Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (8): 1174-1184.doi: 10.3724/SP.J.1006.2020.92066


Detection of QTLs controlling cold tolerance at bud bursting stage by using a high-density SNP linkage map in japonica rice

JIANG Shu-Kun1,*(),WANG Li-Zhi1,YANG Xian-Li1,LI Bo2,MU Wei-Jie3,DONG Shi-Chen3,CHE Wei-Cai3,LI Zhong-Jie1,CHI Li-Yong1,LI Ming-Xian1,ZHANG Xi-Juan1,JIANG Hui2,LI Rui1,ZHAO Qian1,LI Wen-Hua2,*()   

  1. 1Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region/Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, Heilongjiang, China
    2Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
    3Life Science and Technology College, Harbin Normal University, Harbin 150025, Heilongjiang, China
  • Received:2019-12-08 Accepted:2020-03-24 Online:2020-08-12 Published:2020-04-10
  • Contact: Shu-Kun JIANG,Wen-Hua LI E-mail:sk_jiang@126.com;nkylwh@163.com
  • Supported by:
    National Key Research and Development Program of China(2018YFD0300105-5-2);National Natural Science Foundation of China(31661143012);Provincial Funding for the National Key Research and Development Program in Heilong jiang Province(768001);Natural Science Foundation of Heilongjiang Province of China(YQ2019C020);Heilongjiang Province Agricultural Science and Technology Innovation Project(2018CQJC002);Heilongjiang Province Agricultural Science and Technology Innovation Project(2019CQJC002)


Direct seeded rice (DSR) has received much attention because of its time- and labour-saving and low-input demand. However, the long-term cultivation method of seedling-transplantation has led to loss of some low-temperature-tolerant genes expressed at the bud stage. It has made many currently popular rice varieties unsuitable for direct seeding production. Therefore, it is important to identify cold-tolerance genes at the bud stage and to provide genes for subsequent molecular marker assistant breeding. In this study, we used a recombinant inbred line population constructed by cross of Lijiangxintuanheigu (LTH) and Shennong 265 (SN265) and its linkage map containing 2818 markers to detect cold tolerance QTLs at the bud stage. A total of five QTLs were detected on rice chromosomes 1, 3, 9, and 11. All the cold tolerance alleles were from the cold-tolerant parent LTH. The LOD values of these QTLs ranged from 3.05 to 24.01, and the phenotypic variations ranged from 8.0% to 53.5%. Among them, the major QTL qCTB11b was located in a 790 kb interval of 21.24 Mb to 22.03 Mb on the long arm of chromosome 11. Subsequently, the “selective mapping” strategy was used for QTL verification and pyramiding effect analysis. Genetic improvement of cold tolerance at the bud stage would be achieved through pyramiding more QTLs. These results not only promote people’s understanding of the genetic basis for cold tolerance at the bud stage in rice but also provide theoretical basis and technical guidance for genetic improvement of DSR varieties.

Key words: japonica rice, cold tolerance at bud bursting stage, re-sequencing, genetic map, QTLs

Fig. 1

Physical map (A) and genotype (B) of Lijiangxintuanheigu-shennong 265 (LTH-SN265) RIL population Physical position is based on MSU Rice Genome Annotation Project Release 7 sequence. Yellow: SN265 genotype; Blue: LTH genotype."

Fig. 2

Evaluation criteria for chilling injury at rice bud stage SN265: Shennong 265; LTH: Lijiangxintuanheigu."

Fig. 3

Comparison of no cold treatment (A) and cold treatment (B) at bud bursting stage between LTH and SN265"

Fig. 4

Distribution of cold tolerance at bud bursting stage in LTH-SN265 RILs"

Table 1

QTLs controlling cold tolerance at bud bursting stage identified in LTH-SN265 RILs"

Peak pos.a
Peak marker
QTL区间QTL interval LOD值
LOD value
Var. (%)
Physical (Mb)
interval (Mb)
qCTB1 1 0.73 Bin01-002 0.43-0.93 0.50 3.26 8.20 0.22 LTH
qCTB3 3 29.40 Bin03-281 29.40-32.87 3.47 3.05 8.00 0.21 LTH
qCTB9 9 21.45 Bin09-185 19.90-22.30 2.40 5.36 16.60 0.34 LTH
qCTB11a 11 9.71 Bin11-087 8.53-9.93 1.40 8.58 24.10 0.39 LTH
qCTB11b 11 21.80 Bin11-141 21.24-22.03 0.79 24.01 53.50 0.64 LTH

Fig. 5

Chromosome location of putative QTL for cold tolerance at bud bursting stage in LTH-SN265 RILs OsCOIN: cold inducible zinc finger protein[46]; OsHOS1: a rice E3-Ubiquitin Ligase in the modulation of cold stress response[47]; OsDREB1A, OsDREB1B: cold inducible AP2/EREBP transcription factor gene[48]; qCTP11: a QTL for cold tolerance at bud stage[27]."

Fig. 6

Genotype of recombinant plant for validating cold tolerance QTL and analyzing pyramiding effect at bud busting stage “-”: missing."

Fig. 7

Effect of cold tolerance QTL and pyramiding effect at bud stage in LTH-SN265 RILs A: Shennong 265 (SN265); B: Lijiangxintuanheigu (LTH); C-G: Cold tolerance effect of qCTB1, qCTB3, qCTB9, qCTB11a, and qCTB11b at bud stage; H: Cold tolerance cluster effect of qCTB1 and qCTB3 at bud stage; I: Cold tolerance cluster effect of qCTB3 and qCTB9 at bud stage; J: Cold tolerance cluster effect of qCTB9 and qCTB11a at bud stage; K: Cold tolerance cluster effect of qCTB11a and qCTB11b at bud stage; L: Cold tolerance cluster effect of qCTB11a and qCTB11b at bud stage; M: Cold tolerance cluster effect of qCTB9 and qCTB11b at bud stage; N: Cold tolerance cluster effect of qCTB1, qCTB3, and qCTB9 at bud stage; O: Cold tolerance cluster effect of qCTB3, qCTB9, and qCTB11a at bud stage; P: Cold tolerance cluster effect of qCTB1, qCTB3, and qCTB11a at bud stage; Q: Cold tolerance cluster effect of qCTB1, qCTB11a, and qCTB11b at bud stage; R: Cold tolerance cluster effect of qCTB3, qCTB11a, and qCTB11b at bud stage; S: Cold tolerance cluster effect of qCTB9, qCTB11a, and qCTB11b at bud stage; T: Cold tolerance cluster effect of qCTB1, qCTB3, qCTB11a, and qCTB11b at bud stage; U: Cold tolerance cluster effect of qCTB1, qCTB9, qCTB11a and qCTB11b at bud stage; V: Cold tolerance cluster effect of qCTB3, qCTB9, qCTB11a, and qCTB11b at bud stage; W: Cold tolerance cluster effect of qCTB1, qCTB3, qCTB9, qCTB11a, and qCTB11b at bud stage; X: none QTL line."

[1] 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究: 分子生理机制及育种展望. 遗传, 2018,40:171-185.
Liu C T, Wang W, Mao B G, Chu C C. Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects. Hereditas, 2018,40:171-185 (in Chinese with English abstract).
[2] 矫江, 许显滨, 孟英. 黑龙江省水稻低温冷害及对策研究. 中国农业气象, 2004,25(2):27-29.
Jiao J, Xu X B, Meng Y. Analysis of rice chilling injury and countermeasures in Heilongjiang province. Chin J Agrometeorol, 2004,25(2):27-29 (in Chinese with English abstract).
[3] 聂元元, 蔡耀辉, 颜满莲, 李永辉, 毛凌华, 颜龙安, 杨晓莉. 水稻低温冷害分析研究进展. 江西农业学报, 2011,23(3):63-66.
Nie Y Y, Cai Y H, Yan M L, Li Y H, Mao L H, Yan L A, Yang X L. Research advances in chilling injury to rice. Acta Agric Jiangxi, 2011,23(3):63-66 (in Chinese with English abstract).
[4] Cruz R P, Sperotto R A, Cargnelutti D, Adamski J M, de FreitasTerra T, Fett J P. Avoiding damage and achieving cold tolerance in rice plants. Food & Energy Security, 2013,2:96-119.
doi: 10.5923/j.food.20120205.05
[5] Borjas A H, Leon T B D, Subudhi P K. Genetic analysis of germinating ability and seedling vigor under cold stress in US weedy rice. Euphytica, 2016,208:1-14.
[6] Satoh T, Tezuka K, Kawamoto T, Matsumoto S, Satoh-Nagasawa N, Ueda K, Sakurai K, Watanabe A, Takahashi H, Akagi H. Identification of QTLs controlling low-temperature germination of the east European rice variety Maratteli. Euphytica, 2016,207:245-254.
[7] 吴立, 霍治国, 姜燕, 张蕾, 于彩霞. 气候变暖背景下南方早稻春季低温灾害的发生趋势与风险. 生态学报, 2016,36:1263-1271.
Wu L, Huo Z G, Jiang Y, Zhang L, Yu C X. Trends and risk of spring low-temperature damage to early rice in southern China against the background of global warming. Acta Ecol Sin, 2016,36:1263-1271 (in Chinese with English abstract).
[8] 郭丽颖, 耿艳秋, 金峰, 宋微, 邵玺文. 寒地水稻低温冷害防御栽培技术研究进展. 作物杂志, 2017, (4):7-14.
Guo L Y, Geng Y Q, Jin F, Song W, Shao X W. Research advances about low temperature, cold damage defense cultivation techniques of rice in cold region of china. Crops, 2017, (4):7-14 (in Chinese with English abstract).
[9] 戴陆园, 叶昌荣, 余腾琼, 徐福荣. 水稻耐冷性研究: I. 稻冷害类型及耐冷性鉴定评价方法概述. 西南农业学报, 2002,15(1):41-45.
Dai L Y, Ye C R, Yu T Q, Xu F R. Studies on cold tolerance of rice, Oryza sativa L.: I. Description on types of cold injury and classifications of evaluation methods on cold tolerance in rice. Southwest China J Agric Sci, 2002,15(1):41-45 (in Chinese with English abstract).
[10] 韩龙植, 曹桂兰, 芮钟斗, 安永平, 乔永利, 黄兴九, 高熙宗. 水稻芽期耐冷性与其他耐冷性状的相关关系. 作物学报, 2004,30:990-995.
Han L Z, Cao G L, Yea J D, An Y P, Qiao Y L, Huang X J, Koh H J. Relationship between cold tolerance at the bud bursting period and other traits related to cold tolerance in rice. Acta Agron Sin, 30:990-995 (in Chinese with English abstract).
[11] 陈品, 陆建飞. 长江中下游地区直播稻的生理生态特性及其栽培技术的研究进展. 核农学报, 2013,27:487-494.
Chen P, Lu J F. Research advances on the physiological and ecological characteristics and cultivation techniques of direct seeding rice in the Middle-Lower Yangtze area. J Nucl Agric Sci, 2013,27:487-494 (in Chinese with English abstract).
[12] 张喜娟, 来永才, 孟英, 唐傲, 董文军, 冷春旭, 王立志, 姜树坤, 姜辉, 丁国华. 水直播对寒地粳稻产量和品质性状的影响. 中国稻米, 2016,22(2):43-46.
Zhang X J, Lai Y C, Meng Y, Tang A, Dong W J, Leng C X, Wang L Z, Jiang S K, Jiang H, Ding G H. Effects of water direct seeding on yield and quality of japonica rice in cold area. China Rice, 2016,22(2):43-46 (in Chinese with English abstract).
[13] 余会康, 郭建平. 气候变化下东北水稻冷害时空分布变化. 中国生态农业学报, 2014,22:594-601.
Yu H K, Guo J P. Variation in spatial and temporal distribution of chilling injury of rice under climate change in Northeast China. Chin J Eco-Agric, 2014,22:594-601 (in Chinese with English abstract).
[14] Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci USA, 2008,105:12623-12628.
doi: 10.1073/pnas.0805303105 pmid: 18719107
[15] Liu C T, Ou S, Mao B, Tang J, Wang W, Wang H, Cao S, Schläppi M, Zhao B, Xiao G. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nat Commun, 2018,9:3302.
pmid: 30120236
[16] Saito K, Hayano-Saito Y, Kuroki M, Sato Y. Map-based cloning of the rice cold tolerance gene Ctb1. Plant Sci, 2010,179:97-102.
doi: 10.1016/j.plantsci.2010.04.004
[17] Zhang Z Y, Li J J, Pan Y H, Li J L, Zhou L, Shi H L, Zeng Y W, Guo H F, Yang S M, Zheng W W, Yu J P, Sun X M, Li G L, Ding Y L, Ma L, Shen S Q, Dai L Y, Zhang H L, Yang S H, Guo Y, Li Z C. Natural variation in CTB4a enhances rice adaptation to cold habitats. Nat Commun, 2017,8:14788.
doi: 10.1038/ncomms14788 pmid: 28332574
[18] Ma Y, Dai X Y, Xu Y Y, Luo W, Zheng X M, Zeng D L, Pan Y J, Lin X L, Liu H H, Zhang D J, Xiao J, Guo X Y, Xu S J, Niu Y D, Jin J B, Zhang H, Xu X, Li L L, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice. Cell, 2015,160:1209-1221.
doi: 10.1016/j.cell.2015.01.046 pmid: 25728666
[19] Mao D H, Xin Y Y, Tan Y J, Hu X J, Bai J J, Liu Z Y, Yu Y L, Li L Y, Peng C, Fan T, Zhu Y X, Guo Y L, Wang S H, Li D P, Xing Y Z, Yuan L P, Chen C Y. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proc Natl Acad Sci USA, 2019,116:3494-3501.
doi: 10.1073/pnas.1819769116 pmid: 30808744
[20] 严长杰, 李欣, 程祝宽, 于恒秀, 顾铭洪, 朱立煌. 利用分子标记定位水稻芽期耐冷性基因. 中国水稻科学, 1999,13:134-138.
Yan C J, Li X, Cheng Z K, Yu H X, Gu M H, Zhu L H. Identification of QTL for cold tolerance at early seeding stage in rice (Oryza sativa) via RFLP markers. Chin J Rice Sci, 1999,13:134-138 (in Chinese with English abstract).
[21] Zhang Z H, Li S, Li W, Chen W, Zhu Y G. A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice ( Oryza sativa L.). Plant Sci, 2005,168:527-534.
doi: 10.1016/j.plantsci.2004.09.021
[22] 乔永利, 韩龙植, 安永平, 张媛媛, 曹桂兰, 高熙宗. 水稻芽期耐冷性QTL的分子定位. 中国农业科学, 2005,38:217-221.
Qiao Y L, Han L Z, An Y P, Zhang Y Y, Cao G L, Koh H J. Molecular mapping of QTLs for cold tolerance at the bud bursting period in rice. Sci Agric Sin, 2005,38:217-221 (in Chinese with English abstract).
[23] 陈玮, 李炜. 水稻RIL群体芽期耐冷性基因的分子标记定位. 武汉植物学研究, 2005,23:116-120.
Chen W, Li W. Mapping of QTL conferring cold tolerance at early seeding stage of rice by molecular markers. J Wuhan Bot Res, 2005,23:116-120 (in Chinese with English abstract).
[24] 张露霞, 王松凤, 江铃, 万建民. 利用重组自交系群体检测水稻芽期耐冷性QTL. 南京农业大学学报, 2007,30(4):1-5.
Zhang L X, Wang S F, Jiang L, Wan J M. QTL analysis of cold tolerance at the bud bursting period in rice (Oryza sativa L.) by using recombinant inbred lines. J Nanjing Agric Univ, 2007,30(4):1-5 (in Chinese with English abstract).
[25] 巩迎军, 阮雯君, 荀星, 董彦君, 林冬枝, 叶胜海, 张小明. 水稻芽性状耐冷性的QTL分析. 分子植物育种, 2009,7:273-278.
Gong Y J, Ruan W J, Xun X, Dong Y J, Lin D Z, Ye S H, Zhang X M. QTL analysis of cold tolerance for two bud traits in rice. Mol Plant Breed, 2009,7:273-278 (in Chinese with English abstract).
[26] 林静, 朱文银, 张亚东, 朱镇, 赵凌, 陈涛, 赵庆勇, 周丽慧, 方先文, 王艳平. 利用染色体片段置换系定位水稻芽期耐冷性QTL. 中国水稻科学, 2010,24:233-236.
doi: 10.3969/j.issn.1001-7216.2010.03.004
Lin J, Zhu W Y, Zhang Y D, Zhu Z, Zhao L, Chen T, Zhao Q Y, Zhou L H, Fang X W, Wang Y P. Detection of quantitative trait loci for cold tolerance at the bursting stage by using chromosome segment substitution lines in rice (Oryza sativa). Chin J Rice Sci, 2010,24:233-236 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-7216.2010.03.004
[27] Baruah A R, Ishigo-Oka N, Adachi M, Oguma Y, Tokizono Y, Onishi K, Sano Y. Cold tolerance at the early growth stage in wild and cultivated rice. Euphytica, 2009,165:459-470.
doi: 10.1007/s10681-008-9753-y
[28] Ji Z J, Zeng Y X, Zeng D L, Ma L Y, Li X M, Liu B X, Yang C D. Identification of QTLs for rice cold tolerance at plumule and 3-leaf-seedling stages by using QTL Network software. Rice Sci, 2010,17:282-287.
doi: 10.1016/S1672-6308(09)60028-7
[29] 周勇, 朱孝波, 袁华, 郑英, 钦鹏, 魏应海, 王玉平, 黄世君, 李仕贵. 水稻单片段代换系芽期和苗期耐冷性分析及耐冷性QTL鉴定. 中国水稻科学, 2013,27:381-388.
doi: 10.3969/j.issn.10017216.2013.04.007
Zhou Y, Zhu X B, Yuan H, Zheng Y, Qin P, Wei Y H, Wang Y P, Huang S J, Li S G. Characterization of cold tolerance and identification of cold tolerance QTLs for rice single segment substitution lines at plumule and seedling stages. Chin J Rice Sci, 2013,27:381-388 (in Chinese with English abstract).
doi: 10.3969/j.issn.10017216.2013.04.007
[30] 杨洛淼, 王敬国, 刘化龙, 孙健, 郑洪亮, 邹德堂. 寒地粳稻发芽期和芽期的耐冷性QTL定位. 作物杂志, 2014, (6):44-51.
Yang L S, Wang J G, Liu H L, Sun J, Zheng H L, Zou D T. QTL mapping of cold tolerance for the germination period and the bud bursting period of japonica in cold area. Crops, 2014, (6):44-51 (in Chinese with English abstract).
[31] 朱金燕, 杨梅, 嵇朝球, 王军, 杨杰, 范方军, 李文奇, 王芳权, 梁国华, 周勇, 仲维功. 利用染色体单片段代换系定位水稻芽期耐冷QTL. 植物学报, 2015,50:338-345.
doi: 10.3724/SP.J.1259.2015.00338
Zhu J Y, Yang M, Ji C Q, Wang J, Yang J, Fan F J, Li W Q, Wang F Q, Liang G H, Zhou Y, Zhong W G. Identification of cold tolerance at the plumule stage quantitative trait loci with single segment substituted lines in rice. Chin Bull Bot, 2015,50:338-345 (in Chinese with English abstract).
doi: 10.3724/SP.J.1259.2015.00338
[32] Yang T F, Zhang S H, Zhao J L, Liu Q, Huang Z H, Mao X X, Dong J F, Wang X F, Zhang G Q, Liu B. Identification and pyramiding of QTLs for cold tolerance at the bud bursting and the seedling stages by use of single segment substitution lines in rice ( Oryza sativa L.). Mol Breed, 2016,36:96.
doi: 10.1007/s11032-016-0520-9
[33] Zhang M C, Ye J, Xu Q, Feng Y, Yuan X P, Yu H Y, Wang Y P, Wei X H, Yang Y L. Genome-wide association study of cold tolerance of Chinese indica rice varieties at the bud burst stage. Plant Cell Rep, 2018,37:529-539.
doi: 10.1007/s00299-017-2247-4 pmid: 29322237
[34] Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T. High-throughput genotyping by whole-genome resequencing. Genome Res, 2009,19:1068-1076.
doi: 10.1101/gr.089516.108 pmid: 19420380
[35] Jiang S, Yang C, Xu Q, Wang L, Yang X, Song X, Wang J, Zhang X, Li B, Li H, Li Z, Li W. Genetic dissection germinability under low temperature by building a resequencing linkage map in japonica rice. Int J Mol Sci, 2020,21:1284.
doi: 10.3390/ijms21041284
[36] 韩龙植, 魏兴华. 水稻种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. p 107.
Han L Z, Wei X H. Descriptors and Data Standard for Rice (Oryza sativa L.). Beijing: China Agriculture Press, 2006. p 107.
[37] Arends D, Prins P, Jansen R, Broman K. R/QTL: high-throughput multiple QTL mapping. Bioinformatics, 2010,26:2990-2992.
doi: 10.1093/bioinformatics/btq565 pmid: 20966004
[38] 姜树坤, 张凤鸣, 白良明, 孙世臣, 王彤彤, 丁国华, 姜辉, 张喜娟. 水稻移栽后新生根系相关性状的QTL分析. 中国水稻科学, 2014,28:598-604.
doi: 10.3969/j.issn.10017216.2014.06.005
Jiang S K, Zhang F M, Bai L M, Sun S C, Wang T T, Ding G H, Jiang H, Zhang X J. QTL analysis on new root traits after rice transplanting. Chin J Rice Sci, 2014,28:598-604 (in Chinese with English abstract).
doi: 10.3969/j.issn.10017216.2014.06.005
[39] Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2011,6:e17595.
doi: 10.1371/journal.pone.0017595 pmid: 21390234
[40] Gao Z Y, Zhao S C, He W M, Guo L B, Peng Y L, Wang J J, Guo X S, Zhang X M, Rao Y C, Zhang C, Dong G J, Zheng F Y, Lu C X, Hu J, Zhou Q, Liu H J, Wu H Y, Xu J, Ni P X, Zeng D L, Liu D H, Tian P, Gong L H, Ye C, Zhang G H, Wang J, Tian F K, Xue D W, Liao Y, Zhu L, Chen M S, Li J Y, Cheng S H, Zhang G Y, Wang J, Qian Q. Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences. Proc Natl Acad Sci USA, 2013,110:14492-14497.
doi: 10.1073/pnas.1306579110 pmid: 23940322
[41] Jiang N, Shi S, Shi H, Khanzada H, Wassan G M, Zhu C, Peng X, Yu Q, Chen X, He X, Fu J, Hu L, Xu J, Ou-Yang L, Sun X, Zhou D, He H, Bian J. Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice. Front Plant Sci, 2017,8:1223.
doi: 10.3389/fpls.2017.01223 pmid: 28747923
[42] Liu H, Niu Y, Gonzalez-Portilla P J, Zhou H, Wang L, Zuo T, Qin C, Tai S, Jansen C, Shen Y, Lin H, Lee M, Ware D, Zhang Z, Lübberstedt T, Pan G. An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize. BMC Genomics, 2015,16:1078.
doi: 10.1186/s12864-015-2242-5 pmid: 26691201
[43] Song W, Wang B, Hauck A L, Dong X, Li J, Lai J. Genetic dissection of maize seedling root system architecture traits using an ultra-high density bin-map and a recombinant inbred line population. J Integr Plant Biol, 2016,58:266-279.
pmid: 26593310
[44] Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhang Z, Zou J, Han B, Tao Y. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot, 2012,63:5451-5462.
doi: 10.1093/jxb/ers205 pmid: 22859680
[45] 姜树坤, 徐正进, 陈温福. 水稻QTL图位克隆的特征分析. 遗传, 2008,30:1121-1126.
Jiang S K, Xu Z J, Chen W F. Analysis of features of 15 successful positional cloning of QTL in rice. Hereditas (Beijing), 2008,30:1121-1126 (in Chinese with English abstract).
[46] Jiang S K, Huang C, Zhang X J, Wang J Y, Xu Z J, Chen W F. Development of a high informative microsatellite markers (SSRs) framework for genotyping of rice (Oryza sativa L.). Agric Sci China, 2010,9:1697-1704.
[47] Liu K M, Wang L, Xu Y Y, Chen N, Ma Q B, Li F, Chong K. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 2007,226:1007-1016.
doi: 10.1007/s00425-007-0548-5 pmid: 17549515
[48] Lourenço T, Sapeta H, Figueiredo D D, Rodrigues M, Cordeiro A, Abreu I A, Saibo N J M, Oliveira M M. Isolation and characterization of rice ( Oryza sativa L.) E3-ubiquitin ligase OsHOS1 gene in the modulation of cold stress response. Plant Mol Biol, 2013,83:351-363.
doi: 10.1007/s11103-013-0092-6 pmid: 23780733
[49] Mao D H, Chen C Y. Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway. PLoS One, 2012,7:e47275.
doi: 10.1371/journal.pone.0047275 pmid: 23077584
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[4] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[5] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[6] ZHANG Jun, ZHOU Dong-Dong, XU Ke, LI Bi-Zhong, LIU Zhong-Hong, ZHOU Nian-Bing, FANG Shu-Liang, ZHANG Yong-Jin, TANG Jie, AN Li-Zheng. Nitrogen fertilizer reduction and precise application model on mechanical transplanting japonica rice with good taste quality under straw returning in Huaibei Area [J]. Acta Agronomica Sinica, 2022, 48(2): 410-422.
[7] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[8] LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347.
[9] MA Meng, YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang. Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(11): 2147-2162.
[10] XU Ting-Ting, WANG Qiao-Ling, ZOU Shu-Qiong, DI Jia-Chun, YANG Xin, ZHU Yin, ZHAO Han, YAN Wei. Development and application of InDel markers based on high throughput sequencing in barley [J]. Acta Agronomica Sinica, 2020, 46(9): 1340-1350.
[11] ZHAO Chun-Fang,YUE Hong-Liang,TIAN Zheng,GU Ming-Chao,ZHAO Ling,ZHAO Qing-Yong,ZHU Zhen,CHEN Tao,ZHOU Li-Hui,YAO Shu,LIANG Wen-Hua,LU Kai,ZHANG Ya-Dong,WANG Cai-Lin. Physicochemical properties and sequence analysis of Wx and OsSSIIa genes in japonica rice cultivars from Jiangsu province and northeast of China [J]. Acta Agronomica Sinica, 2020, 46(6): 878-888.
[12] WEI Ping-Yang,QIU Shi,TANG Jian,XIAO Dan-Dan,ZHU Ying,LIU Guo-Dong,XING Zhi-Peng,HU Ya-Jie,GUO Bao-Wei,GAO Shang-Qin,WEI Hai-Yan,ZHANG Hong-Cheng. Screening and characterization of high-quality and high-yield japonica rice varieties in Yanhuai region of Anhui province [J]. Acta Agronomica Sinica, 2020, 46(4): 571-585.
[13] YAO Shu, ZHANG Ya-Dong, LIU Yan-Qing, ZHAO Chun-Fang, ZHOU Li-Hui, CHEN Tao, ZHAO Qing-Yong, ZHU Zhen, Balakrishna Pillay, WANG Cai-Lin. Effects of SSIIa and SSIIIa alleles and their interaction on eating and cooking quality under Wxmp background of rice [J]. Acta Agronomica Sinica, 2020, 46(11): 1690-1702.
[14] WANG Yan,YI Jun,GAO Ji-Ping,ZHANG Li-Na,YANG Ji-Fen,ZHAO Yan-Ze,XIN Wei,ZHEN Xiao-Xi,ZHANG Wen-Zhong. Effects of precision leaf age fertilization on yield and nitrogen utilization of
japonica rice
[J]. Acta Agronomica Sinica, 2020, 46(01): 102-116.
[15] ZENG Xin-Ying,GUO Jian-Bin,ZHAO Jiao-Jiao,CHEN Wei-Gang,QIU Xi-Ke,HUANG Li,LUO Huai-Yong,ZHOU Xiao-Jing,JIANG Hui-Fang,HUANG Jia-Quan. Identification of QTL related to seed size in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2019, 45(8): 1200-1207.
Full text



No Suggested Reading articles found!