Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (8): 1185-1194.doi: 10.3724/SP.J.1006.2020.93062

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional identification of maize cation/proton antiporter ZmNHX7

ZHANG Ling-Xiao1,2,JIAO Zhen-Zhen2,BU Hua-Hu2,WANG Yi-Ru2,LI Jian2,3,ZHENG Jun1,2,*()   

  1. 1College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3College of Agronomy, Jilin Agricultural University, Changchun 130118, Jilin, China
  • Received:2020-02-06 Accepted:2020-03-24 Online:2020-08-12 Published:2020-04-03
  • Contact: Jun ZHENG E-mail:zhengjun02@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0101002)

Abstract:

Plant cation/proton antiporters can maintain intracellular ion homeostasis and resist ion toxicity. In this study, a gene encoding a maize cation/proton antiporter was cloned and named as ZmNHX7. The coding sequence of ZmNHX7 was 3411 bp, encoding a protein with 1136 amino acids. ZmNHX7 is ubiquitously expressed in various tissues of maize, With higher expression level in roots and stems at the V7 stage. The expression of ZmNHX7 was induced by NaCl and LiCl stresses. In phylogenetic tree ZmNHX7 showed a close relation with AtNHX7 and AtNHX8 of Arabidopsis thaliana. ZmNHX7 was located in cell membrane and nuclear membrane by confocal laser scanning microscopy analysis of the lower epidermis of tobacco leaves. When ZmNHX7 gene was transformed into the Arabidopsis thaliana T-DNA insertion mutant nhx8, the transgenic complementary lines could restore the tolerance of nhx8 to Li+. These results indicate that ZmNHX7 encodes a plasma membrane cation/proton antiporter of maize, which plays an important role in reducing the toxicity of Li+ to plants and maintaining intracellular ion homeostasis.

Key words: maize, ZmNHX7, antiporter, ion toxicity

Table 1

Primer sequences"

引物用途Purpose of primer 引物名称Primer name 引物序列Primer sequence (5'-3')
扩增基因引物 ZmNHX7-G-F1 ATGGGCGGCGAGGCTGAGCC
Amplified gene primer sequences ZmNHX7-G-R1 CTACTGCTCCTGGGGCGGAG
ZmNHX7-G-F2 GCTGTGGTTGCACTGCTAAA
ZmNHX7-G-R2 TGCAATAACAACCCCACTCA
AtNHX8-G-F TTCCGTACACCGTCGTTCT
AtNHX8-G-R CCCCATCAATTAACGTGGTC
At-actin-F GCCAATCCGGTGCTGGTAACA
At-actin-R CATACCAGATCCAGTTCCTCCTCCC
荧光定量PCR引物序列 ZmNHX7-Q-F TGGGTTGGACTTGAAAGAGG
RT-PCR primer sequences ZmNHX7-Q-R AACACAATGCCACCAGTGAA
GAPDH-F AGGATATCAAGAAAGCTATTAAGGC
GAPDH-R GTAGCCCCACTCGTTGTCG
基因亚细胞定位 ZmNHX7-L-F AGCAGGCTTTGACTTTATGGGCGGCGAGGCTGAGCCTGACA
Subcellular localization of gene ZmNHX7-L-R TGGGTCTAGAGACTTTCTACTGCTCCTGGGGCGGAGGCACG

Table 2

Maize NHX gene information"

基因名称
Gene name
基因序列号
Gene ID
CDS序列长度
CDS sequence length (bp)
ZmNHX1 GRMZM2G037342 1641
ZmNHX2 GRMZM2G063492 1641
ZmNHX3 GRMZM2G118019 1593
ZmNHX4 GRMZM2G027851 1620
ZmNHX5 GRMZM2G090149 1620
ZmNHX6 GRMZM2G067747 1611
ZmNHX7 GRMZM2G098494 3411

Fig. 1

Phylogenetic tree of NHX gene family in Arabidopsis thaliana and maize (A) and ZmNHX7 branched protein structure (B)"

Fig. 2

Expression analysis of ZmNHX7 gene in different tissues of maize by real-time fluorescence quantitative PCR V1: the first leaf of maize was fully expanded; V7: the seventh leaf of maize was fully expanded; R2: grain formation period. The error bar shows the standard deviation of three biological replicates, the relative expression level in root (V1) was used as the control."

Fig. 3

Induced expression of ZmNHX7 gene A: analysis of the expression level of ZmNHX7 after treatment with different concentrations of LiCl for 5 hours; B: analysis of the expression level of ZmNHX7 after treatment with different concentrations of NaCl for 5 hours. error bars represent standard errors of three independent repetitions; * and **: the relative expression of ZmNHX7 under different concentrations of ion stress is significantly different from the content at the 0.05 and 0.01 probability levels, respectively."

Fig. 4

Subcellular localization of ZmNHX7 A: localization of YFP fluorescence in tobacco leaves; B: localization of ZmNHX7-YFP fluorescence in tobacco leaves; C: localization of ZmNHX7-YFP and marker fluorescence in tobacco leaves."

Fig. 5

Identification of the transfer and expression of ZmNHX7 by PCR A: RT-PCR was used to verify the transcription of AtNHX8 gene in WT and nhx8; B: expression of ZmNHX7 gene in different Arabidopsis lines; C: transcriptional expression of ZmNHX7 gene in different Arabidopsis lines. M: D2000 plus DNA marker."

Fig. 6

Phenotype and fresh weight of different Arabidopsis strains A: germination and subsequent growth of wild type, nhx8 and COM1-COM4 plants under MS agar medium and MS medium containing 5 or 15 mmol L-1 LiCl, or 75 mmol L-1 NaCl. B: the fresh weight of wild type, nhx8 and COM1-COM4 after seven days of growth on medium containing ionic stress (the data are shown as mean ± SD, n = 20. Bars superscripted by different capitals are significantly different at P < 0.01 within a treatment)."

Fig. 7

Arabidopsis root length and data statistics A: root length phenotype of WT, nhx8, COM1, and COM4 on MS medium containing 0, 5, 10 mmol L-1 LiCl, and 50, 100 mmol L-1 NaCl. B: the root length of WT, nhx8, COM1, and COM4 after seven days of growth on medium containing ionic stress (The data are shown as mean ± SD, n = 10. Bars superscripted by different capitals are significantly different at the P < 0.01 within a treatment)."

[1] Nublat A, Desplans J, Casse F, Berthomieu P. Sas1, an Arabidopsis mutant overaccumulating sodium in the shoot, shows deficiency in the control of the root radial transport of sodium. Plant Cell, 2001,13:125-137.
doi: 10.1105/tpc.13.1.125 pmid: 11158534
[2] 安瑞. 拟南芥AtNHX8基因的克隆及其功能研究. 中国农业大学博士学位论文, 北京, 2006.
An R. Cloning and Functional Analysis of Arabidopsis AtNHX8 Gene. PhD Dissertation of China Agricultural University, Beijing, China, 2006 (in Chinese with English abstract).
[3] Laurence K, Jerome K, Guiomar G C, Andrew L, John C. Induced plant accumulation of lithium. Geosciences, 2018,8:56-73.
[4] Kszos L A, Stewart A J. Review of lithium in the aquatic environment: distribution in the United States, toxicity and case example of groundwater contamination. Ecotoxicology, 2003,12:439-447.
pmid: 14649426
[5] Jiang L, Wang L, Zhang L, Tian C. Tolerance and accumulation of lithium in Apocynum pictum Schrenk. Peer J, 2018,6:e5559.
pmid: 30186702
[6] Apse M P, Aharon G S, Snedden W A, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 1999,285:1256-1258.
doi: 10.1126/science.285.5431.1256 pmid: 10455050
[7] Kumar S, Kalita A, Srivastava R, Sahoo L. Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean. Front Plant Sci, 2017,8:1896.
pmid: 29163616
[8] 卜华虎. 玉米Na+/H+质子泵ZmNHX1功能的初步研究 中央民族大学硕士学位论文, 北京, 2011.
Bu H H. Preliminary Study on the Function of Maize Na+/H+ Proton Pump ZmNHX1 MS Thesis of Minzu University of China, Beijing, China, 2011 (in Chinese with English abstract).
[9] Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta, 1999,1446:149-155.
doi: 10.1016/s0167-4781(99)00065-2 pmid: 10395929
[10] Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol, 2004,45:146-59.
pmid: 14988485
[11] 徐璐, 郭善利, 尹海波. Na+/H+逆向转运蛋白与植物耐盐性研究. 湖北农业科学, 2016,55:2727-2730.
Xu L, Guo S L, Yin H B. The Na+/ H+ antiporter and its relation to salt tolerance in plants. Hubei Agric Sci, 2016,55:2727-2730 (in Chinese with English abstract).
[12] 马清, 包爱科, 伍国强, 王锁民. 质膜Na+/H+逆向转运蛋白与植物耐盐性. 植物学报, 2011,46:206-215
Ma Q, Bao A K, Wu G Q, Wang S M. Plasma membrane Na+/H+ antiporter is involved in plant salt tolerance. Chin Bull Bot, 2011,46:206-215 (in Chinese with English abstract).
[13] Shi H, Ishitani M, Kim C, Zhu J K. Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA, 2000,97:6896-6901.
doi: 10.1073/pnas.120170197 pmid: 10823923
[14] An R, Chen Q J, Chai M F, Lu P L, Su Z, Qin Z X, Chen J, Wang X C. AtNHX8, a member of the monovalent cation: proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant J, 2010,49:718-728.
doi: 10.1111/j.1365-313X.2006.02990.x pmid: 17270011
[15] 沈丹丹, 程文, 王志武, 卢增斌, 赵苏娴, 丁照华, 张恩盈. 我国玉米耐盐种质研究现状与展望. 山东农业科学, 2018,50(11):163-167.
Shen D D, Cheng W, Wang Z W, Lu Z B, Zhao S X, Ding Z H, Zhang E Y. Research advances and prospects of salt tolerant maize germplasms in China. Shandong Agric Sci, 2018,50(11):163-167 (in Chinese with English abstract).
[16] 许静, 单亚楠, 何豆, 陈淞渝, 庄炜, 王爱荣. 甘蓝型油菜SNARE蛋白SYP122叶片瞬时表达体系的建立. 福建农林大学学报(自然科学版), 2019,48:459-465.
Xu J, Shan Y N, He D, Chen S Y, Zhuang W, Wang A R. Establishment of transient expression system of SNARE protein SYP122 in Brassica napus leaves. J Fujian Agric & For Univ(Nat Sci Edn), 2019,48:459-465 (in Chinese with English abstract).
[17] 李磊, 杨远柱, 刘泓, 杜长青, 林建中, 朱咏华, 刘选明. 金针菇谷氨酸脱氢酶基因的克隆及原核表达. 生命科学研究, 2013,17:230-237.
Li L, Yang Y Z, Liu H, Du C Q, Lin J Z, Zhu Y H, Liu X M. Cloning of a glutamate dehydrogenase gene from Flammulina velutipes and prokaryotic expression. Life Sci Res, 2013,17:230-237 (in Chinese with English abstract).
[18] 高凯. NJ进化树构建方法的改进及其应用. 北京工业大学硕士学位论文, 北京, 2008.
Gao K. Improvement and Application of Neighbor-Joining Method for Phylogenetic Tree Reconstruction. MS Thesis of Beijing University of Technology, Beijing, China, 2008 (in Chinese with English abstract).
[19] Higgins D G, Thompson J D, Gibson T J. Using CLUSTAL for multiple sequence alignments. Methods Enzymol, 1996,266:383-402.
doi: 10.1016/s0076-6879(96)66024-8 pmid: 8743695
[20] Attitalla I H. Modified CTAB method for high quality genomic DNA extraction from medicinal plants. Pakistan J Biol Sci, 2011,14:998-999.
[21] 杨明峰, 韩宁, 陈敏, 王宝山. 植物盐胁迫响应基因表达的器官组织特异性. 植物生理学通讯, 2002,38:394-398.
Yang M F, Han N, Chen M, Wang B S. Organ tissue specificity of plant salt stress response gene expression. Plant Physiol J, 2002,38:394-398.
[22] Zhao W T, Feng S J, Li H, Faust F, Kleine T, Li L N, Yang Z M. Salt stress-induced FERROCHELATASE 1 improves resistance to salt stress by limiting sodium accumulation in Arabidopsis thaliana. Sci Rep, 2017,7:14737.
doi: 10.1038/s41598-017-13593-9 pmid: 29116128
[23] Earley K W, Haag J R, Pontes O, Opper K, Juehne T, Song K, Pikaard C S. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J, 2006,45:616-629.
pmid: 16441352
[24] Batistic O, Sorek N, Schültke S, Yalovsky S, Kudla J. Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell, 2008,20:1346-1362.
doi: 10.1105/tpc.108.058123 pmid: 18502848
[25] 许青松, 赵佳, 魏运民, 韩蓉蓉, 刘卢生, 蒋曹德, 玉永雄. 紫花苜蓿MsOXO基因的克隆及表达分析. 浙江农业学报, 2019,31:11-19.
Xu Q S, Zhao J, Wei Y M, Han R R, Liu L S, Jiang C D, Yu Y X. Cloning and expression analysis of oxalate oxidase gene MsOXO from Medicago sativa. Acta Agric Zhejiangensis, 2019,31:11-19 (in Chinese with English abstract).
[26] Zhang F, Li L, Jiao Z, Chen Y, Liu H, Chen X, Fu J, Wang G, Zheng J. Characterization of the Calcineurin B-Like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. Plant Sci, 2016,253:118-129.
doi: 10.1016/j.plantsci.2016.09.011 pmid: 27968980
[27] 蔡晓锋, 胡体旭, 叶杰, 张余洋, 李汉霞, 叶志彪. 植物盐胁迫抗性的分子机制研究进展. 华中农业大学学报, 2015,34(3):134-141.
Cai X F, Hu T X, Ye J, Zhang Y Y, Li H X, Ye Z B. Molecular mechanisms of salinity tolerance in plants. J Huazhong Agric Univ, 2015,34(3):134-141 (in Chinese with English abstract).
[28] Hawrylak N B, Kalinowska M, Szymańska M. A study on selected physiological parameters of plants grown under lithium supplementation. Biol Trace Element Res, 2012,149:425-430.
[29] Harwood A J. Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited. Mol Psychiatr, 2005,10:117-126.
[30] Bakhat H F, Rasul K, Farooq A B U, Zia Z, Natasha, Fahad S, Abbas S, Shah G M, Rabbani F, Hammad H M. Growth and physiological response of spinach to various lithium concentrations in soil. Environ Sci Pollut Res Int, 2019,11:1-9.
doi: 10.1007/BF02980278 pmid: 15005132
[31] 李晓院, 解莉楠. 盐胁迫下植物Na+调节机制的研究进展. 生物技术通报, 2019,35(7):148-155.
Li X Y, Xie L N. Research progress in Na+ regulation mechanism of plants under salt stress. Biotechnol Bull, 2019,35(7):148-155 (in Chinese with English abstract).
[32] Bartolo M E, Carter J V. Lithium decreases cold-induced microtubule depolymerization in mesophyll cells of spinach. Plant Physiol, 1992,99:1716-1718.
doi: 10.1104/pp.99.4.1716 pmid: 16669100
[33] Jurkowska H, Rogoz A, Wojciechowicz T. Comparison of lithiumtoxic influence on some cultivars of oats, maize and spinach. Acta Agrar Silv Ser Silv, 2018 36:37-42.
[34] Mulkey T J. Alteration of growth and gravitropic response of maize roots by lithium. Gravit Space Biol Bull, 2005,18:119-120.
pmid: 16044636
[35] Kabata P A, Mukherjee A B. Trace Elements from Soil to Human. Berlin: Environmental Chemistry Press, 2007. pp 9-38.
[36] 赵祥强. 玉米Na+/H+逆向转运蛋白基因ZmSOS1的克隆与鉴定. 安徽农业科学, 2009,37:17843-17848.
Zhao X Q. Cloning and identification of a new Na+/H+ antiporter gene ZmSOS1 in maize. J Anhui Agric Sci, 2009,37:17843-17848 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!