The leaves are the main place of photosynthesis directly related to the nutritional status, dry matter accumulation and yield formation of maize plants. The experiment was conducted using summer maize hybrid Zhengdan 958 with treatments of T1: local conventional cultivation practices; T2: based on T1, increasing planting density, delaying harvesting time, decreasing fertilizer application, and changing fertilization time; T3: based on T2, further increasing planting density, and further increasing fertilizer rate; T4: based on T3, decreasing planting density and the amount of fertilizer; and nitrogen treatments of N0, N1, N2, and N3, with 0, 129.0, 184.5, and 300.0 kg N hm -2, respectively. The contents of IAA, ZR, and GA3 decreased and the content of ABA increased, resulting in the decreases of SPAD, leaf area index (LAI) and specific leaf mass, when nitrogen application was not enough. And the contents of IAA, ZR, and GA3 increased, and ABA content decreased, and LAI, SPAD and dry matter accumulation per plant increased significantly with increasing nitrogen application. Integrated agronomic management practices could regulate the content of endogenous hormones in leaves. In T4 treatment, IAA, ZR, and GA3 contents increased by 23.1%, 9.8%, and 14.7%, the ABA content decreased by 12.4%, resulting in a suitable LAI; SPAD and final dry matter accumulation per plant were by 4.2% and 12.6% higher, respectively, than those in T1 treatment. Integrated agronomic managements could coordinate endogenous hormone contents, increase leaf SPAD and specific leaf mass, and be beneficial to dry matter accumulation per plant under the condition of reducing nitrogen application combining with optimal agronomic managements, which might be one of the important reasons for increasing summer maize yield.