
(μmol m-2 s-1)
光饱和点
LSP
(μmol m-2 s-1)
2014
冀花2号Jihua 2 2.04±0.01 a 0.0297±0.001 a 17.57±0.98 b 72.45±1.95 a 2222.40±19.52 b
冀花4号Jihua 4 0.60±0.01 b 0.0519±0.001 a 25.19±1.10 a 11.86±1.03 c 2922.54±21.11 a
鲁花12号Luhua 12 1.10±0.01 b 0.0207±0.001 a 11.81±0.75 b 55.65±2.36 b 2358.51±13.64 b
2015
冀花2号Jihua 2 2.48±0.01 b 0.0642±0.001 b 16.08±0.19 b 42.43±1.65 b 1559.33±19.71 c
冀花4号Jihua 4 2.36±0.02 b 0.0755±0.001 a 19.28±0.21 a 34.07±0.91 c 2275.17±10.12 a
鲁花12号Luhua 12 3.09±0.01 a 0.0654±0.001 b 14.92±0.26 b 58.11±1.18 a 1789.32±16.43 b

Fig. 7

Response of photosynthetic rate and water use efficiency (WUE) in peanut leaves to CO2 concentration changes in different peanut varieties The dotted lines represent the results in 2014, and the solid lines represent the results in 2015. Error bars indicate ±SE."

Table 6

Photosynthetic parameters of CO2 response in different peanut varieties"

品种
Variety
初始羧化效率
ICE
(μmol m-2 s-1)
CO2饱和点
CSP
(μmol mol-1)
最大净光合速率
MPRc
(μmol m-2 s-1)
CO2补偿点
CCP
(μmol mol-1)
光呼吸速率
DyRR
(μmol m-2 s-1)
2014
冀花2号Jihua 2 0.19±0.02 a 728.40±10.21 a 28.86±2.34 b 58.86±3.01 a 9.63±0.18 a
冀花4号Jihua 4 0.16±0.01 a 781.95±5.30 a 35.89±1.65 a 56.56±2.32 b 8.26±0.05 a
鲁花12号Luhua 12 0.12±0.01 a 674.33±13.84 b 24.56±0.97 b 56.87±1.54 b 6.29±0.12 b
2015
冀花2号Jihua 2 0.29±0.01 a 632.65±9.05 b 27.39±1.85 b 44.26±2.58 b 10.47±0.84 a
冀花4号Jihua 4 0.25±0.01 b 647.91±10.21 a 34.10±1.08 a 47.21±1.66 b 10.42±0.95 a
鲁花12号Luhua 12 0.23±0.01 b 621.57±11.02 c 24.40±0.94 b 55.15±1.23 a 10.42±0.87 a

Table 7

Correlation coefficients of dry matter accumulation, yield and seed oi accumulation with leaf photosynthetic characteristic parameters"

性状指标
Index
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x2 0.239
x3 0.222 0.635**
x4 0.552** 0.879** 0.753**
x5 0.774** 0.506 0.706** 0.740**
x6 -0.474 0.365 -0.169 0.101 -0.380
x7 -0.127 0.329 0.746** 0.476* 0.313 0.031
x8 0.503* 0.396 0.635** 0.754** 0.588** -0.090 0.652**
x9 0.850** 0.420 0.562** 0.750** 0.872** -0.450 0.198 0.775**
x10 -0.190 0.511* 0.529** 0.555** 0.042 0.542 0.233 0.621** 0.068
x11 0.867** 0.256 0.029 0.540** 0.414 -0.156 -0.201 0.574** 0.790** -0.057
[1] Sharma M, Gupta S K, Mondal A K. Production and trade of major world oil crops. In: Gupta S eds. Technological Innovations in Major World Oil Crops, Volume 1: Breeding. New York: Springer New York, 2012. pp 1-15.
[2] 禹山林 . 中国花生产业现状与发展思路探讨. 见: 中国作物学会油料作物专业委员会汇编. 中国作物学会油料作物专业委员会第七次会员代表大会暨学术年会论文集. 2013. pp 24-28.
Yu S L. Study on current situation and development of peanut industry in China. In: China Crop Society Oil Crop Specialized Committee, eds. Seventh Member Congress and Academic Annual Meeting of China Crop Society Oil Crop Specialized Committee. 2013. pp 24-28(in Chinese).
[3] 陈四龙, 李玉荣, 程增书, 廖伯寿, 雷永, 刘吉生 . 花生含油量杂种优势表现及主基因+多基因遗传效应分析. 中国农业科学, 2009,42:3048-3057.
Chen S L, Li Y R, Cheng Z S, Liao B S, Lei Y, Liu J S . Heterosis and genetic analysis of oil content in peanut using mixed model of major gene and polygene. Sci Agric Sin, 2009,42:3048-3057 (in Chinese with English abstract).
[4] 陈四龙, 李玉荣, 徐桂真, 程增书 . 不同高油花生品种(系)油分积累特性的模拟研究. 作物学报, 2008,34:142-149.
doi: 10.3724/SP.J.1006.2008.00142
Chen S L, Li Y R, Xu G Z, Cheng Z S . Simulation on oil accumulation characteristics in different high oil peanut varieties. Acta Agron Sin, 2008,34:142-149 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.00142
[5] 张佳蕾, 顾学花, 杨传婷, 郭峰, 李向东, 万书波 . 不同品质类型花生籽仁脂肪酸积累规律研究. 花生学报, 2016,45(2):33-37.
doi: 10.14001/j.issn.1002-4093.2016.02.006
Zhang J L, Gu X H, Yang C T, Guo F, Li X D, Wan S B . Regularity of fatty acids accumulation in different quality types of peanut seed kernel. J Peanut Sci, 2016,45(2):33-37 (in Chinese with English abstract).
doi: 10.14001/j.issn.1002-4093.2016.02.006
[6] 凌启鸿 . 作物群体质量. 上海: 上海科学技术出版社, 2000. pp 458-516.
Ling Q H . Crop Population Quality. Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 458-516(in Chinese).
[7] Sarker Z I, Barma N, Zahid R A, Rahman M M, Samad M A, Pandit D B . Harvest index and biomass as the selection criteria for grain yield in spring wheat. J Sci Technol, 2003,1:37-41.
[8] Ghosh M K, Chowdhuri S R, Nath S, Ghosh P K, Debnath S, Roy I, Ghosh P L . Harvest index and biological yield as selection criteria for mulberry (Moru5 spp.). Indian J Genet Plant Breed, 2007,67:196-197.
[9] Borghi B, Accerbi M, Corbellini M . Response to early generation selection for grain yield and harvest index in bread wheat (T. aestivum L.). Plant Breed, 2010,117:13-18.
doi: 10.1111/j.1439-0523.1998.tb01440.x
[10] 王永宏, 王克如, 赵如浪, 王楷, 赵健, 王喜梅, 李健, 梁明晰, 李少昆 . 高产春玉米源库特征及其关系. 中国农业科学, 2013,46:257-269.
doi: 10.3864/j.issn.0578-1752.2013.02.005
Wang Y H, Wang K R, Zhang R L, Wang K, Zhao J, Wang X M, Li J, Liang M X, Li S K . Relationship between the source and sink of spring maize with high yield. Sci Agric Sin, 2013,46:257-269 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2013.02.005
[11] Li J, Xie R Z, Wang K R, Ming B, Guo Y Q, Zhang G Q, Li S K . Variations in maize dry matter, harvest index, and grain yield with plant density. Agron J, 2015,107:829.
doi: 10.2134/agronj14.0522
[12] 吴桂成, 张洪程, 戴其根, 霍中洋, 许柯, 高辉, 魏海燕, 沙安勤, 徐宗进, 钱宗华, 孙菊英 . 南方粳型超级稻物质生产积累及超高产特征的研究. 作物学报, 2010,36:1921-1930.
doi: 10.3724/SP.J.1006.2010.01921
Wu G C, Zhang H C, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Sha A Q, Xu Z J, Qian Z H, Sun J Y . Characteristics of dry matter production and accumulation and super-high yield of japonica super rice in South China. Acta Agron Sin, 2010,36:1921-1930 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2010.01921
[13] Liu T, Wang Z, Cai T . Canopy apparent photosynthetic characteristics and yield of two spike-type wheat cultivars in response to row spacing under high plant density. PLoS One, 2016,11:e0148582.
doi: 10.1371/journal.pone.0148582 pmid: 4741391
[14] 王才斌, 郑亚萍, 成波, 沙继锋, 姜振祥 . 花生超高产群体特征与光能利用研究. 华北农学报, 2004,19(2):40-43.
doi: 10.3321/j.issn:1000-7091.2004.02.011
Wang C B, Zheng Y P, Cheng B, Sha J F, Jiang Z X . The canopy characters and efficiency for solar energy utilization of supper high-yielding peanut. Acta Agric Boreali-Sin, 2004,19(2):40-43 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-7091.2004.02.011
[15] 张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波 . 单粒精播对超高产花生群体结构和产量的影响. 中国农业科学, 2015,48:3757-3766.
doi: 10.3864/j.issn.0578-1752.2015.18.019
Zhang J L, Guo F, Yang D Q, Meng J J, Yang S, Wang X Y, Tao S X, Li X G, Wan S B . Effects of single-seed precision sowing on population structure and yield of peanuts with super-high yield cultivation. Sci Agric Sin, 2015,48:3757-3766 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.18.019
[16] Marschner H. Mineral Nutrition of Higher Plants, 2nd edn. London: Academic Press, 1995. pp 131-183.
[17] Li D Y, Zhang Z A, Zheng D J, Jiang L Y, Wang Y L . Comparison of net photosynthetic rate in leaves of soybean with different yield levels. J Northeast Agric Univ, 2012,19(3):14-19.
doi: 10.3969/j.issn.1006-8104.2012.03.002
[18] Li Y, Hu T, Duan X, Zeng F . Effects of decomposing leaf litter of Eucalyptus grandis on the growth and photosynthetic characteristics of Lolium perenne. J Agric Sci, 2013,5:123-131.
[19] Takai T, Adachi S, Taguchi-Shiobara F, Sanoh-Arai Y, Iwasawa N, Yoshinaga S, Hirose S, Taniguchi Y, Yamanouchi U, Wu J . A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci Rep, 2013,3:2149.
doi: 10.1038/srep02149 pmid: 23985993
[20] Thomasl S, Davidm B . Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Sci, 2010,178:341-349.
doi: 10.1016/j.plantsci.2010.01.010
[21] Lobo A K, De O M M, Lima Neto M C, Machado E C, Ribeiro R V, Silveira J A . Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity. J Plant Physiol, 2015,179:113-121.
doi: 10.1016/j.jplph.2015.03.007 pmid: 25863283
[22] Shiratake K . Genetics of sucrose transporter in plants. G3 (Bethesda), 2007,1:73-80.
[23] Zhang Y, Mulpuri S, Liu A . High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop. Photosynth Res, 2016,128:125-140.
doi: 10.1007/s11120-015-0206-x pmid: 26589321
[24] 张洋, 刘爱忠 . 蓖麻种子油脂累积与可溶性糖变化的关系. 生物技术通报, 2016,32(6):120-129.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.06.017
Zhang Y, Liu A Z . The correlation between soluble carbohydrate metabolism and lipid accumulation in castor seeds. Biotech Bull, 2016,32(6):120-129 (in Chinese with English abstract).
doi: 10.13560/j.cnki.biotech.bull.1985.2016.06.017
[25] 张凌云, 王小艺, 曹一博 . 油茶果实糖含量及代谢相关酶活性与油脂积累关系分析. 北京林业大学学报, 2013,35(4):55-60.
Zhang L Y, Wang X Y, Cao Y B . Soluble sugar content and key enzyme activity and the relationship between sugar metabolism and lipid accumulation in developing fruit ofCamellia oleifera. J Beijing For Univ, 2013,35(4):55-60 (in Chinese with English abstract).
[26] 姜慧芳, 任小平, 王圣玉, 黄家权, 雷永, 廖伯寿 . 野生花生高油基因资源的发掘与鉴定. 中国油料作物学报, 2010,32:30-34.
Jiang H F, Ren X P, Wang S Y, Huang J Q, Lei Y, Liao B S . Identification and evaluation of high oil content in wild Arachis species. Chin J Oil Crop Sci, 2010,32:30-34 (in Chinese with English abstract).
[27] 姜慧芳, 任小平 . 我国栽培种花生资源农艺和品质性状的遗传多样性. 中国油料作物学报, 2006,28:421-426.
doi: 10.3321/j.issn:1007-9084.2006.04.009
Jiang H F, Ren X P . Genetic diversity of peanut resource on morphological characters and seed chemical components in China. Chin J Oil Crop Sci, 2006,28:421-426 (in Chinese with English abstract).
doi: 10.3321/j.issn:1007-9084.2006.04.009
[28] Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote K J, Hoogenboom G, Patanothai A . Classification of root distribution patterns and their contributions to yield in peanut genotypes under mid-season drought stress. Field Crops Res, 2012,127:181-190.
doi: 10.1016/j.fcr.2011.11.023
[29] Boote K J . Growth stages of peanut (Arachis hypogaea L.). Peanut Sci, 1982,9:35-40.
[30] Mason T G, Maskell E J . Studies on the transport of carbohydrates in the cotton plant. I. A study of diurnal variation in the carbohydrates of leaf, bark, and wood, and of the effects of ringing. Ann Bot-London, 1928,42:189-253.
[31] Ottaviano E, Camussi A . Phenotypic and genetic relationships between yield components in maize. Euphytica, 1981,30:601-609.
doi: 10.1007/BF00038787
[32] 吴桂成, 张洪程, 钱银飞, 李德剑, 周有炎, 徐军, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 徐宗进, 钱宗华, 孙菊英, 赵品恒 . 粳型超级稻产量构成因素协同规律及超高产特征的研究. 中国农业科学, 2010,43:266-276.
doi: 10.3864/j.issn.0578-1752.2010.02.006
Wu G C, Zhang H C, Qian Y F, Li D J, Zhou Y Y, Xu J, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Xu Z J, Qian Z H, Sun J Y, Zhao P H . Rule of grain yield components from high yield to super high yield and the characters of super-high yielding japonica super rice. Sci Agric Sin, 2010,43:266-276 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2010.02.006
[33] Yan D, Zhu Y, Wang S, Cao W . A quantitative knowledge-based model for designing suitable growth dynamics in rice. Plant Prod Sci, 2006,9:93-105.
doi: 10.1626/pps.9.93
[34] Severini A D, Borrás L, Westgate M E, Cirilo A G . Kernel number and kernel weight determination in dent and popcorn maize. Field Crops Res, 2011,120:360-369.
doi: 10.1016/j.fcr.2010.11.013
[35] 纪洪亭, 冯跃华, 何腾兵, 李云, 武彪, 王小艳 . 两个超级杂交水稻品种物质生产的特性. 作物学报, 2013,29:2238-2246.
doi: 10.3724/SP.J.1006.2013.02238
Ji H T, Feng Y H, He T B, Li Y, Wu B, Wang X Y . Dynamic characteristics of matter population in two super hybrid rice cultivars. Acta Agron Sin, 2013,39:2238-2246 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.02238
[36] 赵姣, 郑志芳, 方艳茹, 周顺利, 廖树华, 王璞 . 基于动态模拟模型分析冬小麦干物质积累特征对产量的影响. 作物学报, 2013,39:300-308.
doi: 10.3724/SP.J.1006.2013.00300
Zhao J, Zheng Z F, Fang Y R, Zhou S L, Liao S H, Wang P . Effect of dry matter accumulation characteristics on yield of winter wheat analyzed by dynamic simulation model. Acta Agron Sin, 2013,39:300-308 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.00300
[37] 杨惠杰, 李义珍, 杨仁崔, 姜照伟, 郑景生 . 超高产水稻的干物质生产特性研究. 中国水稻科学, 2001,15:265-270.
doi: 10.3321/j.issn:1001-7216.2001.04.006
Yang H J, Li Y Z, Yang R C, Jiang Z W, Zheng J S . Dry matter production characteristics of super high yielding rice. Chin J Rice Sci, 2001,15:265-270 (in Chinese with English abstract).
doi: 10.3321/j.issn:1001-7216.2001.04.006
[38] 梁晓艳, 李安东, 万书波, 王才斌, 孙奎香, 陈效东, 吴正锋 . 超高产夏直播花生生育动态及生理特性研究. 作物杂志, 2011, ( 3):46-50.
doi: 10.3969/j.issn.1001-7283.2011.03.011
Liang X Y, Li A D, Wan S B, Wang C B, Sun K X, Chen X D, Wu Z F . Developmental dynamics and physiological characteristics of super high-yielding summer-planting peanut. Crops, 2011, ( 3):46-50 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-7283.2011.03.011
[39] 李晓丹, 曹应龙, 胡亚平, 肖玲, 武玉花, 吴刚, 卢长明 . 花生种子发育过程中脂肪酸累积模式研究. 中国油料作物学报, 2009,31:157-162.
doi: 10.3321/j.issn:1007-9084.2009.02.009
Li X D, Cao Y L, Hu Y P, Xiao L, Wu Y H, Wu G, Lu C M . Fatty acid accumulation pattern in developing seeds of peanut. Chin J Oil Crop Sci, 2009,31:157-162 (in Chinese with English abstract).
doi: 10.3321/j.issn:1007-9084.2009.02.009
[40] Hu Y, Zhang Y, Yu W, Hänninen H, Song L, Du X, Zhang R, Wu J . Novel insights into the influence of seed sarcotesta photosynthesis on accumulation of seed dry matter and oil content in Torreya grandis cv. “Merrillii”. Front Plant Sci, 2018,8:2179.
doi: 10.3389/fpls.2017.02179 pmid: 29375592
[41] Janila P, Manohar S S, Patne N, Variath M T, Nigam S N . Genotype × environment interactions for oil content in peanut and stable high-oil-yielding sources. Crop Sci, 2016,56:2506-2515.
doi: 10.2135/cropsci2016.01.0005
[42] Meta H R, Monpara B A . Genetic variation and trait relationships in summer groundnut, Arachis hypogaea L. J Oilseeds Res, 2010,26:186-187.
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[7] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[8] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[9] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[10] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[11] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[12] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[13] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[14] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[15] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!