Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (8): 1200-1207.doi: 10.3724/SP.J.1006.2019.84173


Identification of QTL related to seed size in peanut (Arachis hypogaea L.)

ZENG Xin-Ying1,2,GUO Jian-Bin2,ZHAO Jiao-Jiao2,CHEN Wei-Gang2,QIU Xi-Ke2,HUANG Li2,LUO Huai-Yong2,ZHOU Xiao-Jing2,JIANG Hui-Fang2,*(),HUANG Jia-Quan1,*()   

  1. 1 Institute of Tropical Agriculture and Forestry, Hainan University/Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Haikou 571003, Hainan, China
    2 Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2018-12-18 Accepted:2019-04-15 Online:2019-08-12 Published:2019-07-16
  • Contact: Hui-Fang JIANG,Jia-Quan HUANG E-mail:peanutlab@oilcrops.cn;jqhuang@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31461143022);This study was supported by the National Natural Science Foundation of China(31761143005);This study was supported by the National Natural Science Foundation of China(31571713);This study was supported by the National Natural Science Foundation of China(31801403);This study was supported by the National Natural Science Foundation of China(31871666);the Crop Germplasm Resources Protection Project(2017NWB033);the Plant Germplasm Resources Sharing Platform(NICGR2017-36);the China Agriculture Research System(CARS-13-种质资源评价)


Seed size-related traits are the direct factors determining the yield of peanut. To identify the QTL related to seed size-related traits, a recombinant inbred lines (RIL) population (188 progenies) derived from Zhonghua 16 × J11 was used in this study. A genetic linkage map of 947.3 cM in length was constructed, containing 21 linkage groups and 289 SSR markers. Seed size-related traits showed extensive variations in two years’ phenotyping. Between most of the traits with significant correlation. Based on the genetic map, we detected 66 QTL with the explained phenotypic variance (PVE) of 3.23%-33.01% were detected using the WinCart 2.5 software. The number of QTL for seed length (SL), seed width (SW), ratio of seed length to width (LWR) and hundred seed weight (HSW) were 18, 16, 18, and 14, respectively. Notably, the A05A1500-A05A1530 interval on Chromosome A05 harbored three QTL, i.e. qSLA05.1 and qSLA05.2 for SL and qHSWA05.1 for HSW, and the A06B135-A06B113 interval on B06 harbored three QTL as well, i.e. qSWB06.2 and qSWB06.4 for SW and qHSWB06.4 for HSW. These stable and major QTL pave a way for fine mapping of peanut yield-related traits and molecular breeding.

Key words: peanut, genetic mapping, seed size, QTL

Table 1

Statistical analysis of phenotypic traits related to kernels in parents and RIL populations"

年份 Year 性状
亲本Parent RIL群体 RIL population
P1 P2 最大值 Max 最小值 Min 平均值 Mean 标准差 SD 变异系数 CV (%) 峰度 Kurtosis 偏度 Skewness
2017 籽仁长 Seed length (mm) 16.85 11.45 18.48 10.84 14.20 1.52 10.73 0.10 0.33
籽仁宽 Seed width (mm) 10.64 8.50 11.80 8.39 9.85 0.62 6.34 -0.24 0.13
百仁重 Hundred seed weight (g) 79.27 32.49 88.49 34.84 59.04 10.39 17.59 0.17 0.28
籽仁长/宽 LWR 1.58 1.35 1.96 1.16 1.45 0.14 9.80 0.31 0.42
2018 籽仁长 Seed length (mm) 17.35 11.08 18.75 10.43 14.59 1.56 10.66 -0.41 0.20
籽仁宽 Seed width (mm) 11.84 8.00 11.35 8.22 9.85 0.59 6.03 -0.23 0.01
百仁重 Hundred seed weight (g) 97.78 33.67 88.24 34.51 62.84 10.49 17.25 -0.04 0.42
籽仁长/宽 LWR 1.48 1.39 1.87 1.14 1.50 0.14 9.63 -0.45 0.11

Fig. 1

Frequency distributions of seed length, seed width, hundred seed weight, and ratio of seed length to width (LWR) in 2017 and 2018"

Fig. 2

Correlationship between seed size-related traits LWR: ratio of seed length to width; SW: seed width; SL: seed length; HSW: hundred seed weight."

Table 2

Analysis of variance of size related traits for peanut kernels"

籽仁长 SL 环境 Environment 1 12.663 12.663 24.956 <0.001
基因型 Genotype 187 788.117 4.215 8.306 <0.001
籽仁宽SW 环境 Environment 1 0.00902 0.00902 0.0564 0.813
基因型 Genotype 187 108.58 0.581 3.627 <0.001
百仁重HSW 环境 Environment 1 1262.256 1262.256 36.178 <0.001
基因型 Genotype 187 35,453.375 189.59 5.434 <0.001
籽仁长宽比LWR 环境 Environment 1 0.164 0.164 35.522 <0.001
基因型 Genotype 187 6.787 0.0363 7.874 <0.001

Fig. 3

Genetic map of peanut"

Table 3

Distribution of SSR markers on the genetic map"

Number of markers
A01 25.95 5 5.19
A02 28.21 11 2.56
A03 46.69 8 5.84
A04a 4.91 4 1.23
A04b 34.12 3 11.37
A05 49.10 13 3.78
A06 64.61 4 16.15
A07 50.62 7 7.23
A08 48.31 5 9.66
A09 79.29 10 7.93
A10 53.13 33 1.61
B01 34.23 12 2.85
B02 42.82 25 1.71
B03 79.83 13 6.14
B04 55.15 13 4.24
B05 36.07 16 2.25
B06 84.17 38 2.21
B07 36.75 29 1.27
B08 29.24 16 1.83
B09 17.12 12 1.43
B10 46.99 12 3.92
合计 Total 947.30 289 3.28

Table 4

QTL repeatedly detected in different environment"

Year and trait
QTL name
Markers interval
LOD value
PVE (%)
Additive effect
A05 2017 SL qSLA05.2 A05A1500-A05A1530 18.20 33.01 0.8823
2018 SL qSLA05.5 (44.83-46.83 cM) 21.92 32.66 0.8944
2017 HSW qHSWA05.1 11.61 19.67 4.6552
2018 HSW qHSWA05.2 A05A1053-A05A1150 12.55 18.99 4.8211
2017 LWR qLWRA05.1 (32.47-36.25 cM) 7.07 11.03 0.0488
2018 LWR qLWRA05.3 8.42 12.28 0.0516
B06 2017 SL qSLB06.1 A06B467-A06B552 2.72 3.60 0.2951
2018 SL qSLB06.3 (66.2-72.09 cM) 3.87 3.95 0.3124
2017 SW qSWB06.2 A06B135-A06B113 8.53 14.27 0.2376
2018 SW qSWB06.4 (40.82-42.95 cM) 7.64 12.23 0.2273
2018 HSW qHSWB06.4 5.56 7.12 3.1744

Fig. 4

QTL co-localization intervals on A05 and B06"

[1] Gomes R L F, Lopes  C A . Correlations and path analysis in peanut. Crop Breed Appl Biotechnol, 2005,5:105-112.
doi: 10.12702/1984-7033
[2] Selvaraj M G, Narayana M, Schubert A M, Ayers J L, Baring M R, Burow M D . Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electron J Biotechnol, 2009,12:13.
[3] Getahun A, Yang X L, He M J, Cui S L, Mu G J, Liu L F . Advances of genetic map construction and QTL mapping in peanut. J Peanut Sci, 2017,46:1-10.
[4] Wilson J N, Chopra R, Baring M R, Selvaraj M G, Simpson C E, Chagoya J, Burow M D . Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut ( Arachis hypogaea L.). Tropical Plant Biol, 2017,10:1-17.
[5] Wang M L, Khera P, Pandey M K, Wang H, Qiao L X, Feng S P, Tonnis B, Barkley N A, Pinnow D, Holbrook C C, Culbreath A K, Varshney R K, Guo B Z . Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS One, 2015,10:e0119454.
[6] Khedikar Y P, Gowda M V C, Sarvamangala C, Patgar K V, Upadhyaya H D, Varshney R K . A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2010,121:971-984.
[7] Pandey M K, Wang H, Khera P, Vishwakarma M K, Kale S M, Culbreath A K, Holbrook C C, Wang X J, Varshney R K, Guo B Z . Genetic dissection of novel QTLs for resistance to leaf spots and tomato spotted wilt virus in peanut (Arachis hypogaea L.). Front Plant Sci, 2017,8:25.
[8] Luo H Y, Xu Z J, Li Z D, Li X P, Lv J W, Ren X P, Huang L, Zhou X J, Chen Y N, Yu J Y, Chen W G, Lei Y, Liao B S, Jiang H F . Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2017,130:1635-1648.
[9] Chen Y N, Ren X P, Zheng Y L, Zhou X J, Huang L, Yan L Y, Jiao Y Q, Chen W G, Huang S M, Wan L Y, Lei Y, Liao B S, Huai D X, Wei W H, Jiang H F . Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Mol Breed, 2017,37:17.
[10] Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S . In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012,12:80.
[11] Ravi K, Vadez V, Isobe S, Mir R R, Guo Y, Nigam S N, Gowda M V C, Radhakrishnan T, Bertioli D J, Knapp S J, Varshney R K . Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2011,122:1119-1132.
[12] 王传堂, 黄粤, 杨新道, 姜勇, 张建成, 陈殿绪, 闵平, 禹山林 . 改良CTAB法和高盐低pH值法提取花生DNA的效果. 花生学报, 2002,31:20-23.
Wang C T, Huang Y, Yang X D, Jiang Y, Zhang J C, Chen D X, Min P, Yu S L . Isolation of DNA from peanut: comparison between modified CTAB and high salt, low pH methods. Peanut Sci, 2002,31:20-23 (in Chinese with English abstract).
[13] Chen W G, Jiao Y Q, Cheng L Q, Huang L, Liao B S, Tang M, Ren X P, Zhou X J, Chen Y N, Jiang H F . Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). BMC Genet, 2016,17:25.
[14] Luo H Y, Ren X P, Li Z D, Xu Z J, Li X P, Huang L, Zhou X J, Chen Y N, Chen W G, Lei Y, Liao B S, Pandey M K, Varshney R K, Guo B Z, Jiang X G, Liu F, Jiang H F . Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2017,18:58.
[15] Luo H Y, Guo J B, Ren X P, Chen W G, Huang L, Zhou X J, Chen Y N, Liu N, Xiong F, Lei Y, Liao B S, Jiang H F . Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2017,131:267-282.
[16] 李振动, 李新平, 黄莉, 任小平, 陈玉宁, 周小静, 廖伯寿, 姜慧芳 . 栽培种花生荚果大小相关性状QTL定位. 作物学报, 2015,41:1313-1323.
Li Z D, Li X P, Huang L, Ren X P, Chen Y L, Zhou X J, Liao B S, Jiang H F . Mapping of QTLs for pod size related traits in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2015,41:1313-1323 (in Chinese with English abstract).
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[4] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[5] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[6] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[7] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[8] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[9] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[10] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[11] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[12] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[13] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[14] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[15] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
Full text



No Suggested Reading articles found!